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0. INTRODUCTION.

0.1. Deligne on a conference in Schloss Ringberg considered the mixed
Hodge structure on the fundamental group of P1\{0,1, —1,0c}. He showed
that the motivic Galois Lie algebra associated to this mixed Hodge structure
contains a free Lie subalgebra on generators in degree 1,3,5,...,2n+1,...
corresponding to log2,((3),{(5),...,((2n+1),... .

In [W1] and [DW] we were studying actions of Galois groups on funda-
mental groups. In this note we are studying the action of the Galois group

Gal(Q/Q) on the torsor of (¢-adic) paths from 01to —1on Pé\{(), 1,00}. We
show that the associated graded Lie algebra of the image of Gal(Q/Q(pe0))

contains a free Lie subalgebra over Qy on generators in degree 1,3,5,...,2n+
1,... . We use the idea working modulo 2 from Deligne’s talk in Schloss
Ringberg.

In [W1] section 5 we were studying some general aspects of actions of
Galois groups on torsors of paths. To make this paper self contained we
recall some definitions and results from [W1] in sections 1 and 2.

1. TORSORS OF PATHS.

1.1. Let K be anumber field and let a1, ..., ay1 be K-points of a projective
line P.. Let V. = Pi\{ai,...,an,ant1}. For simplicity we assume that
Ap+41 = OQ. R

We denote by V(K) the set of K-points of V' and of tangential base
points defined over K. Let z,v € V(K). Let 71(Vg,v) be the ¢-completion
of the etale fundamental group of Viz and let m(V, z,v) be the set of ¢-adic
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paths from v to z on V. The set n(Vi, z,v) is a w1 (Vg,v)-torsor. The
Galois group G := Gal(K/K) acts on m(Vg,v) and on 7(Vg,2,v) in a
compatible way, i.e., o(p-S) = o(p) - 0(S), where 0 € Gk, p € 71(Vg,z,v)
and S € m (Vi,v).

Let us fix a path p € 7(V, z,v) . We define a bijection of sets

ty :m(Vig,z,v) = m(Vg,v)

setting t,(g) := p~! - ¢ (the composition of paths is from right to left). The

bijection ¢, is not G'k-equivariant. Using the bijection ¢, we transport the
action of Gx on 7(Vg, z,v) into the action of Gx on m (Vi,v).
Let 0 € Gg. We set
folo) :=p~"-o(p).
The element fy(c) € m(Vg,v). Let us define a new action of Gg on
71 (Vg,v) setting

Observe that
(T : U)p = Tp - Op,

i.e., we have an action of G on 7 (Vg,v). We have

tp(o(q)) = op(tp(q)),

i.e., the bijection t, is G'x-equivariant if we equip 7 (Vi ,v) with the new
action of Gg.

1.2. We fix generators of m1(Vj,v) in the following way. At each missing
point a; we choose a tangential base point v; defined over K. Let ; be a
path from v to v;. Then z; is the composition of the path +; + a small loop
around a; in the opposit clockwise direction + the path v, 1 'We can assume
that zp41-2p ... 2z = 1.

To study the action of Gi on the torsor 7(Vg, z,v), i.e., the action

( )p : GK — Autset(m(vk,v))

it is very convenient to embed 1 (Vz, v) into the ring of formal power series
in non-commuting variables.

Let Q{{X1,...,Xn}} (resp. Q{X1,...,X,}) be a Q-algebra of formal

power series (resp. of polynomials) in non-commuting variables X1, ..., X,,.
Let
k:m(Vig,v) = Qu{{X1,...,Xn}}
be a continuous multiplicative embedding given by k(z;) = eXi for i =
Tyoooy T
Let us set

Ap(0) = k(fp(0)).
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The action of Gx on m(Vi,v) induces a homomorphism

GK - AUth—algebra(QZ{{Xla s aXn}})

The action of Gg on 7(Vg, z,v), i.e., the action ( ), induces a homomor-
phism

Pp - GK - Aut@g—linear(@ﬁ{{Xla s 7Xn}})
Let w € Q{{X1,...,Xn}} and let 0 € Gg. Then

pp(0)(w) = Ap(0) - o (w).

1.3. We shall study the Lie algebras of derivations of free Lie algebras.
Let Lie(V) be a free Lie algebra over Q; on free generators Xi,..., X,,.

