

Mathematical Journal of Okayama University

Volume 20, Issue 2

1978

Article 9

OCTOBER 1978

Commutativity of certain rings

Kazuo Kishimoto* Isao Mogami[†]

Copyright ©1978 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Shinshu University

[†]Tsuyama College of Technology

COMMUTATIVITY OF CERTAIN RINGS

KAZUO KISHIMOTO and ISAO MOGAMI

Throughout A will represent a ring with a regular element. The set of all regular elements in A and the set of all quasiregular elements in A will be denoted by R and R', respectively. Now, let σ be an automorphism of A. If for each non-zero element y of A there exists an integer n(y) such that $xy = y \cdot x\sigma^{n(y)}$ for all $x \in A$, then A is said to be σ -commutative. In case A is σ -commutative, we may assume that each n(y) has been chosen so as to be minimal in its absolute value. Needless to say, a non-zero element y of a σ -commutative ring A is in its center C if and only if n(y) = 0. The purpose of this note is to prove the following:

Theorem. If A is a σ -commutative ring with the prime radical N, then A/N is a commutative reduced ring and A satisfies a polynomial identity $[[x_1, x_2], x_3] = 0$ or of the form $[x_1^k, x_2^k] = 0$.

In advance of proving our theorem, we state a lemma.

Lemma. Let A be a σ -commutative ring.

- (1) The classical quotient ring Q of A is also σ -commutative.
- (2) R and R' generate a commutative (multiplicative) semigroup. In particular, if every zero-divisor of A is nilpotent then A is commutative.
- *Proof.* (1) Evidently, A has a classical quotient ring Q. As usual, by setting $(xy^{-1})\sigma = x\sigma \cdot (y\sigma)^{-1}$, σ can be extended to an automorphism of Q. It is a routine to check $(xy^{-1})(uv^{-1}) = (uv^{-1})(xy^{-1})\sigma^{n(u)-n(v)}$.
- (2) According to (1), we may assume that A coincides with its classical quotient ring. Then, it suffices to show that the unit group U(A) of A is commutative. If n(y)=0 for all $y \in U(A)$ then U(A) is included in the center C. While, if $n(y_0) \neq 0$ for some $y_0 \in U(A)$ then there exists a unit a such that $n(a)=\min\{|n(y)| | n(y) \neq 0, y \in U(A)\}$. For each $y \in U(A)$, there exist integers q and r such that n(y)=n(a)q+r and $0 \leq r < n(a)$. Now, for any $x \in A$ we have $x(ya^{-q})=(ya^{-q})x\sigma^r$. By the minimality of n(a), it follows then r=0. Hence, $ya^{-q} \in C$, which means that U(A) is included in the commutative subring $C[a,a^{-1}]$.

180

Proof of Theorem. First, we shall prove that if P is a proper prime ideal of A, then A/P is a τ -commutative domain with some τ . If $xy \in P$ $(x, y \in A)$ then $xA \cdot yA = xyA \subseteq P$, whence it follows $x \in P$ or $y \in P$. This means that A/P is a domain. We claim here that $P\sigma^{n(y)} = P$ for any $y \in A \setminus P$. In fact, this is evident by $xy = y \cdot x\sigma^{n(y)}$ for all $x \in A$. If n(y) = 0 for all $y \in A \setminus P$ then A/P is commutative. While, if $n(y_0) \neq 0$ for some $y_0 \in A \setminus P$ then we can find a minimal positive integer h such that $P\sigma^h = P$. Let τ be the automorphism of A/P induced by σ^h . Now, for each $y \in A \setminus P$ there exist integers q and r such that n(y) = hq + r and $0 \le r < h$. Since $P = P\sigma^{n(y)} = P\sigma^r$, the minimality of h implies r = 0. Hence, n(y) is a multiple of h. This proves that A/P is τ -commutative. Since A/P is a commutative domain by Lemma (2), we readily see that A/N is a commutative reduced ring.

Next, we shall prove the latter assertion. By Lemma (1), we may assume that A coincides with its classical quotient ring. Since $[A, A] \subseteq N \subseteq R'$, if U(A) is included in the center C then [A, A], A = 0. Henceforth, we assume that $U(A) \not\subseteq C$, and choose a unit a such that $u(a) = \min\{|u(y)| \mid u(y) \neq 0, y \in U(A)\}$. We set $u(a) \in C[a, a^{-1}]$ and $u(a) \in C[a, a^{-1}]$ an

If A is right s-unital then A contains 1, and hence if A is a right p, p, ring in the sense of [3] then A is so in the primary sense [1].

Corollary 1. If A is a σ -commutative, right p. p. ring then A is commutative.

Proof. According to Theorem, it suffices to prove that A is a reduced ring. If a is an element of A with $a^2 = 0$ then, by [3, Lemma 5], the right annihilator r(a) of a in A is generated by a central idempotent e. Since a is in r(a), we obtain a = ae = 0.

Finally, we can restate [2, Theorem 2.2] as follows:

Corollary 2. If A is σ -commutative then the following are equivalent:

COMMUTATIVTY OF CERTAIN RINGS

- 1) A is semiprime, and for any $x \in A$ there exists $x' \in A$ such that r(r(x)) = r(x').
 - 2) For any $x \in A$ there exists $d \in R$ such that $dx = x^2$.
 - 3) The classical quotient ring Q of A is a regular ring.
- *Proof.* 1) \Longrightarrow 2) By Theorem, A is commutative. Obviously, there holds $(x+x')x=x^2$. If (x+x')y=0 then $xy=-x'y\in r(r(x))\cap r(r(x'))=r(x')\cap r(r(x'))=0$ by the semiprimeness of A. Hence, $y\in r(x)\cap r(x')=r(x)\cap r(r(x))=0$, which means $x+x'\in R$.
- 2) \Longrightarrow 3) To be easily seen, A is a reduced ring, and therefore commutative by Theorem. Let xu^{-1} be an arbitrary element of Q, and choose $d \in R$ with $dx = x^2$. We have then $(xu^{-1})(ud^{-1})(xu^{-1}) = x^2d^{-1}u^{-1} = xu^{-1}$
- 3) \Longrightarrow 1) By Lemma (1) and Theorem, Q is a commutative regular ring. Given $x \in A$, we have an idempotent $x'u^{-1}$ such that $r_Q(x) = (x'u^{-1})Q$. Hence $r(r(x)) = r_Q(r_Q(x)) \cap A = r_Q(x'u^{-1}) \cap A = r(x')$.

REFERENCES

- [1] S. Endo: Note on p. p. rings, Nagoya Math. J. 17 (1960), 167-170.
- [2] M. W. Evans: On commutative p. p. rings, Pacific J. Math. 41 (1972), 687-697.
- [3] Y. HIRANO and H. TOMINAGA: Regular rings, V-rings and their generalizations, Hiroshima Math. J. (to appear).

SHINSHU UNIVERSITY AND

TSUYAMA COLLEGE OF TECHNOLOGY

(Received May 31, 1978)