Mathematical Journal of Okayama University

Volume 47, Issue 1

2005

Article 2

JANUARY 2005

The Galois Action on the Torsor of Homotopy Classes of Paths on a Projective Line minus a Finite Number of Points

ZdzisAlaw Wojtkowiak*

Copyright ©2005 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Universite de Nice-Sophia Antipolis

Math. J. Okayama Univ. 47 (2005), 29-37

THE GALOIS ACTION ON THE TORSOR OF HOMOTOPY CLASSES OF PATHS ON A PROJECTIVE LINE MINUS A FINITE NUMBER OF POINTS

ZDZISŁAW WOJTKOWIAK

Contents

0.	Introduction.	29
1.	Torsors of paths.	29
2.	Lie algebras of actions of Galois groups on torsors.	33
3.	Examples.	34
References		37

0. Introduction.

0.1. Deligne on a conference in Schloss Ringberg considered the mixed Hodge structure on the fundamental group of $P^1 \setminus \{0, 1, -1, \infty\}$. He showed that the motivic Galois Lie algebra associated to this mixed Hodge structure contains a free Lie subalgebra on generators in degree $1, 3, 5, \ldots, 2n + 1, \ldots$ corresponding to $\log 2, \zeta(3), \zeta(5), \ldots, \zeta(2n+1), \ldots$

In [W1] and [DW] we were studying actions of Galois groups on fundamental groups. In this note we are studying the action of the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the torsor of $(\ell\text{-adic})$ paths from 01 to -1 on $P_{\overline{\mathbb{Q}}}^1\setminus\{0,1,\infty\}$. We show that the associated graded Lie algebra of the image of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_{\ell}\infty))$ contains a free Lie subalgebra over \mathbb{Q}_{ℓ} on generators in degree $1,3,5,\ldots,2n+1,\ldots$. We use the idea working modulo 2 from Deligne's talk in Schloss Ringberg.

In [W1] section 5 we were studying some general aspects of actions of Galois groups on torsors of paths. To make this paper self contained we recall some definitions and results from [W1] in sections 1 and 2.

1. Torsors of Paths.

1.1. Let K be a number field and let a_1, \ldots, a_{n+1} be K-points of a projective line P_K^1 . Let $V = P_K^1 \setminus \{a_1, \ldots, a_n, a_{n+1}\}$. For simplicity we assume that $a_{n+1} = \infty$.

We denote by $\widehat{V}(K)$ the set of K-points of V and of tangential base points defined over K. Let $z, v \in \widehat{V}(K)$. Let $\pi_1(V_{\overline{K}}, v)$ be the ℓ -completion of the etale fundamental group of $V_{\overline{K}}$ and let $\pi(V_{\overline{K}}, z, v)$ be the set of ℓ -adic

paths from v to z on $V_{\bar{K}}$. The set $\pi(V_{\bar{K}}, z, v)$ is a $\pi_1(V_{\bar{K}}, v)$ -torsor. The Galois group $G_K := \operatorname{Gal}(\bar{K}/K)$ acts on $\pi_1(V_{\bar{K}}, v)$ and on $\pi(V_{\bar{K}}, z, v)$ in a compatible way, i.e., $\sigma(p \cdot S) = \sigma(p) \cdot \sigma(S)$, where $\sigma \in G_K$, $p \in \pi(V_{\bar{K}}, z, v)$ and $S \in \pi_1(V_{\bar{K}}, v)$.

Let us fix a path $p \in \pi(V_{\bar{K}}, z, v)$. We define a bijection of sets

$$t_p: \pi(V_{\bar{K}}, z, v) \to \pi_1(V_{\bar{K}}, v)$$

setting $t_p(q) := p^{-1} \cdot q$ (the composition of paths is from right to left). The bijection t_p is not G_K -equivariant. Using the bijection t_p we transport the action of G_K on $\pi(V_{\bar{K}}, z, v)$ into the action of G_K on $\pi_1(V_{\bar{K}}, v)$.

Let $\sigma \in G_K$. We set

$$f_p(\sigma) := p^{-1} \cdot \sigma(p).$$

The element $f_p(\sigma) \in \pi_1(V_{\bar{K}}, v)$. Let us define a new action of G_K on $\pi_1(V_{\bar{K}}, v)$ setting

$$\sigma_p(S) := f_p(\sigma) \cdot \sigma(S).$$

Observe that

$$(\tau \cdot \sigma)_p = \tau_p \cdot \sigma_p,$$

i.e., we have an action of G_K on $\pi_1(V_{\bar{K}}, v)$. We have

$$t_p(\sigma(q)) = \sigma_p(t_p(q)),$$

i.e., the bijection t_p is G_K -equivariant if we equip $\pi_1(V_{\bar{K}}, v)$ with the new action of G_K .

