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EXPONENTIAL SUMS OVER FINITE FIELDS

HaraLp NIEDERREITER

Let F, be the finite field of order q. For f& Fy[xi, -+, x,] and

a nontrivial additive character Y of ¥y define the character sum

Ci=2___x(flar, >, ar)).

ai,+-.ar€Fq

Together with C, we consider lifted character sums corresponding to the
various finite extensions F,s of F, contained in a fixed algebraic closure T,
of F,. First, y is lifted via the trace to a nontrivial additive character
x5 of Fye: in detail, if Trs denotes the trace function from F,s onto Ty,
then set

(1) ¥(a) = x(Trs(a)) for a € Fys.
Now define
Co=2__ _xflai,"**,ar)).

Q-+, Ar€¥Fg

With these lifted character sums one sets up the L-function

L(z) = exp (si:‘,l is zs)

in the complex variable z. For r = 1 one has the classical results of
A. Weil on these L-functions (see [5. Ch.5]). For general r, Grothendieck
(4] proved by methods of /-adic cohomology that L(z) is always a rational
function. Bombieri [1] conjectured that L(z) has the special form

(2) L(z) = P(z)~"""

with a polynomial P, provided that f satisfies some kind of nonsingularity
condition. In his famous paper on the Weil conjectures, Deligne [3] proved
among other results that Bombieri's conjecture is true if deg(f) is not
a multiple of the characteristic of ¥, and the leading homogeneous part f,
of f is nonsingular in the standard sense (i.e., there is no point over F, at
which f; and all its first-order partial derivatives vanish simultaneously).

In a lecture given at the Oberwolfach Conference on Analytic Number
Theory in 1982, S. A. Stepanov announced an elementary proof of the result
of Deligne quoted above for the case where deg(f) is less than the charac-
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teristic of F, (see [12]). According to the outline given by Stepanov, his
method depends, first of all, on an explicit expansion of L(z), where we
assume for simplicity that r is odd (otherwise consider L(z)7'):

= CS s = Cs s = ad 1 C_,t Jis
(3) L(z) = exp(‘g:l ar ) = 1II exp(—;-z ) =11 (Z N J)

- ; 7
1 (h+2iz+...+si5=s 11!"'ls! 2%...5

=1+i

Now one has to show gs = 0 for all sufficiently large s. Stepanov claimed
that he can do this by inserting the explicit form of the sums C;, then fully
expanding the resulting expression for gs and combining terms in a suitable
way. In a brief note [13] summarizing the method, this point is brushed
over. Since I could not get any further details from Stepanov, I tried to
reconstruct his argument and I looked first for a simple test case.

It turns out that Stepanov had already used this method in his paper [11]
to give an elementary proof of the Davenport-Hasse theorem for Gaussian
sums over finite fields. A closer inspection of this proof reveals, however,
that it breaks down at a crucial step of the argument. This raises some
doubts about the validity of Stepanov’s claim at the Oberwolfach conference.
But, obviously, a final verdict can only be given when Stepanov publishes
his proof in full detail.

In order to elaborate on the error in [11], it is necessary to first
describe the Davenport-Hasse theorem. Let ¢ be a multiplicative and ¥
an additive character of F,, not both being trivial, and use the convention
¢(0) = 0. The corresponding Gaussian sum is defined by

G = G(¢g x) = aéq ¢(a) x(a).

The character ¢ is lifted by means of the formula
¢*(a) = ¢(Ns(a)) for a € For,

where N is the norm function from Fgs onto F,. With Y* being given
by (1), we consider the lifted Gaussian sum

6= G(¢™. %) = 3 ¢(a)1"(a).

The Davenport-Hasse theorem expresses the following simple relation be-
tween Gg and Gi.
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Davenport-Hasse Theorem. G, = (—1)°"'Gy.

In the paper of Davenport and Hasse [2] this relation arose from the
study of L-functions of an algebraic function field defined by an Artin-
Schreier curve over F,. The paper contains also a proof of the formula
based on the results of Stickelberger [14] concerning the factorization of
Gaussian sums in cyclotomic fields. Schmid [10] has given an elementary
proof of the Davenport-Hasse theorem by induction on s.

