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Abstract

This paper shows that the Gramann Manifolds GF(n,N) can all be imbedded in an Euclidean
space MF(N) naturally and the imbedding can be realized by the eigenfunctions of Laplacian ∆
on GF(n,N). They are all minimal submanifolds in some spheres of MF(N) respectively. Using
these imbeddings, we construct some degenerate Morse functions on Gramann Manifolds, show
that the homology of the complex and quaternion Gramann Manifolds can be computed easily.
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THE GEOMETRY AND TOPOLOGY ON GRASSMANN
MANIFOLDS

Zhou JIANWEI

Abstract. This paper shows that the Grassmann Manifolds GF(n, N)
can all be imbedded in an Euclidean space MF(N) naturally and the
imbedding can be realized by the eigenfunctions of Laplacian 4 on
GF(n, N). They are all minimal submanifolds in some spheres of MF(N)
respectively. Using these imbeddings, we construct some degenerate
Morse functions on Grassmann Manifolds, show that the homology of
the complex and quaternion Grassmann Manifolds can be computed
easily.

1. Introduction

Let GF(n, N) be the Grassmann manifold formed by all n-subspaces in
FN , where F is the set of real numbers, complex numbers or quaternions.
The manifold GF(n,N) is a symmetric space (see [7] or [8]). The Grassmann
manifolds are important in the study of the geometry and the topology,
especially in the theory of fibre bundles.

Let G̃(n,N) be the oriented Grassmann manifold formed by all oriented
n dimensional subspaces of RN . In [3], Chen showed that G̃(n,N) can be
imbedded in the unit sphere of wedge product space

∧n(RN ) as a mini-
mal submanifold. Takahashi [10] proved that a compact homogenous Rie-
mannian manifold with irreducible linear isotropy group admits a minimal
immersion into an Euclidean sphere, see also Takeuchi and Kobayashi [11].

Let MF(N) be the set of N×N matrices A with values in F such that A
t =

A. MF(N) is an Euclidean space. Let MF(n,N) = {A ∈ MF(N) | A2 =
A, r(A) = n} be a subspace of MF(N), where r(A) be the rank of the matrix
A. The matrix A ∈ MF(n,N) can be viewed as a projection on Euclidean
space FN .

For any π ∈ GF(n,N), let e1, · · · , en be an orthonormal basis of π. Then
(e1, · · · , en) is an N × n matrix. Define

ϕ(π) = (e1, · · · , en)(e1, · · · , en)
t
=

∑
i

eiē
t
i.
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182 Z. JIANWEI

We show in §2, the map ϕ : GF(n,N) → MF(N) is an imbedding and we
have ϕ(GF(n,N)) = MF(n,N). Then

N∪
n=0

ϕ(GF(n,N)) = {A ∈ MF(N) | A2 = A}.

Let {A ∈ MF(N) | trA = n} be a hyperplane in MF(N) and S(
√

n) the
sphere of MF(N) with radius

√
n. In §2, we also show that MF(n,N) is a

minimal submanifold in the sphere S(
√

n)
∩
{A ∈ MF(N) | trA = n}. These

minimal submanifolds are the natural generalization of the famous Veronese
surface.

Let GF(N) be the group which preserving the inner product on Euclidean
space FN . With the spaces MF(n,N), we can show that the Grassmann
manifold GF(n,N) can be imbedded in the group GF(N).

In §3, we construct some degenerate Morse functions on Grassmann Man-
ifolds. Show that the Poincaré polynomial of GF(n,N) can be represented
by

Pt(GF(n,N)) = Pt(GF(n, N − 1)) + tc(N−n)Pt(GF(n − 1, N − 1)),

where F = C or F = H and c the dimension of F. Then the homology of
the complex and quaternion Grassmann Manifolds can be computed easily
in low dimensional cases.

These results are consistent with the results computed by using Schubert
variety. As in [4] or [5], we consider the case of F = C. Let

0 ≤ a0 ≤ a1 ≤ · · · ≤ an ≤ N − n

be a sequence of integers. There is a natural one-one correspondence between
the set of (a0, a1, · · · , an) and the generators of the homology H∗(GC(n, N)).
The dimension of (a0, a1, · · · , an) is 2(a0 +a1 + · · ·+an). Such elements can
be divided into two classes:

(1) (a0, a1, · · · , an), where an ≤ N − n − 1;
(2) (a0, a1, · · · , an−1, N − n), where an−1 ≤ N − n.

These also show

Pt(GC(n,N)) = Pt(GC(n,N − 1)) + t2(N−n)Pt(GC(n − 1, N − 1)).

The Poincaré polynomial of GF(n, N) can also be represented by

Pt(GF(n, N)) = tcnPt(GF(n,N − 2)) + tc(N−n)Pt(GF(n − 2, N − 2))

+(1 + tc(N−1))Pt(GF(n − 1, N − 2)),

where n,N − n ≥ 2, F = C or H.