Let L(V') :=lim Lie(V)/I'""Lie(V'). We identify Lie(V') (resp. L(V')) with the

Lie algebra of Lie elements of Qu{X1,..., Xy} (resp. of Q{{X1,...,Xn}}).

If L is a Lie algebra then we denote by Der L the Lie algebra of derivations
of L.

Let n:={1,...,n}. We set

Der*Lie(V) := {D € Der Lie(V) | Vi € n 3A; € Lie(V), D(X;) = [X;, Ai]}
and
Der*L(V) :={D € DerL(V) | Vi € n 3A; € L(V), D(X;) = [Xi, 4]}
The derivation D € Der*Lie(V') such that D(X;) = [X;, 4;] for i € n we
denote by D4, .. a,) or D(a,),.,- Let < X; > be a vector subspace of
Lie(V') generated by X;. Observe that we have an isomorphism of vector
spaces
Der*Lie(V) ~ (Lle( )/ < X >)

=1

which  maps Dy, 4, onto (Ai,...,A,). We introduce on

Lyeees

EB (Lie(V)/ < X; >) a new bracket { } defined in the following way

{(Ai)ien: (Bi)ien}t = ([4i, Bil + Da);c, (Bi) — D(B}),e,, (Ai))ien-

Lemma 1.3.1. The vector space & (Lie(V)/ < X; >) equip with the
i=1

bracket { } is a Lie algebra isomorphic to the Lie algebra Der*Lie(V). The

isomorphism of Lie algebras maps (A;)icn onto D4 A))jen O

The vector space & (Lie(V)/ < X; >) equip with the Lie bracket { } we
=1

7

shall denote by ( (Lle( )/ < X >),{}).

We define a seml direct product of Lie algebras
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Lie(V)xDer*Lie(V)
defining a Lie bracket { } on the product of vector spaces Lie(V') xDer*Lie(V)
in the following way

{()‘v Dﬁ)’ ()‘1’ Dﬁl)} = ([)" )‘1] + Dﬁ()‘l) - D,@1 ()‘)7 [Dﬁv Dﬁl])'
Hence the Lie bracket in a semi-direct product of Lie algebras
Lie(V)%( & (Lie(V)/ < X; >),{ })
is given by

{0 8), (A1, B1)} = (A Ml + Dp(A) = Dy (A), {8, A1})-

We recall that Qp{X1,...,X,} is a Q-algebra of polynomials in non-
commuting variables Xi,...,X,. Observe that any derivation of the
Lie algebra Lie(V) (resp. L(V)) induces a derivation of the Q-algebra

Qe{X1,..., Xn} (resp Qu{{X1,..., Xn}}). Let w € Q{X1,...,X,} (resp.
w € Qu{{X1,...,Xn}}). We denote by L, the left multiplication by w in
the corresponding Qg-algebra. We denote by Ly (resp. L)) the set
of left multiplications by elements of Lie(V') (resp. L(V')). Observe that the
semi-direct product

Liie(v) xDer*Lie(V) C Endg,—tinear (Qe{ X1, ..., Xn}).
Notice that the Lie algebras Lie(V)xDer*Lie(V') and Ly xDer*Lie(V')
are obviously isomorphic. The same is true if we replace Lie(V) by L(V)
and Qp{X1,... X} by Q{{X1,... Xn}}.

1.4. Using the representations
(1.4.1) Gg — Aut@gfalgebra(Qé{{Xh e Xn}})

and

)
X

Pp - Gk — Aut@g—linear(@ﬁ{{Xla cee 7Xn}})
we shall define filtrations of the Galois group Gx. We set

G = Gm(Va U)
= kel"(’lﬁm G — AUth—algebra(Ql{{le ceey Xn}}/1m+1))a

where I is the augmentation ideal of the Qg-algebra Q{{Xi,...,X,}}
and 1, is induced by the action (1.4.1) of Ggx on the Q-algebra

Qe{{X1,.... Xn}}
We set

Hm = Hm(vva Z, U)
= ker(@p,m : Gm - AUth—linear(Qﬁ{{Xla oo aXn}}/Im))7
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where ¢, is induced by ¢,,.
We set

G = ﬁ G, and Hy, := ﬁ H,,.
m=1 m=1

2. LIE ALGEBRAS OF ACTIONS OF GALOIS GROUPS ON TORSORS.

2.1. We have seen in section 1 that the action of Gk on the torsor (Vi 2z, v)
leads to the Galois representation

Pp: GK — AUt(QZ{{Xla oo aXn}})’

where @p(0)(w) = Ap(0) - o(w). It is shown in [W1] Lemma 5.1.7 that for
o€ Gal(K /K (p0)).