1.2. We fix generators of $\pi_1(V_{\bar{K}}, v)$ in the following way. At each missing point a_i we choose a tangential base point v_i defined over K. Let γ_i be a path from v to v_i . Then x_i is the composition of the path $\gamma_i + a$ small loop around a_i in the opposit clockwise direction + the path γ_i^{-1} . We can assume that $x_{n+1} \cdot x_n \cdot \ldots \cdot x_1 = 1$.

To study the action of G_K on the torsor $\pi(V_{\bar{K}}, z, v)$, i.e., the action

$$()_p: G_K \to \operatorname{Aut}_{set}(\pi_1(V_{\bar{K}}, v))$$

it is very convenient to embed $\pi_1(V_{\bar{K}}, v)$ into the ring of formal power series in non-commuting variables.

Let $\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}$ (resp. $\mathbb{Q}_{\ell}\{X_1,\ldots,X_n\}$) be a \mathbb{Q}_{ℓ} -algebra of formal power series (resp. of polynomials) in non-commuting variables X_1,\ldots,X_n . Let

$$k: \pi_1(V_{\bar{K}}, v) \to \mathbb{Q}_{\ell}\{\{X_1, \dots, X_n\}\}$$

be a continuous multiplicative embedding given by $k(x_i) = e^{X_i}$ for $i = i, \ldots, n$.

Let us set

$$\Lambda_p(\sigma) := k(f_p(\sigma)).$$

The action of G_K on $\pi_1(V_{\bar{K}}, v)$ induces a homomorphism

$$G_K \to \operatorname{Aut}_{\mathbb{Q}_{\ell}-\operatorname{algebra}}(\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}).$$

The action of G_K on $\pi(V_{\bar K},z,v),$ i.e., the action () $_p$ induces a homomorphism

$$\varphi_p: G_K \to \operatorname{Aut}_{\mathbb{Q}_\ell-\operatorname{linear}}(\mathbb{Q}_\ell\{\{X_1,\ldots,X_n\}\}).$$

Let $\omega \in \mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}$ and let $\sigma \in G_K$. Then

$$\varphi_p(\sigma)(\omega) = \Lambda_p(\sigma) \cdot \sigma(\omega).$$

1.3. We shall study the Lie algebras of derivations of free Lie algebras.

Let Lie(V) be a free Lie algebra over \mathbb{Q}_{ℓ} on free generators X_1, \ldots, X_n . Let $L(V) := \varprojlim \text{Lie}(V)/\Gamma^n \text{Lie}(V)$. We identify Lie(V) (resp. L(V)) with the

Lie algebra of Lie elements of $\mathbb{Q}_{\ell}\{X_1,\ldots,X_n\}$ (resp. of $\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}$). If L is a Lie algebra then we denote by Der L the Lie algebra of derivations

Let $\underline{n} := \{1, \dots, n\}$. We set

of L.

 $\mathrm{Der}^*\mathrm{Lie}(V) := \{ D \in \mathrm{Lie}(V) \mid \forall i \in \underline{n} \ \exists A_i \in \mathrm{Lie}(V), D(X_i) = [X_i, A_i] \}$ and

$$\mathrm{Der}^*L(V) := \{ D \in \mathrm{Der}L(V) \mid \forall i \in \underline{n} \ \exists A_i \in L(V), D(X_i) = [X_i, A_i] \}.$$

The derivation $D \in \operatorname{Der}^*\operatorname{Lie}(V)$ such that $D(X_i) = [X_i, A_i]$ for $i \in \underline{n}$ we denote by $D_{(A_1, \dots, A_n)}$ or $D_{(A_i)_{i \in \underline{n}}}$. Let $\langle X_i \rangle$ be a vector subspace of $\operatorname{Lie}(V)$ generated by X_i . Observe that we have an isomorphism of vector spaces

$$\operatorname{Der}^* \operatorname{Lie}(V) \approx \bigoplus_{i=1}^n \left(\operatorname{Lie}(V) / \langle X_i \rangle \right)$$

which maps $D_{(A_1,...,A_n)}$ onto $(A_1,...,A_n)$. We introduce on $\bigoplus_{i=1}^n (\text{Lie}(V)/< X_i>)$ a new bracket $\{\ \}$ defined in the following way

$$\{(A_i)_{i\in\underline{n}},(B_i)_{i\in\underline{n}}\}:=([A_i,B_i]+D_{(A_j)_{j\in\underline{n}}}(B_i)-D_{(B_j)_{j\in\underline{n}}}(A_i))_{i\in\underline{n}}.$$