2
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THE GEOMETRY AND TOPOLOGY ON GRASSMANN MANIFOLDS 183

2. The minimal imbedding of GF(n,N) in the sphere

Let F be the set of real numbers R, complex numbers C or quaternions
H. The quaternions H is generated by i, j, k = ij. For any u ∈ F, u is the
conjugation of u (u · v = v ·u if u, v ∈ H). For any λ ∈ F, λ acts on the right
of u = (u1, · · · , uN )t ∈ FN . For any u = (u1, · · · , uN )t, v = (v1, · · · , vN )t ∈
FN ,

(u, v) = v̄t · u =
∑
A

v̄AuA

defines an inner product on FN . Let GF(N) be the group acting on the left
of FN which preserving the inner product (, ) on FN . If F = R, GF(N) =
O(N) is the orthogonal group; if F = C, GF(N) = U(N) is the complex
unitary group; if F = H, GF(N) = Sp(N) is the symplectic group.

Let GF(n,N) ≈ GF(N)
GF(n)×GF(N−n) be the Grassmann manifold formed by

all subspaces in FN of dimension n. Let e1, · · · , en, en+1, · · · , eN be or-
thonormal frame fields on GF(n,N) such that the element of GF(n, N) is
generated by e1, · · · , en locally. By the method of moving frame, there are
local 1-forms ωB

A defined by

deA =
∑
B

eBωB
A , ωB

A + ωA
B = 0, A,B = 1, · · · , N.

Restricting the two form Φ = Re (
∑
i,α

ωα
i ωα

i ) on GF(n,N) defines a Rie-

mannian metric (see [4]). Unless otherwise stated, we agree on the following
arranges of the indices:

1 ≤ i, j, · · · ≤ n, n + 1 ≤ α, β, · · · ≤ N, 1 ≤ A,B, · · · ≤ N.

Let MF(N) be the set of N × N matrices A with values in F such that
A

t = A. With the inner product defined by

〈A,B〉 = Re tr(AB) =
∑
A

xAAyAA + 2Re
∑
A<B

xAB ȳAB,

A = (xAB), B = (yAB) ∈ MF(N), MF(N) becomes an Euclidean space.
The real dimension of MF(N) is N + 1

2cN(N − 1), where c is the real
dimension of F.

Lemma 2.1. Let e1, · · · , eN be an orthonormal frame on FN . The following
elements form an orthogonal basis of MF(N) with respect to the norm 〈, 〉
respectively,

(1) eAet
A, eBet

C + eCet
B, when F = R;

(2) eAēt
A, eB ēt

C + eC ēt
B, eBiēt

C − eCiēt
B, when F = C;

(3) eAēt
A, eB ēt

C +eC ēt
B, eBiēt

C −eCiēt
B, eBjēt

C −eCjēt
B, eBkēt

C −eCkēt
B,

when F = H,

3
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184 Z. JIANWEI

where A,B,C = 1, · · · , N, B < C.

Proof. The proof is a direct computation. For example, we have

〈eAēt
A, eB ēt

C + eC ēt
B〉 = Re tr(eAēt

CδAB + eAēt
BδAC) = 2δABδAC ,

and

〈eB ēt
C + eC ēt

B, eBiēt
C − eCiēt

B〉 = Re tr(eCiēt
C − eBiēt

B) = 0.

¤
Note that the basis of MF(N) described in Lemma 2.1 are all real.
For any π ∈ GF(n,N), let e1, · · · , en be an orthonormal basis of π. Then

(e1, · · · , en) is an N × n matrix. Define

ϕ : GF(n,N) → MF(N),

ϕ(π) = (e1, · · · , en)(e1, · · · , en)
t
=

∑
i

eiē
t
i.

It is easy to see that ϕ(π) is independent of the choice of the orthonormal
basis e1, · · · , en. Let MF(n,N) = {A ∈ MF(N) | A2 = A, r(A) = n} be a
subspace of MF(N), where r(A) be the rank of matrix A.

Lemma 2.2. The map ϕ : GF(n,N) → MF(N) is an imbedding and we
have ϕ(GF(n,N)) = MF(n,N). The induced metric on GF(n,N) defined
by ϕ is

2Φ = 2Re (
∑
i,α

ωα
i ωα

i ).

Proof. It is easy to see that ϕ(GF(n,N)) ⊂ MF(n,N). On the other hand,
the element A ∈ MF(n,N) can be viewed as a projection on FN . Let π =
{Ax | x ∈ FN} be a subspace of FN and e1, · · · , en be an orthonormal basis
of π. Therefore Aei = ei. It is easy to see that A =

∑
i

eiē
t
i and ϕ(π) = A.