(2.1.1) log ¢p(0) = Liog o, (s)(1) +log o
Moreover we have
(2.1.2) (log 0)(X;) = [Xi,log ¢y, (0)(1)]

fori=1,...,n (see [W1] Proposition 5.1.8). Passing with the representation
¢p to Lie algebras we get a homomorphism of Lie algebras

Liep), : Lie(H1/Hoo ® Q) — Endg,—tinear(Qe{{X1, ..., Xn}}).
It follows from (2.1.1) and (2.1.2) that Lieyp, factors through
Liep, : Lie(H1/Hs ® Q) — Lyn)yxDer*L(V).
We recall that we have a canonical isomorphism

L) XDer*L(V) ~ L(V);(ie:al (L(V)/ < X; >),{ }).

Let 0 € Gal(K /K (uy00)). We shall calculate coordinates of (Lie ¢,)(0) in

LV)X(& (LV)/ < Xi >),{ ).

Lemma 2.1.3. Let o € Gal(K /K (uy00)). Then
(Liewy)(0) = (log pp(a)(1), (log ¢4, () (1))ien)-
Proof. The lemma follows from (2.1.1) and (2.1.2). O

We pass with the morphism Lieyp,, to associated graded Lie algebras. Then
we get a morphism

grlieypy : grlie(Hy/Hoo ® Q) — Lyje(y)xDer*Lie(V).
Let us set
¢p = grliep,,.
Lemma 2.1.4. Let 0 € H,,. Then
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i) log ¢p(c)(1) =log Ap(c) mod I Lie(V),
ii) the class of logA, (o) mod I'"™*1Lie(V) does not depend on a choice
of a path p from v to z.

O

Proof. The lemma is already proved in [W1].

Let o € H,,. We denote by £(z,v)(c) the class of logA, (o) mod I Lie(V).
Now we can calculate coordinates of ¢p(c) in Ly xDer*Lie(V) ~

Lie(V)i(iefal (Lie(V)/ < X; >),{ }).

Lemma 2.1.5. Let 0 € H,,. Then
dp(o) = (L(z,v)(0), (L(vi,v)(0))ien)

in Lie (V)i(iél (Lie(V)/< X; >),{ }).

Proof. The lemma follows from Lemmas 2.1.3 and 2.1.4. O
It follows from Lemma 2.1.5 that the morphism of Lie algebras
¢p : grLie(H1/Hoo ® Q) — Lyse(v)xDer*Lie(V).

does not depend on a choice of a path p from v to z, hence we shall denote

it by ¢...
We set

ty (2,0) = image(6...).

Observe that the Lie algebra ty (v,v) is the associated graded Lie algebra
of the image of Gal(K /K (ue)) in Aut(m(Vg,v)). This Lie algebra was
studied in [W1] section 15. To indicate the importance of the Lie algebra
ty (v,v) we set

3. EXAMPLES.

Let V = P}\{0,1,00}. In the fundamental group w1 (Vg, H) we have two

generators x - loop around 0 and y - loop around 1. We embed 1 (V5, ﬁ)
into Q{{X,Y}} mapping = onto eX and y onto e¥.
Proposition 3.1. The Lie algebras 5V(E) and tv(l—d, H) are isomorphic.
Proof. 1t follows from Lemma 2.1.5 that

é57 57(@) = (0,(0, £(10, 01)(0))

o1, 01
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and

b15 5(9) = (£(10, 01)(0), (0, £(10, 01) ()

in Lie(V)x((Lie(V)/ < X >) @ (Lie(V)/ <Y >),{ }). Tt is clear that the
map Oy (01) — ¢y (10, 01) sending (0, (0, £)) to (£,(0,£)) is an isomor-
phism of the corresponding Lie algebras. O

Proposition 3.2. The Lie algebra ty (—1, OT) contains a free Lie subalgebra

on free generators in degree 1,3,5,...,2n+1,....