Although this is not made explicit, the method in Stepanov [11] for
proving the Davenport-Hasse theorem amounts to considering an L-function
corresponding to Gaussian sums and expanding it as in (3) :

oo GS oo
L(z)zexp(zl S zs)=1+2 Ys2®
$= s=1
with

G, (s
1 s

Yo = T orsnecs Dileigl 2Bt

Then one tries to show 7s = 0 for s > 1. In one of the key steps it is
claimed in [11] that for a given solution of i, +2i,++-++ sis = s in non-
negative integers i,,***,is the number N(i#,,**,ts) of tuples

(a(ll), “ee, a(b}l)’ el a‘ils',...’ a‘i\?),
with the first i, entries being in Fy, the next i, entries being in Fgz,+++, the
last is entries being in Fy+, and with the elementary symmetric polynomials in
the a7’ and their conjugates over F; having prescribed values t,:*,ts € Ty,
is independent of t,,°**,ts. This statement is, however, incorrect. For
instance, if is = 0 and

Hx) = x°— hax® '+ tgxs‘z-T_..._|_(_1)sts

is irreducible over F,, then N(t,,:-,ts) = 0, whereas N(0,:-,0) =1, as
can be seen immediately from the factorization of #(x) in its splitting field
over Fy. To provide another counterexample, we note that if i, = s, i, = -«
= i, =0, then N(t;,***.ts) = 0 whenever #(x) does not split completely
over F,, whereas N(0,:--,0) = 1 and N(1,0,:--,0) = 5. The proof of the
Davenport-Hasse theorem in [11] is therefore fallacious. Any attempt to
repair it would have to be based on a correct formula for N(¢,,->+,ts). Such
a formula will, however, be very complicated and lead to a rather involved
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proof of the Davenport-Hasse theorem.

We present now a shori proof of the Davenport-Hasse theorem using
a technique in [5, Ch.5]. Let M = {g € Fy[x] : g monic}, M, = |g e M:
deg(g) = r|, I=|g € M: g irreducible over F,|, I, = lg € I:degl(g)
= d}. Define A\: M - C by A(1) =1 and

Mx™—cx™ '+ (—1)"¢c,) = ¢ler) x(cy) for r = 1.

Then A is multiplicative in the sense that A(gh) = Ag)A(h) for all g, h € M.
Splitting up Gs according to the degree of a € Fy+ over ¥y, writing g, for
the minimal polynomial of a over F,, and using simple properties of Trs and

Ns (see [5, Ch.2]), weget for | 2| < ¢ ':

Gs 25 = i z :d(gb(dl(a)x(d)(a))s/d

S s=1 $§ dis deg:a=

= 3Ny Mgl

s=1 § dis degia=d
s

=22 5d T Ag)™

s§=1 as g€ ly

oo
2
S=1

eer 1—Ag)ztes®
In this Euler product A(g)z"°®'® is multiplicative as a function of g, hence

Gs .

S

I

log(gm ?\(g)zdeg(m)= log(i ( 2 /\(g))zr)

=0 \BEM:-

éx
= ]' S-1 sS_S
=log(1+Glz)=SZ_]1—S (-1) 127,

and comparison of coefficients yields the Davenport-Hasse theorem.

The same method can be applied to other exponential sums. For in-
stance, if ¢ and ¢, are two multiplicative characters of Fy,, not both of them
trivial, and if we fix a nonzero b € F,, then we can consider the lifted
Jacobi sums

Js = 2 ¢i7(a)¢i’(b—a).

aeFqg
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With
Ng) = ¢{(—1)"5%€g(0))¢(g(b)) for g e M

we get then as above :

o Jo o A
52— oe(5( 2 e))
s=1 § =0 \8EMr
= 1
= log(1+Jiz) = 25 ?(—1)8_'-]1323,

8=1

and comparison of coefficients yields Js = (—1)°7'J7, a formula first shown
by Mitchell [6].

The Davenport-Hasse theorem can be used to establish a formula of the
type (2) for L-functions corresponding to a general class of multiple expo-
nential sums. For 1 < i < r let F; be a finite field, let ¥, be a nontrivial
additive character of F;. and let ¢, be an arbitrary multiplicative character
of F;. Let H, be a subgroup of the direct product F* X+.-X F¥ of index m,
where F* denotes the multiplicative group of a finite field F. If F;s is the
extension of F; of degree s contained in a fixed algebraic closure of F;, let

Ns: F]”_‘sx"'szs - F‘]"‘)("')(I;‘;-'=

be the componentwise norm function and set Hs = N;'(H,). For fixed
u € F¥X.. X F¥ define

(4) Es=m : X (@)« 17 (ar) (@) - g (ar).