Then we can identify MF(n,N) with GF(n,N). Let e1, · · · , en, en+1, · · · , eN

be orthonormal frame fields on FN such that GF(n,N) is generated by
e1, · · · , en locally. Hence

dϕ = d
∑

i

eiē
t
i =

∑
i,α

eαωα
i ēt

i +
∑
i,α

eiω̄
α
i ēt

α.

We compute the case of F = H as an example, the other cases are similar.
Let ωα

i = aα
i + ibα

i + jcα
i +kdα

i , where aα
i , bα

i , cα
i , dα

i are real 1-forms. Then

dϕ =
∑
i,α

aα
i (eαēt

i + eiē
t
α) +

∑
i,α

bα
i (eαiēt

i − eiiē
t
α)

+
∑
i,α

cα
i (eαjēt

i − eijē
t
α) +

∑
i,α

dα
i (eαkēt

i − eikēt
α),
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THE GEOMETRY AND TOPOLOGY ON GRASSMANN MANIFOLDS 185

and
eαēt

i + eiē
t
α, eαiēt

i − eiiē
t
α, eαjēt

i − eijē
t
α, eαkēt

i − eikēt
α

form a basis of tangent space TGH(n, N). By Lemma 2.1, these vectors
are orthogonal with respect to the inner product 〈, 〉. The norms of these
vectors are all

√
2. Then

〈dϕ, dϕ〉 = 2
∑
i,α

(aα
i ⊗ aα

i + bα
i ⊗ bα

i + cα
i ⊗ cα

i + dα
i ⊗ dα

i ) = 2Φ.

¤
For any A ∈ MF(n,N),

〈A,A〉 = tr AA
t = trA = tr[(e1, · · · , en)(e1, · · · , en)

t
] = n,

then |A| =
√

n. These also show r(A) = trA for any A ∈ MF(N) with
A2 = A. Therefore we also have

MF(n,N) = {A ∈ MF(N) | A2 = A, trA = n},
and

N∪
n=0

ϕ(GF(n,N)) = {A ∈ MF(N) | A2 = A}.

Let IN be the identity matrix of order N . For A ∈ MF(n,N), we have
(IN − A)2 = IN − A, r(IN − A) = tr(IN − A) = N − n, hence IN − A ∈
MF(N −n,N). These show the map A → IN −A gives an isometry between
the manifolds GF(n,N) and GF(N − n,N).

As show above, for any A ∈ MF(n,N), |A|2 = trA = n, then MF(n,N) is
in the sphere S(

√
n) = {B ∈ MF(N) | |B|2 = n}. By trA = n, we know that

MF(n,N) also in the hyperplane {B ∈ MF(N) | trB = n}. This hyperplane
can also be defined by {B ∈ MF(N) | 〈B, IN 〉 = n}. Then the normal vector
of this hyperplane is IN =

∑
i

eiē
t
i +

∑
α

eαēt
α.

When F = R, any element A ∈ MR(1, 3) ≈ RP 2 can be represented by

A =

 x2
1 x1x2 x1x3

x2x1 x2
2 x2x3

x3x1 x3x2 x2
3

 , x2
1 + x2

2 + x2
3 = 1.

The map

B = (xAB) ∈ MR(3) → (x11, x22, x33,
√

2x12,
√

2x13,
√

2x23) ∈ R6

gives an isometry between these two Euclidean spaces. Then MR(1, 3) is
the famous Veronese surface.

Theorem 2.3. The manifold MF(n,N) is a minimal submanifold in the
sphere S(

√
n)

∩
{B ∈ MF(N) | trB = n}.

5

Jianwei: The Geometry and Topology on Grassmann Manifolds

Produced by The Berkeley Electronic Press, 2006



186 Z. JIANWEI

Proof. With the notations used above,

dϕ =
∑

eαωα
i ēt

i +
∑

eiω̄
α
i ēt

α,

d2ϕ = · · · +
∑

[ejω
j
αωα

i ēt
i + eαωα

i ω̄β
i ēt

β + eβωβ
i ω̄α

i ēt
α + eiω̄

α
i ω̄j

αēt
j ],

where “ · · · ” is the part of d2ϕ which tangent to MF(n,N). Then the second
fundamental form of the imbedding ϕ is

II = −
∑

[ejω̄
α
j ωα

i ēt
i + eiω̄

α
i ωα

j ēt
j ] +

∑
[eαωα

i ω̄β
i ēt

β + eβωβ
i ω̄α

i ēt
α].

The mean curvature vector is

H = − N − n

n(N − n)

∑
i

eiē
t
i +

n

n(N − n)

∑
α

eαēt
α.