Lemma 1.3.1. The vector space $\bigoplus_{i=1}^{n} (\text{Lie}(V)/ < X_i >)$ equip with the bracket $\{\}$ is a Lie algebra isomorphic to the Lie algebra $\text{Der}^*\text{Lie}(V)$. The isomorphism of Lie algebras maps $(A_i)_{i\in\underline{n}}$ onto $D_{(A_i)_{i\in\underline{n}}}$.

The vector space $\bigoplus_{i=1}^{n} (\text{Lie}(V)/ < X_i >)$ equip with the Lie bracket $\{\ \}$ we shall denote by $\bigoplus_{i=1}^{n} (\text{Lie}(V)/ < X_i >), \{\ \})$.

We define a semi-direct product of Lie algebras

$$\operatorname{Lie}(V) \tilde{\times} \operatorname{Der}^* \operatorname{Lie}(V)$$

defining a Lie bracket $\{\ \}$ on the product of vector spaces $\mathrm{Lie}(V) \times \mathrm{Der}^*\mathrm{Lie}(V)$ in the following way

$$\{(\lambda, D_{\beta}), (\lambda_1, D_{\beta_1})\} := ([\lambda, \lambda_1] + D_{\beta}(\lambda_1) - D_{\beta_1}(\lambda), [D_{\beta}, D_{\beta_1}]).$$

Hence the Lie bracket in a semi-direct product of Lie algebras

$$\operatorname{Lie}(V)\tilde{\times}(\bigoplus_{i=1}^{n}\left(\operatorname{Lie}(V)/\langle X_{i}\rangle\right),\{\})$$

is given by

$$\{(\lambda,\beta),(\lambda_1,\beta_1)\} := ([\lambda,\lambda_1] + D_{\beta}(\lambda_1) - D_{\beta_1}(\lambda),\{\beta,\beta_1\}).$$

We recall that $\mathbb{Q}_{\ell}\{X_1,\ldots,X_n\}$ is a \mathbb{Q}_{ℓ} -algebra of polynomials in noncommuting variables X_1,\ldots,X_n . Observe that any derivation of the Lie algebra $\mathrm{Lie}(V)$ (resp. L(V)) induces a derivation of the \mathbb{Q}_{ℓ} -algebra $\mathbb{Q}_{\ell}\{X_1,\ldots,X_n\}$ (resp $\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}$). Let $\omega\in\mathbb{Q}_{\ell}\{X_1,\ldots,X_n\}$ (resp. $\omega\in\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}$). We denote by L_{ω} the left multiplication by ω in the corresponding \mathbb{Q}_{ℓ} -algebra. We denote by $L_{\mathrm{Lie}(V)}$ (resp. $L_{L(V)}$) the set of left multiplications by elements of $\mathrm{Lie}(V)$ (resp. L(V)). Observe that the semi-direct product

$$L_{\text{Lie}(V)} \tilde{\times} \text{Der}^* \text{Lie}(V) \subset \text{End}_{\mathbb{Q}_{\ell}-\text{linear}}(\mathbb{Q}_{\ell}\{X_1,\ldots,X_n\}).$$

Notice that the Lie algebras $\text{Lie}(V)\tilde{\times}\text{Der}^*\text{Lie}(V)$ and $L_{\text{Lie}(V)}\tilde{\times}\text{Der}^*\text{Lie}(V)$ are obviously isomorphic. The same is true if we replace Lie(V) by L(V) and $\mathbb{Q}_{\ell}\{X_1,\ldots X_n\}$ by $\mathbb{Q}_{\ell}\{\{X_1,\ldots X_n\}\}$.

