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ON EXTENSIONS OF RINGS WITH FINITE
ADDITIVE INDEX

To the memory of Professor Shigeaki Togd
Yasvyukr HIRANO

In [1] we proved that if the additive group of the center Z of a ring
R has a finite group-theoretic index in the additive group of R, then R has
an ideal I contained in Z such that R/I is a finite ring. The purpose of
this paper is to extend this result for extensions of rings with finite additive
index. As an application of it, we prove that if a derivation d of an infinite
simple ring has only finitely many values, then d = 0.

For a ring R, R* denotes the additive group of R. We shall prove
the main theorem of this paper.

Theorem 1. Let R be a subring of a ring S. Suppose that R* has a
finite index in S*. Then there exisis an ideal I of S contained in R such
that S/1 is a finite ring.

Proof. Consider the homomorphism g: R —» End(S*/R*) defined by
glr)(s+R*) = rs+R™ for all r € R and s+R* € S*/R". Since S*/R*
is a finite group, End(S*/R™) is a finite ring. Hence Ker(g) =i{r € R |
rS C R} has a finite index in R*. Similarly, {r € R |Sr € R has a finite
index in R*. Hence I=|r&€ R|SrC R and +S € R has a finite index
in R*. Let n be the index of R* in S* and let S™/R" = {ay,+R", a2+
R*,....,an+R*|. For each i, consider the map f,: I » End (S*/R"*) de-
fined by f(r)(s+R*) = ars+R* for all r€ I and s+R* € S*/R".
Then each f, is an additive map, and so the additive subgroup Ker(f;) has

a finite index in I. Hence I' = (i Ker(f,) has a finite index in R~. Let r

be an arbitrary element of I'. Then rSCT R and ¢+S C R for all i=
1,2,....,n, and so SrSC R. Now it is easy to see that ] ={r € R |
SrS C Rt N I. Therefore the ideal J = I'+SI'+I'S+SI'S of S is con-
tained in R, and S/J is a finite ring.

Corollary 1. Let R be a subring of an infinite simple ring S. If R*
has a finite index in S*, then S = R.
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Corollary 2. Let R be an infiniie simple ring with identity e. If S
is an extension of R and if R* has a finite index in S*, then S is the
direct sum of R and a finite ring.

Proof. By Theorem 1, S has an ideal I contained in R such that S/I
is a finite ring. Since R is an infinite simple ring, I must coinside with
R. Thus R is an ideal of S, and so e is a central idempotent of S. Now
our assertion is clear.

Corollary 3. Let S be a ring which has no non-zero finite homomorphic
images, and let d be a derivation of S. If d has only finitely many values
in S, then d = 0.

Proof. Let Im(d) =1s., s2v....sn{. For each i=1,2,..., n, take
an element @, € S such that d(a,) = s,. Since d is a derivation of S,
R=1lae S|d(a) =0} is a subring of S. Now we can easily see that
S*/R* = {a1+R*, ax+R", ..., an+R*}. Therefore, by Theorem 1, S
has an ideal I contained in R such that S/I is a finite ring. Then, by
hypothesis, we conclude that S = R.

As an immediate consequence of Corollary 3, we have

Corollary 4. Let S be a ring which has no non-zero finite homomorphic
images, and let d denote the inmer derivation of S induced by an element x
of S. If Im(d) is a finite subset of S, then x is contained in the center
of S.

Remark. In Corollary 3, d cannot be replaced by an additive map of
S, and hence, in Theorem 1, R cannot be replaced by an additive subgroup
with finite index. For example, let K = GF(p) where p is a prime number,
and let K(x) be the field of rational functions in one variable over K. Then
there exists a K-subspace L of K(x) such that K(x) = K ® L. The pro-
jection p: K(x) » K defined by this decomposition is a non-zero additive
map and Im(p) (= K) is a finite subset of K(x).
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