On the other hand,
∑
i

eiē
t
i and IN =

∑
i

eiē
t
i +

∑
α

eαēt
α are the normal

vectors on S(
√

n) and {B ∈ MF(N) | trB = n} at
∑
i

eiē
t
i respectively.

These show MF(n,N) is a minimal submanifold in the sphere S(
√

n)
∩
{B ∈

MF(N) | trB = n}. ¤

The radius of the sphere S(
√

n)
∩
{B ∈ MF(N) | trB = n} is

√
n(N−n)

N .
The above proof also shows, the second fundamental form of MF(n,N)

has constant length [6]. The isometry group GF(N) acts on the Grassmann
manifold GF(n,N) naturally. For any g ∈ GF(N), A ∈ MF(N), Ad(g)A =
gAḡt defines an action of GF(N) on MF(N). Furthermore, the following
diagram is commutative

GF(n,N)
ϕ−→ MF(N)

g ↓ ↓ Ad(g)
GF(n,N)

ϕ−→ MF(N).

Let 4 = (d+δ)2 be the Laplacian on GF(n,N) with respect to the metric
2Φ. For any A ∈ MF(N), f(π) = 〈ϕ(π), A〉 is a function on the Grassmann
manifold GF(n,N). As is well-known, we have

4f = −cn(N − n)〈H,A〉.
As show above, MF(n,N) is in the hyperplane {B ∈ MF(N) | 〈B, IN 〉 =

n} of Euclidean space MF(N). For any vector A parallel to this hyperplane,
we have

〈A, IN 〉 = 〈A,
∑

eiē
t
i〉 + 〈A,

∑
eαēt

α〉 = 0.

Then for such A, we have

4f = cN〈
∑

i

eiē
t
i, A〉 = cNf.

6
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THE GEOMETRY AND TOPOLOGY ON GRASSMANN MANIFOLDS 187

We have proved the following

Theorem 2.4. The imbedding ϕ : GF(n,N) → {B ∈ MF(N) | trB = n} is
formed by the eigenfunctions of Laplacian 4 on GF(n,N) with eigenvalue
cN .

For any A =
∑

eiē
t
i ∈ MF(n, N), let Ã = IN − 2A = IN − 2

∑
eiē

t
i.

It is easy to see that Ã
t

= Ã, Ã2 = IN . Then A → Ã gives a map ψ :
MF(n,N) → GF(N).

It is interesting to note that when F = R be the real numbers, the imbed-
ding of GR(n,N) in orthogonal group O(N) defined above can be obtained
by using Clifford algebra. Let C`N be the Clifford algebra associated to the
Euclidean space RN and Pin(N) be the Pin group. Any unit vector v of
RN defines a reflection fv on RN :

fv(e) = v · e · v = e − 2(e, v)v, ∀e ∈ RN ,

where ‘·’ denotes the Clifford product. With the standard basis of RN , the
map fv can be represented by matrix IN − 2vvt ∈ O(N).

Let G̃R(n,N) be the oriented Grassmann manifold. For any π̃ ∈
G̃R(n,N), we choose an oriented orthonormal basis e1, · · · , en of π̃. Note
that feifej = fejfei for any i, j. Then e1 · e2 · · · en ∈ Pin(N) and by the

maps G̃R(n,N) → Pin(N) Ad−→ O(N), we have a map

G̃R(n,N) → O(N), π̃ → fe1fe2 · · · fen ,

fe1fe2 · · · fen = (IN − 2e1e
t
1)(IN − 2e2e

t
2) · · · (IN − 2enet

n)

= IN − 2
n∑

i=1

eie
t
i.

The map G̃R(n,N) → O(N) is an immersion. As det(IN − 2
n∑

i=1
eie

t
i) =

(−1)n is constant, we can imbed real Grassmann manifold GR(n,N) in
SO(N).

3. The Morse functions on the Grassmann manifolds

In [12], we have constructed many (degenerate or non-degenerate) Morse
functions on the real oriented Grassmann manifolds by using calibrations.
In the following we construct Morse functions on the Grassmann manifolds
GF(n,N).

For any A ∈ MF(N), the map f : GF(n,N) → R, f(π) = 〈ϕ(π), A〉,
defines a function on Grassmann manifolds GF(n, N). f is a Morse function

7
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188 Z. JIANWEI

for almost every vector A ∈ MF(N). But in general, it is difficult to find
such element. First, we give some known results.

Let EAB be the elements in MF(N), A ≥ B, where the entries in row A,
column B and row B, column A are 1, the others are zero.

When F = C, n = 1, GC(1, N) ≈ CPN−1 is the complex projective
space. Let A =

∑
A

cAEAA ∈ MC(N), c1 > c2 > · · · > cN > 0. For any

π ∈ GC(1, N), ϕ(π) = e1ē
t
1, e1 = (z1, z2, · · · , zN )t,

∑
A

|zA|2 = 1, then

f(π) = 〈ϕ(π), A〉 =
∑
A

cA|zA|2.