@) ari€ uUls

Then set up the corresponding L-function

(5) L(z) = exp(f’, Iis zs).

Ss=1

Theorem 1. The L-function in(5) is of the form
L(z) = P(z)~""
with a polynomial P of degree m satisfying P(0) = 1.
Proof. If u = (uy,***,us) € F* X+--XF¥, we can write

(6) Es =m :‘4 X{S)(ulal)"'X;'S)(urar)¢§s’(ul al)"‘ (rS)(urar)-

Qe @ArI€E Hs

For fixed s we use the Fourier expansion of the restriction of ¥ to F}% with
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respect to the characters A; of that group :

(7) x'(c) = (A, X Adc) for all ¢ € F,

i

where q; denotes the order of F;, the Fourier coefficients are Gaussian
sums, and A; is the conjugate character of A;. Inserting (7) in (6) we get

m

@D —1) o $man) 4 wrar):
TG4 )G (A, 1) A(wmiar) -+ Ar{urar)

Es =

= m si) 1 s} ts)
= D =Ty o G )G A (A (1)

(¢ Ar) (ur) : () (@) (&7 Ar) (ar).
Let As be the annihilator of Hs in the dual group of Fi¥;X.-X F¥*,. Then
the inner sum has the value | Hs | if (¢{¥A1, -, ¢%'A,) € A and 0 otherwise.
Therefore,

m| H; |

(g7 —1)++(g7—1) &znen
G(Ag2, 1) M)+ Al ).

(8) E, = G(hgt, 21)-+

Since N; is surjective, we have

(gi—1)---(qg7—1)
((I,l—l)"'(llr—].) ’

| ker Ng | =

and from H, = H¢/ker Ns we get

(9) H| = 1H | =l

This implies

) (flr_l) _ (QI—'I)".(QT_]-) _
ml T Tm A

(10) | As I—

Since it is lmmedlate that (A, +++, A7) € Ag whenever (A,**,A;) € A,, it
follows from (10) that As consists exactly of all (A%, -+<, A%) with (A, "+, A,)
€ A,. Using this fact as well as (9) and the deﬁmtlon of m, the identity (8)
attains the form
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Ee = Y GIAG, X))+ GORe, 1) A w )+ A2 wy).

{Ale ATIE Ay

Now we can apply the Davenport-Hasse theorem, and taking into account that
Bu) = (Adu))®, we get

Es = (_l)r :: ((-l)rG( ’il¢l~ XI)G(irﬂbr Xr)Al(ul)"‘Ar(ur))s-

A1e ATIE Ay
Since | A, | = m, we can label the numbers
(11) ("I)TG( Xl‘ﬁls XI)"'G(/ir(//rv Xr) Al(ul)"'lr(u'r)

by wi,**’, wm, so that
(12) o= (-1} of.

For the L-function in (5) we obtain then

MS

L(2)=exD(( )2. é )=exr1((—1) )y

Jj=18=1 §

(w;z) )
exP((_l)r_l ,}:':1 lOgU-w;z)) = P(z)-"""

with ‘
P(z) = (1—wz2) (1 —wnz).

Since the characters X; are nontrivial, we have w; % 0 for 1 < j < m, and
the proof of Theorem 1 is complete.

The exponential sums in (4) include various classical exponential sums
as special cases, such as Gaussian sums, Kummer cyclotomic periods, and
products of such sums. They also include a class of character sums studied
by the author in a number of papers (see [7]. [8], [9]). This will be ex-
plained in the sequel.

Let (yn), n = 0,1,-, be a linear recurring sequence in F, satisfying
the linear recurrence relation

(13) Yner = brrYnek—1t-+ boyn, n=10,1,--

with constant coefficients bx_1,...,00 € Fyq, by + 0. To exclude a trivial
case, we assume (¥o,***,yx-1) F (0,-+-,0). We can also assume that (13) is
the linear recurrence relation of least order satisfied by (y,), i.e.. that

flx) = 2= b x™ = — by € Folx]
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is the minimal polynomial of (y,)(compare with [5, Ch. 8]). Then the least
period 7 of (,) is equal to the least positive integer e such that f(x) divides
x®—1. We consider now the case where f has no multiple roots. Then

f=foeitr

with distinct monic irreducible polynomials f; over K =TF,. Let v; be
a fixed root of f; in its splitting field F; over K, and let Trr 4 denote the
trace function from F; onto K.