1.4. Using the representations

$$(1.4.1) G_K \to \operatorname{Aut}_{\mathbb{Q}_{\ell}-\operatorname{algebra}}(\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\})$$

and

$$\varphi_p: G_K \to \operatorname{Aut}_{\mathbb{Q}_\ell - \operatorname{linear}}(\mathbb{Q}_\ell \{ \{X_1, \dots, X_n\} \})$$

we shall define filtrations of the Galois group G_K . We set

$$G_m = G_m(V, v)$$
:= ker($\psi_m : G_K \to \text{Aut}_{\mathbb{Q}_{\ell}-\text{algebra}}(\mathbb{Q}_{\ell}\{\{X_1, \dots, X_n\}\}/I^{m+1})$),

where I is the augmentation ideal of the \mathbb{Q}_{ℓ} -algebra $\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}$ and ψ_m is induced by the action (1.4.1) of G_K on the \mathbb{Q}_{ℓ} -algebra $\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}$.

We set

$$H_m = H_m(V, z, v)$$
:= ker($\varphi_{p,m} : G_m \to \operatorname{Aut}_{\mathbb{Q}_{\ell}-\operatorname{linear}}(\mathbb{Q}_{\ell}\{\{X_1, \dots, X_n\}\}/I^m)$),

THE GALOIS ACTION ON THE TORSOR OF PATHS

where $\varphi_{p,m}$ is induced by φ_p .

We set

$$G_{\infty} := \bigcap_{m=1}^{\infty} G_m \text{ and } H_{\infty} := \bigcap_{m=1}^{\infty} H_m.$$

- 2. Lie algebras of actions of Galois groups on torsors.
- **2.1.** We have seen in section 1 that the action of G_K on the torsor $\pi(V_{\bar{K}}, z, v)$ leads to the Galois representation

$$\varphi_p: G_K \to \operatorname{Aut}(\mathbb{Q}_{\ell}\{\{X_1,\ldots,X_n\}\}),$$

where $\varphi_p(\sigma)(\omega) = \Lambda_p(\sigma) \cdot \sigma(\omega)$. It is shown in [W1] Lemma 5.1.7 that for $\sigma \in \operatorname{Gal}(\bar{K}/K(\mu_{\ell}\infty))$.

(2.1.1)
$$\log \varphi_p(\sigma) = L_{\log \varphi_n(\sigma)(1)} + \log \sigma.$$

Moreover we have

(2.1.2)
$$(\log \sigma)(X_i) = [X_i, \log \varphi_{\gamma_i}(\sigma)(1)]$$

for i = 1, ..., n (see [W1] Proposition 5.1.8). Passing with the representation φ_p to Lie algebras we get a homomorphism of Lie algebras

$$\operatorname{Lie}\varphi_p:\operatorname{Lie}(H_1/H_\infty\otimes\mathbb{Q})\to\operatorname{End}_{\mathbb{Q}_\ell-\operatorname{linear}}(\mathbb{Q}_\ell\{\{X_1,\ldots,X_n\}\}).$$

It follows from (2.1.1) and (2.1.2) that $\text{Lie}\varphi_p$ factors through

$$\operatorname{Lie}\varphi_p: \operatorname{Lie}(H_1/H_\infty \otimes \mathbb{Q}) \to L_{L(V)} \tilde{\times} \operatorname{Der}^* L(V).$$

We recall that we have a canonical isomorphism

$$L_{L(V)} \tilde{\times} \operatorname{Der}^* L(V) \approx L(V) \tilde{\times} (\bigoplus_{i=1}^n (L(V) / \langle X_i \rangle), \{ \}).$$

Let $\sigma \in \operatorname{Gal}(\bar{K}/K(\mu_{\ell}\infty))$. We shall calculate coordinates of (Lie φ_p)(σ) in $L(V)\tilde{\times}(\mathop{\oplus}_{i=1}^n(L(V)/\langle X_i \rangle),\{\})$.

Lemma 2.1.3. Let $\sigma \in \operatorname{Gal}(\bar{K}/K(\mu_{\ell}\infty))$. Then

$$(\operatorname{Lie}\varphi_p)(\sigma) = (\log \varphi_p(\sigma)(1), (\log \varphi_{\gamma_i}(\sigma)(1))_{i \in \underline{n}}).$$

Proof. The lemma follows from (2.1.1) and (2.1.2).