As is well-known ([9]), f is a perfect Morse function on CPN−1.
Similar results hold for the real projective space GR(1, N) ≈ RPN−1 and

the quaternion projective space GH(1, N) ≈ HPN−1. In the real case, the
functions are not perfect.

The map f : GF(n,N) → R, f(π) = 〈ϕ(π), E11〉, defines a function on
GF(n,N). To study this function we define two submanifolds of GF(n,N).
Let GF(n−1, N −1) be a submanifold of GF(n,N) such that every element
of GF(n − 1, N − 1) contains the vector ẽ1 = (1, 0, · · · , 0)t ∈ FN . Let
FN−1 = {u = (0, u2, · · · , uN )t ∈ FN} be a subspace of FN and GF(n, N−1)
be a submanifold of GF(n, N) generated by the n-dimensional subspaces of
FN−1.

Theorem 3.1. The function f : GF(n,N) → R is a degenerate Morse
function on GF(n,N), where f(π) = 〈ϕ(π), E11〉. The critical submanifolds
are f−1(0) = GF(n,N − 1) and f−1(1) = GF(n − 1, N − 1) with indices 0
and c(N − n) respectively.

Proof. Let e1, · · · , en, en+1, · · · , eN be orthonormal frame fields on FN such

that GF(n,N) be generated by e1, · · · , en locally. We have f(π) =
n∑

i=1
xi1x̄i1,

where ei = (xi1, · · · , xiN )t. Then, 0 ≤ f ≤ 1 and π is a critical point of
function f if and only if

df =
∑
i,α

〈eαωα
i ēt

i + eiω̄
α
i ēt

α, E11〉 = 0.

We prove the theorem for the real case, the other cases can be proved
similarly, see the proof of Theorem 3.5. By Lemma 2.2, df = 0 if and only if

〈eαet
i + eie

t
α, E11〉 = 0

for any i, α. For eA = (xA1, · · · , xAN ), A = 1, · · · , N, we can assume xi1 = 0
for i > 1 and xα1 = 0 for α > n + 1. Obviously, we have x2

11 + x2
n+1 1 = 1.

8
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THE GEOMETRY AND TOPOLOGY ON GRASSMANN MANIFOLDS 189

Then
〈eαet

i + eie
t
α, E11〉 = 2x11xn+1 1δ1iδαn+1,

and the point π ∈ GR(n,N) is a critical point if and only if x11 = 0 or
x11 = 1.

Let RN−1 = {u = (0, u2, · · · , uN )t ∈ RN} be a subspace of RN and
GR(n,N −1) be a submanifold of GR(n,N) generated by the n-dimensional
subspace of RN−1. Let GR(n − 1, N − 1) be a submanifold of GR(n,N)
such that every element of GR(n − 1, N − 1) contains the vector ẽ1 =
(1, 0, · · · , 0)t ∈ RN . It is easy to see that f−1(0) = GR(n,N − 1) and
f−1(1) = GR(n − 1, N − 1).

Now we show that the critical submanifolds f−1(0) and f−1(1) of f are
non-degenerate and compute their indices.

On f−1(0) = GR(n,N − 1), xi1 = 0, i = 1, · · · , n, ẽn+1 = (1, 0, · · · , 0)t,
then the tangent space of f−1(0) is generated by

eie
t
α + eαet

i, α 6= n + 1.

On f−1(1) = GR(n − 1, N − 1), ẽ1 = (1, 0, · · · , 0), GR(n − 1, N − 1) is
generated by ẽ1, e2, · · · , en, then the tangent space of f−1(1) is generated
by

eie
t
α + eαet

i, i 6= 1.

By simple computation, on the critical submanifolds, we have

d2f = −
∑

ωα
j ωα

i 〈eje
t
i + eie

t
j , E11〉 +

∑
ωα

i ωβ
i 〈eαet

β + eβet
α, E11〉.

Then

d2f |f−1(0) = 2
∑

ωn+1
i ωn+1

i 〈en+1e
t
n+1, E11〉 = 2

∑
ωn+1

i ωn+1
i ,

d2f |f−1(1) = −2
∑

ωα
1 ωα

1 〈e1e
t
1, E11〉 = −2

∑
ωα

1 ωα
1 .