Proof. The proof is based on Deligne’s ideas indicated in [D]. It follows from
Lemma 2.1.5 that

(3.2.1) &

(0) = (£(=1,01)(0), (0, £(10, 01)(5)))

~1,01

in Lie(V)x ((Lie(V)/ < X >) @ (Lie(V)/ <Y >),{ }). Let I, be a vector
subspace of Lie(V') generated by Lie brackets of the Lie algebra Lie(V) which
contain at least n Y’s. Let us set

Observe that 7, is a Lie ideal of the Lie algebra Lie(V)x((Lie(V)/ < X >
)& (Lie(V)/ <Y >),{ }).

Let n > 1 and let 0 € H,. It follows from the definition of ¢-adic polylog-
arithms in [W1] section 11 and from the definition of the filtration { Hy }ren
of Gg that

(322)  £(10,01)(0) = £u(10)(0)[..[Y; X], X" 2] mod I + T"*1L(V)
and
(323)  £(=1,01)(0) = bu(—1)(0)[.[Y, X], X" 2] mod I + T"LL(V).

It follows from the work of Soulé (see [S1] and [S2]) and the relation between
¢-adic polylogarithms and classes of Soulé (see [W1] Corollary 14.3.3 and

also [NW] Remark 2 and [W2] Proposition 3.4) that f2,41(10) # 0 and

Zgn(l_O)) = 0. In [W1] Corollary 11.2.3 and also in [W2] Theorem 2.1 we
have proved the identity

2n_1(£n(_1) + En(l)) = gn(l)
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after the restriction to Hy,. (¢,(1) denotes Bn(l—O))) Hence we get that
2n—1
1— 201

for n > 1. This implies that ¢3,(—1) = 0.
Let n > 1 and let 0 € H,,. It follows from (3.2.1) - (3.2.4) that in the Lie

algebra ty (—1, (71) there is an element of the form

(3.2.4) la(1) = la(~1)

2n—1

(n(=1)(0)[[Y, X], X"+ up, (0, Ca(=1)(0)[.[Y, X], X"+ wy))

1—2n1
where u,,w, € Iy. Let us take 0 € Hap4q such that lo,41(—1)(0) # 0.
Multiplying by (1 —22") and dividing by f2,,+1(—1)(c) we get an element of
the form

Z2n+1 ‘= ((1 - 22”)[[}/7 X]? XQn—l] + U2n+1, (07 22”[[)/7 X]v X2n_1] +w2n+1))

(u2n+1, Wan+1 € I2) in the Lie algebra ty(—1, H)

Let n = 1. It follows from [W1] Proposition 11.0.8 that ¢;(—1) = £(2).

The ¢-adic logarithm £(2) is the Kummer character associated to 2 (see [W1]

Proposition 14.1.0.). Hence there is an element o € H; such that £(2)(0) #
)(9)

0. Therefore we get that £( 1(), 01)(0) =0 and £(-1, ()1)( ) =1{(2)(0)Y.
Hence the element
Rl = (Y7 (Oa 0))

belongs to ty(—1, 07)

Let us set ton1 = ((1 —227)[..[Y, X], X?"71],(0,22"[..[Y, X], X?*~1])) for
n > 1 and t; = (Y,(0,0)). Observe that for any Lie bracket of length r in
the Lie algebra Lie(V)x ((Lie(V)/ < X >)® (Lie(V)/ <Y >),{ }) we have

{.. Az, zi}oozi = {0 At tiy byt mod Ty .

Let us set sony1 = [.[Y, X], X?"71] for n > 0 and s; = Y. Notice that
the elements t1,t3,... and s1, S92, ... have integer coefficients. Observe that
{. . {tiptiz} . ,tir} = ([ .. [Sil,SiQ] ey Sir], (0, 0)) mod 2,

where [, ] is the standard Lie bracket in the free Lie algebra Lie(V).

The Hall basic Lie elements in si1,83,...,82,+1,... in the free
Lie algebra Lie(V) are linearly independent. Hence the Hall
basic Lie elements z,23,...,22n41,-.. in the Lie algebra
Lie(V)x((Lie(V)/ < X >) @& (Lie(V)/ <Y >),{ }) are linearly inde-
pendent. Hence the elements z1, 23,..., zon+1,... are free generators of a
free Lie subalgebra of ty(—1, 01). O
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