We pass with the morphism $\mathrm{Lie}\varphi_p$ to associated graded Lie algebras. Then we get a morphism

$$gr \operatorname{Lie}\varphi_p : gr \operatorname{Lie}(H_1/H_\infty \otimes \mathbb{Q}) \to L_{\operatorname{Lie}(V)} \tilde{\times} \operatorname{Der}^* \operatorname{Lie}(V).$$

Let us set

$$\phi_p := gr \mathrm{Lie} \varphi_p.$$

Lemma 2.1.4. Let $\sigma \in H_n$. Then

Z. WOJTKOWIAK

34

- i) $\log \varphi_p(\sigma)(1) \equiv \log \Lambda_p(\sigma) \mod \Gamma^{n+1} \text{Lie}(V)$,
- ii) the class of $\log \Lambda_p(\sigma) \mod \Gamma^{n+1} \mathrm{Lie}(V)$ does not depend on a choice of a path p from v to z.

Proof. The lemma is already proved in [W1].

Let $\sigma \in H_n$. We denote by $\mathcal{L}(z,v)(\sigma)$ the class of $\log \Lambda_p(\sigma) \mod \Gamma^{n+1} \mathrm{Lie}(V)$. Now we can calculate coordinates of $\phi_p(\sigma)$ in $L_{\mathrm{Lie}(V)} \tilde{\times} \mathrm{Der}^* \mathrm{Lie}(V) \approx \mathrm{Lie}(V) \tilde{\times} (\bigoplus_{i=1}^n (\mathrm{Lie}(V)/\langle X_i \rangle), \{\}).$

Lemma 2.1.5. Let $\sigma \in H_n$. Then

$$\phi_p(\sigma) = (\mathcal{L}(z, v)(\sigma), (\mathcal{L}(v_i, v)(\sigma))_{i \in \underline{n}})$$

in Lie $(V) \tilde{\times} (\bigoplus_{i=1}^n (\text{Lie}(V)/\langle X_i \rangle), \{\}).$

Proof. The lemma follows from Lemmas 2.1.3 and 2.1.4.

It follows from Lemma 2.1.5 that the morphism of Lie algebras

$$\phi_p: gr \mathrm{Lie}(H_1/H_\infty \otimes \mathbb{Q}) \to L_{\mathrm{Lie}(V)} \tilde{\times} \mathrm{Der}^* \mathrm{Lie}(V).$$

does not depend on a choice of a path p from v to z, hence we shall denote it by $\phi_{z,v}$.

We set

$$t_V(z, v) := \text{image}(\phi_{z,v}).$$

Observe that the Lie algebra $t_V(v,v)$ is the associated graded Lie algebra of the image of $\operatorname{Gal}(\bar{K}/K(\mu_{\ell^{\infty}}))$ in $\operatorname{Aut}(\pi_1(V_{\bar{K}},v))$. This Lie algebra was studied in [W1] section 15. To indicate the importance of the Lie algebra $t_V(v,v)$ we set

$$\delta_V(v) := t_V(v, v).$$

3. Examples.

Let $V = P_{\mathbb{Q}}^1 \setminus \{0, 1, \infty\}$. In the fundamental group $\pi_1(V_{\overline{\mathbb{Q}}}, \overline{01})$ we have two generators x - loop around 0 and y - loop around 1. We embed $\pi_1(V_{\overline{\mathbb{Q}}}, \overline{01})$ into $\mathbb{Q}_{\ell}\{\{X,Y\}\}$ mapping x onto e^X and y onto e^Y .

Proposition 3.1. The Lie algebras $\delta_V(\overrightarrow{01})$ and $t_V(\overrightarrow{10}, \overrightarrow{01})$ are isomorphic.

Proof. It follows from Lemma 2.1.5 that

$$\phi_{\overrightarrow{01},\overrightarrow{01}}(\sigma) = (0, (0, \mathcal{L}(\overrightarrow{10}, \overrightarrow{01})(\sigma)))$$

THE GALOIS ACTION ON THE TORSOR OF PATHS

and

$$\phi_{\overrightarrow{10},\overrightarrow{01}}(\sigma) = (\mathcal{L}(\overrightarrow{10},\overrightarrow{01})(\sigma), (0, \mathcal{L}(\overrightarrow{10},\overrightarrow{01})(\sigma)))$$

in $\operatorname{Lie}(V) \tilde{\times} ((\operatorname{Lie}(V)/ < X >) \oplus (\operatorname{Lie}(V)/ < Y >), \{ \})$. It is clear that the map $\delta_V(\overrightarrow{01}) \to t_V(\overrightarrow{10}, \overrightarrow{01})$ sending $(0, (0, \mathcal{L}))$ to $(\mathcal{L}, (0, \mathcal{L}))$ is an isomorphism of the corresponding Lie algebras.