By Lemma 2.2, the critical submanifolds of f are all non-degenerate. These
complete the proof of the theorem. ¤

By Morse theory, it can be shown that every differentiable manifold has
the homotopy type of a CW complex. As in [4] or [5], let

0 ≤ a0 ≤ a1 ≤ · · · ≤ an ≤ N − n

be a sequence of integers. These give a CW complex structure on the Grass-
mann manifold GF(n,N). For every such (a0, a1, · · · , an), there is one cell of
dimension c(a0 +a1 + · · ·+an). The homologies of the Grassmann manifold
can be computed by means of the Schubert varieties (see [4] or [5]). There
is a close relation between Theorem 3.1 and the Schubert varieties:

The elements (a0, a1, · · · , an) can be divided into two classes:
(1) (a0, a1, · · · , an), where an ≤ N − n − 1;
(2) (a0, a1, · · · , an−1, N − n), where an−1 ≤ N − n.
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Let {ρ1, ρ2, ρ3} be a partition of unity on [0, 1] such that supp(ρ1) ⊂ [0, 1
4 ],

supp(ρ2) ⊂ [18 , 7
8 ], supp(ρ3) ⊂ [34 , 1] and dρ1

dt ≤ 0, dρ3

dt ≥ 0. Let h1 ≤
0, h2 ≥ 0 be two non-degenerate Morse functions on f−1(0) and f−1(1)
respectively. The functions h1, h2 can be viewed as functions on neighbor-
hoods of f−1(0), f−1(1) in GF(n,N) respectively, they are constants on the
trajectories of grad(f). Define a function

f̃ = ρ̃1(h1 + f) + ρ̃2f + ρ̃3(h2 + f) = ρ̃1h1 + ρ̃3h2 + f,

where ρ̃i = ρi ◦ f, i = 1, 2, 3.

Theorem 3.2. f̃ : GF(n, N) → R is a non-degenerate Morse function and
the critical points are that of h1 and h2. If p is a critical point of h2 with
index k, then the index of p is k + c(N −n) with respect to the function f̃ ; if
q is a critical point of h1, then the indices of q with respect to the functions
h1 and f̃ are the same.

For the proof, see [12].
When F = C or H, we can choice perfect Morse functions h1, h2 on

GF(n,N − 1) and GF(n − 1, N − 1) respectively. Then f̃ is also a perfect
Morse function. Let Pt(M) be the Poincaré polynomial for a manifold M .

Corollary 3.3. For F = C or H, the Poincaré polynomial of GF(n,N) can
be represented by

Pt(GF(n,N)) = Pt(GF(n, N − 1)) + tc(N−n)Pt(GF(n − 1, N − 1)).

For example, by simple computation, we have

Pt(GC(1, N)) = 1 + t2 + t4 + · · · + t2(N−1),

Pt(GC(2, 5)) = 1 + t2 + 2t4 + 2t6 + 2t8 + t10 + t12,

Pt(GC(2, 7)) = 1 + t2 + 2t4 + 2t6 + 3t8 + 3t10 + 3t12 + 2t14 + 2t16 + t18 + t20,

Pt(GC(2, 8)) = Pt(GC(2, 7)) + t12Pt(GC(1, 7)),

Pt(GC(3, 7)) = (1 + t6)Pt(GC(2, 5)) + t8Pt(GC(2, 6)),

Pt(GC(5, 10)) = (1 + t10)[t20Pt(GC(2, 7)) + (1 + t8 + t10)Pt(GC(3, 7))].
By Pt(GF(n,N)) = Pt(GF(N − n,N)), we have

(tcn − 1)Pt(GF(n,N − 1)) = (tc(N−n) − 1)Pt(GF(n − 1, N − 1)).

Now we study the trajectories of gradient vector field of the degenerate
Morse function f : GF(n,N) → R defined in Theorem 3.1. The gradient of
the function f : GF(n,N) → R is

grad(f) =
1
2

∑
τ

〈ξτ , E11〉ξτ ,
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where the tangent vectors ξτ are defined as in Lemma 2.1. For any π ∈
GF(n,N) − (f−1(0) ∪ f−1(1)), let ei = (xi1, xi2, · · · , xiN )t, i = 1, · · · , n, be
an orthonormal basis of π such that 0 < x11 < 1, xi1 = 0 for i > 1. Denote
e1(t) = (cos t, (sin t)x)t, where x = (x12, · · · , x1N )/

√
|x12|2 + · · · + |x1N |2.

Then there is t0 ∈ (0, π
2 ) such that e1(t0) = e1. Let γ(t) be a curve in

GF(n,N) generated by orthonormal vectors e1(t), e2, · · · , en. Then

f(γ(t)) = cos2 t,
df(γ(t))

dt
= − sin 2t,

γ(0) ∈ f−1(1) = GF(n − 1, N − 1), γ(
π

2
) ∈ f−1(0) = GF(n,N − 1).

Note that dim γ(0) ∩ γ(π
2 ) = c(n − 1). Along the curve γ(t), let

en+1(t) = (− sin t, (cos t)x)t, eα = (0, xα2, · · · , xαN )t, α > n + 1,

be orthonormal complement of the vectors e1(t), e2, · · · , en in FN . Therefore

grad(f)|γ = −1
2

sin 2t(en+1(t)ēt
1(t) + e1(t)ēt

n+1(t)) = −1
2

sin 2t
dγ

dt
.

This shows that the curve γ is a trajectory of the vector field grad(f) on
GF(n,N).

It is also easy to see that the vector dγ
dt (0) is normal to f−1(1) and the

vector dγ
dt (

π
2 ) is normal to f−1(0). Let FPN−n−1 = GF(1, N − n) be a

subspace of f−1(0) such that e2, · · · , en ∈ π for any π ∈ FPN−n−1. Let
FPn−1 = GF(1, n−1) be a subspace of f−1(1), any π ∈ FPn−1 be generated
by e1 = (1, 0, · · · , 0)t, ẽ2, · · · , ẽn, where ẽ2, · · · , ẽn ∈ γ(π

2 ).

Theorem 3.4. The trajectories of grad(f) give the maps from FPN−n−1 to
γ(0) and FPn−1 to γ(π

2 ) respectively.
When n = 1, these gives the following canonical cell decomposition of the

projective space FPN−1

FP 0 ⊂ FP 1 ⊂ · · · ⊂ FPN−2 ⊂ FPN−1.

In the following we assume n,N − n ≥ 2.

Theorem 3.5. Let g : GF(n,N) → R, g(π) = 〈ϕ(π), E12〉. The function g
is a degenerate Morse function with critical submanifolds g−1(0) = GF(n −
2, N − 2)

∪
GF(n,N − 2), g−1(−1) = G̃F(n − 1, N − 2), g−1(1) = GF(n −

1, N − 2). The indices on GF(n − 2, N − 2), GF(n,N − 2), G̃F(n − 1, N −
2), GF(n − 1, N − 2) are c(N − n), cn, 0, c(N − 1) respectively.

Proof. Let ei = (xi1, xi2, · · · , xiN )t, then,

g(π) = Re
∑

i

(xi1x̄i2 + xi2x̄i1) = 2Re
∑

i

xi1x̄i2.

11
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We can assume xi1 = 0 for i > 1 and x11 a real number, this shows −1 ≤
g(π) ≤ 1. The critical points of function g are determined by

dg =
∑
i,α

〈eαωα
i ēt

i + eiω̄
α
i ēt

α, E12〉 = 0,

where ϕ(π) =
∑

eiē
t
i.

We prove the theorem for the case of F = H. dg = 0 if and only if

〈eαēt
i + eiē

t
α, E12〉 = 0, 〈eαiēt

i − eiiē
t
α, E12〉 = 0,

〈eαjēt
i − eijē

t
α, E12〉 = 0, 〈eαkēt

i − eikēt
α, E12〉 = 0,

for any i, α. Obviously, we have

〈eαēt
i + eiē

t
α, E12〉

= Re (xα1x̄i2 + xα2x̄i1 + xi1x̄α2 + xi2x̄α1)
= 2Re [xα1x̄i2 + xα2x̄i1],

and

〈eαiēt
i − eiiē

t
α, E12〉

= Re [(xα1ix̄i2 − xi2ix̄α1) + (xα2ix̄i1 − xi1ix̄α2)]
= 2Re [xα1ix̄i2 + xα2ix̄i1].

Similarly,
〈eαjēt

i − eijē
t
α, E12〉 = 2Re [xα1jx̄i2 + xα2jx̄i1],

〈eαkēt
i − eikēt

α, E12〉 = 2Re [xα1kx̄i2 + xα2kx̄i1].

For any u, v ∈ H, a ∈ ImH, the following holds

Re (uav̄) = Re (−uva) = Re (−ūva).

These show π is a critical point of g if and only if

xα1x̄i2 + xα2x̄i1 = 0, for all i, α.

On the critical submanifolds, we have

d2g = −
∑
i,j,α

〈ejω̄
α
j ωα

i ēt
i + eiω̄

α
i ωα

j ēt
j , E12〉+

∑
i,j,α

〈eαωα
i ω̄β

i ēt
β + eβωβ

i ω̄α
i ēt

α, E12〉.

(1) Let HN−2 = {(0, 0, x3, · · · , xN )t ∈ HN} be a subspace of HN and
GH(n,N − 2) = {π ∈ GH(n,N) | π ⊂ HN−2} be submanifold of GH(n,N).
Then GH(n,N −2) is a critical submanifold of function g and g|GH(n,N−2) ≡
0. In this case, xi1 = xi2 = 0 for i = 1, · · · , n, we can assume

en+1 = (1, 0, 0, · · · , 0)t, en+2 = (0, 1, 0, · · · , 0)t.