Proposition 3.2. The Lie algebra $t_V(-1, 01)$ contains a free Lie subalgebra on free generators in degree $1, 3, 5, \ldots, 2n + 1, \ldots$

Proof. The proof is based on Deligne's ideas indicated in [D]. It follows from Lemma 2.1.5 that

$$(3.2.1) \qquad \qquad \phi_{-1 \ \overrightarrow{01}}(\sigma) = \left(\ \mathcal{L}(-1, \overrightarrow{01})(\sigma), (0, \mathcal{L}(\overrightarrow{10}, \overrightarrow{01})(\sigma)) \right)$$

in $\operatorname{Lie}(V)\tilde{\times}((\operatorname{Lie}(V)/< X>) \oplus (\operatorname{Lie}(V)/< Y>), \{\ \})$. Let I_n be a vector subspace of $\operatorname{Lie}(V)$ generated by Lie brackets of the Lie algebra $\operatorname{Lie}(V)$ which contain at least n Y's. Let us set

$$\mathcal{I}_n := I_n \oplus (I_n \oplus I_n).$$

Observe that \mathcal{I}_n is a Lie ideal of the Lie algebra $\text{Lie}(V)\tilde{\times}((\text{Lie}(V)/< X >) \oplus (\text{Lie}(V)/< Y >), \{ \}).$

Let n > 1 and let $\sigma \in H_n$. It follows from the definition of ℓ -adic polylogarithms in [W1] section 11 and from the definition of the filtration $\{H_k\}_{k\in\mathbb{N}}$ of $G_{\mathbb{O}}$ that

$$(3.2.2) \qquad \mathcal{L}(\overrightarrow{10}, \overrightarrow{01})(\sigma) \equiv \ell_n(\overrightarrow{10})(\sigma)[..[Y, X], X^{n-2}] \bmod I_2 + \Gamma^{n+1}L(V)$$

and

(3.2.3)
$$\mathcal{L}(-1, \overrightarrow{01})(\sigma) \equiv \ell_n(-1)(\sigma)[..[Y, X], X^{n-2}] \mod I_2 + \Gamma^{n+1}L(V).$$

It follows from the work of Soulé (see [S1] and [S2]) and the relation between ℓ -adic polylogarithms and classes of Soulé (see [W1] Corollary 14.3.3 and also [NW] Remark 2 and [W2] Proposition 3.4) that $\ell_{2n+1}(\overrightarrow{10}) \neq 0$ and $\ell_{2n}(\overrightarrow{10}) = 0$. In [W1] Corollary 11.2.3 and also in [W2] Theorem 2.1 we have proved the identity

$$2^{n-1}(\ell_n(-1) + \ell_n(1)) = \ell_n(1)$$

Produced by The Berkeley Electronic Press, 2005

35

after the restriction to H_n . $(\ell_n(1) \text{ denotes } \ell_n(\overrightarrow{10}).)$ Hence we get that

(3.2.4)
$$\ell_n(1) = \frac{2^{n-1}}{1 - 2^{n-1}} \ell_n(-1)$$

for n > 1. This implies that $\ell_{2n}(-1) = 0$.

Let n > 1 and let $\sigma \in H_n$. It follows from (3.2.1) - (3.2.4) that in the Lie algebra $t_V(-1, 01)$ there is an element of the form

$$(\ell_n(-1)(\sigma)[..[Y,X],X^{n-2}] + u_n, (0, \frac{2^{n-1}}{1 - 2^{n-1}}\ell_n(-1)(\sigma)[..[Y,X],X^{n-2}] + \omega_n))$$

where $u_n, \omega_n \in I_2$. Let us take $\sigma \in H_{2n+1}$ such that $\ell_{2n+1}(-1)(\sigma) \neq 0$. Multiplying by $(1-2^{2n})$ and dividing by $\ell_{2n+1}(-1)(\sigma)$ we get an element of the form

$$z_{2n+1} := ((1-2^{2n})[..[Y,X],X^{2n-1}] + u_{2n+1},(0,2^{2n}[..[Y,X],X^{2n-1}] + w_{2n+1}))$$

 $(u_{2n+1}, w_{2n+1} \in I_2)$ in the Lie algebra $t_V(-1, 01)$.