12
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Then

d2g|GH(n,N−2)

= 2Re
∑

i

(ωn+1
i ω̄n+2

i + ωn+2
i ω̄n+1

i )

= 2
∑

i

[(an+1
i + an+2

i )2 − (an+1
i − an+2

i )2 + (bn+1
i + bn+2

i )2

− (bn+1
i − bn+2

i )2 + (cn+1
i + cn+2

i )2 − (cn+1
i − cn+2

i )2

+ (dn+1
i + dn+2

i )2 − (dn+1
i − dn+2

i )2],

where ωα
i = aα

i +ibα
i +jcα

i +kdα
i . As in the proof of Theorem 3.1, we can show

that the critical submanifold GH(n,N −2) is non-degenerate with index 4n.
(2) Let ẽ1 = (1, 0, · · · , 0)t, ẽ2 = (0, 1, 0, · · · , 0)t ∈ HN and GH(n−2, N −

2) = {π ∈ GH(n,N) | ẽ1, ẽ2 ∈ π} be a submanifold of GH(n,N). Then
we have xα1 = xα2 = 0, α = n + 1, · · · , N, for any π ∈ GH(n − 2, N − 2).
Therefore g|GH(n−2,N−2) ≡ 0 and GH(n− 2, N − 2) is a critical submanifold
of g,

d2g|GH(n−2,N−2) = −2Re (
∑
α

ω̄α
1 ωα

2 + ω̄α
2 ωα

1 ).

The critical submanifold GH(n − 2, N − 2) is non-degenerate with index
4(N − n).

(3) Now we study the case of the numbers xi1, xi2 are not all zeros and
so are the numbers xα1, xα2. Assuming xi1 = 0 for i > 1, xj2 = 0 for
j > 2; xα1 = 0 for α > n + 1, xβ2 = 0 for β > n + 2. Then the conditions
xα1x̄i2 + xα2x̄i1 = 0 become

x̄11

x̄12
=

0
x̄22

= −xn+1 1

xn+1 2
= − 0

xn+2 2
.

If x11 = 0, we can assume x22 = 0. Then if x11 = 0, we have x12 = 0.
Therefore x11 6= 0, x12 6= 0 in this case. Similarly, xn+1 1 6= 0, xn+1 2 6= 0.
Hence x22 = xn+2 2 = 0. By

x̄11

x̄12
= −xn+1 1

xn+1 2
, |x11|2 + |xn+1 1|2 = 1, |x12|2 + |xn+1 2|2 = 1,

and the vectors e1 ⊥ en+1, we have

e1 = (
1√
2
,± 1√

2
, 0, · · · , 0)t, ei = (0, 0, xi3, · · · , xiN )t, i > 1.

Let GH(n − 1, N − 2) be the subset of π ∈ GH(n,N) which is generated
by e1 = ( 1√

2
, 1√

2
, 0, · · · , 0)t, ei = (0, 0, xi3, · · · , xiN )t, i > 1. Similarly, Let

G̃H(n−1, N −2) ⊂ GH(n,N) be the subset of π which is generated by ẽ1 =
( 1√

2
,− 1√

2
, 0, · · · , 0)t, ei = (0, 0, xi3, · · · , xiN )t, i > 1. By construction,
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GH(n−1, N −2) and G̃H(n−1, N −2) are critical submanifolds of function
g,

g|GH(n−1,N−2) ≡ 1, g|
eGH(n−1,N−2)

≡ −1.

By our assumption, g(π) = 2Re (x11x̄12) and |x11|2 + |x12|2 ≤ 1, this shows

g−1(1) = GH(n − 1, N − 2), g−1(−1) = G̃H(n − 1, N − 2).

On GH(n− 1, N − 2), we can set en+1 = ( 1√
2
,− 1√

2
, 0, · · · , 0)t; on G̃H(n−

1, N − 2), we can set ẽn+1 = ( 1√
2
, 1√

2
, 0, · · · , 0)t. Then we have

d2g|g−1(−1) = Re [
∑
α

ω̄α
1 ωα

1 +
∑

i

ωn+1
i ω̄n+1

i ],

d2g|g−1(1) = −Re [
∑
α

ω̄α
1 ωα

1 +
∑

i

ωn+1
i ω̄n+1

i ].

As in the proof of Theorem 3.1, we can show that the critical submani-
folds g−1(−1) and g−1(1) are non-degenerate with indices 0 and 4(N − 1)
respectively. ¤

As Corollary 3.3, we have

Corollary 3.6. For F = C or H, the Poincaré polynomial of GF(n,N) can
be represented by

Pt(GF(n, N)) = tcnPt(GF(n,N − 2)) + tc(N−n)Pt(GF(n − 2, N − 2))

+(1 + tc(N−1))Pt(GF(n − 1, N − 2)),

where n,N − n ≥ 2.
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