Let n=1. It follows from [W1] Proposition 11.0.8 that $\ell_1(-1)=\ell(2)$. The ℓ -adic logarithm $\ell(2)$ is the Kummer character associated to 2 (see [W1] Proposition 14.1.0.). Hence there is an element $\sigma \in H_1$ such that $\ell(2)(\sigma) \neq 0$. Therefore we get that $\mathcal{L}(10, 01)(\sigma) = 0$ and $\mathcal{L}(-1, 01)(\sigma) = \ell(2)(\sigma)Y$. Hence the element

$$z_1 := (Y, (0, 0))$$

belongs to $t_V(-1, \overrightarrow{01})$.

Let us set $t_{2n+1} = ((1-2^{2n})[..[Y,X],X^{2n-1}],(0,2^{2n}[..[Y,X],X^{2n-1}]))$ for n > 1 and $t_1 = (Y,(0,0))$. Observe that for any Lie bracket of length r in the Lie algebra $\text{Lie}(V) \tilde{\times} ((\text{Lie}(V)/< X >) \oplus (\text{Lie}(V)/< Y >), \{ \})$ we have

$$\{\ldots \{z_{i_1}, z_{i_2}\} \ldots z_{i_r}\} \equiv \{\ldots \{t_{i_1}, t_{i_2}\} \ldots, t_{i_r}\} \mod \mathcal{I}_{r+1}.$$

Let us set $s_{2n+1} = [..[Y,X], X^{2n-1}]$ for n > 0 and $s_1 = Y$. Notice that the elements t_1, t_3, \ldots and s_1, s_2, \ldots have integer coefficients. Observe that

$$\{\ldots\{t_{i_1},t_{i_2}\}\ldots,t_{i_r}\}\equiv([\ldots[s_{i_1},s_{i_2}]\ldots,s_{i_r}],(0,0)) \bmod 2,$$

where [,] is the standard Lie bracket in the free Lie algebra $\mathrm{Lie}(V)$.

The Hall basic Lie elements in $s_1, s_3, \ldots, s_{2n+1}, \ldots$ in the are linearly independent. Lie algebra Lie(V)Hall Hence the basic Lie elements $z_1, z_3, \ldots, z_{2n+1}, \ldots$ in the Lie algebra $\operatorname{Lie}(V) \times ((\operatorname{Lie}(V)/ < X >) \oplus (\operatorname{Lie}(V)/ < Y >), \{\})$ are linearly independent. Hence the elements $z_1, z_3, \ldots, z_{2n+1}, \ldots$ are free generators of a free Lie subalgebra of $t_V(-1, 01)$.

THE GALOIS ACTION ON THE TORSOR OF PATHS

References

- [D] P. Deligne, Talk on the conference on polylogarithms, Schloss Ringberg 1998.
- [DW] J.-C. DOUAI, Z. WOJTKOWIAK, On the Galois actions on the fundamental group of $P_{\mathbb{Q}(\mu_n)}^1 \setminus \{0, \mu_n, \infty\}$, Tokyo Journal of Mathematics, Vol. 27, No. 1, 2004, 21–34.
- [NW] H. NAKAMURA, Z. WOJTKOWIAK, On the explicit formulae for ℓ-adic polylogarithms, in Arithmetic Fundamental Groups and Noncommutative Algebra, Proc. of Symposia in Pure Math. vol. 70, AMS 2002, 285–294.
- [S1] Ch. SOULÉ, On higher p-adic regulators, Springer Lecture Notes, N 854 (1981), 372–401.
- [S2] Ch. Soulé, Eléments cyclotomiques en K-théorie, Asterisque, 147–148, 1987, 225–258.
- [W1] Z. WOJTKOWIAK, On ℓ-adic iterated integrals, I, II, III, Nagoya Math. Journal, Vol. 176 (2004), 113–158, Vol. 177 (2005), 117–153, Vol. 178 (2005), 1–36.
- [W2] Z. WOJTKOWIAK, A note on functional equations of ℓ-adic polylogarithms, Journal of the Inst. of Math. Jussieu (2004) 3(3), 461–471.

Zdzisław Wojtkowiak Université de Nice-Sophia Antipolis Département de Mathématiques Laboratoire Jean Alexandre Dieudonné U.R.A. au C.N.R.S., No 168 Parc Valrose - B.P.N° 71 06108 Nice Cedex 2 France

(Received July 13, 2004)

Produced by The Berkeley Electronic Press, 2005

37