Lemma. Under the conditions above, there exist elements u; & F,
1 <i<r, such that

r
yn = ; TrFx/l\'(ui’V?) fO‘I‘ n= Oa 11"'

Proof. Let

(14) | Glx) = 3 vt

be the generating function of {¥,). On account of the linear recurrence
relation, it is of the form

glx)

fHx)
with g € Fo[x], deg(g) < k., and f*(x) = x*f(1/x) being the reciprocal
polynomial of f (compare with [5, Ch. 8]). By partial fraction decomposition,

Glx) =

Glz) = 33 )

where d; = deg (f;), and the elements a;; € F; are conjugate over K, i.e.,
ay = af for 0 < j < d;—1. Expanding into formal power series, we get

Glx) =

ﬁ'mﬂ

i' ;2 v = i (;T. g} (awvi) )x"

n=0 Nn=0

and comparison of coefficients with (14) yields the result of the lemma, with

U; = Q.
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Since f(0) = —b, #+ 0, we have v, = 0 for 1 < { < r, and since f is
the minimal polynomial of (y,), we have u; = 0 for 1 < { < r. Now let y be
a nontrivial additive character of K = T, and consider the character sum

(15) = 1)

extended over the period of (y,). Then writing again d; = deg (f;) and using
the lemma,

1

X(Tre skl v?)) oo (Tre, m(uvy))

T

:;Z:J: X(yn) =

~ =

- o

= 3 X D)y )

3
n

=2 o x"(a)x"ar),

(@1 @r)€ uth

where u = (uy,++,u;) € F*X---X F¥ and H, is the cyclic subgroup of
F¥*X-+XF¥ generated by (v,,---,v,). Consequently, the character sum
(15) is, apart from the factor m, a sum of the form E, in (4), with y, = ¥
and trivial ¢; for 1 < i< r,

The identity (12), together with the form of the w; given by (11),
immediately yields the estimate

| Es| < m(qi---qr)*"
for the sums E¢ in (4), where q; denotes the order of F;. If all ¢; are
identical, then we can establish an estimate that is in a sense best possible.
Theorem 2. Let F;=TF, for1l < i < r. Then there exist integers C
and Hwith0 < C<m, 0 < H< r, such that
|Es| < Cg®"*+(m—C)qg™ " for all s = 1.
Furthermore, for every e > 0 there exist infinitely many s with
|Es| = (C—e)g™.
Proof. By (12) we have

|ESI =

)

m
2w
Ji=1

where the w, are given by (11). For 0 < h < 7 let m, be the number of
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(Ar,e*, Ar) € A such that A; = ¢; holds for exactly & values of i. Then
(16) Z_; =

We note the fact that for a multiplicative character ¢ and a nontr1v1al
additive character y of T, we have

(1 for ¢ trivial,
[G(g 1) | = q¢'”? otherwise.
Therefore,
-
(17) |Eo] < 3 mug®m"",
A=0

Let H be the largest value of h with m,_, #+ 0. Putting C = m,_,, we get
|Es| < Cg*"*+(m—C)g*™" " for all s = 1,

where we used (16).
To prove the second part of Theorem 2, let ¢ > 0 be given and let J be
the set of those j, 1 < j < m, for which |w;| = ¢"*. For j € J we have

wy = ¢ e’ with 6; real.

We note that the set J has C elements. Therefore, by Dirichlet’s theorem
on simultaneous diophantine approximations, there exist infinitely many s for

which

S et | > C——-f—.
jed 2
Consequently,
|Esl = | X of | — |2 | = ¢ | X ™% - | 2 of
jed JEJ Jjed JEJd

> (C__;_)qsn/z_(m_c)q,sm—n/z > (C_E)qsn/z

for infinitely many s.

An interesting special case for applications is that of the character
sums in (15), with the minimal polynomial f of (y,) being irreducible over
F,. In this case r = 1, F, = Fyx, and H, is the subgroup of F* generated
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by a root v of f, so that m = (¢*—1)/z. By the earlier discussion,

=1 1
;IY::Q Z(.’)’n) = ?EI

for a sum E, of the form (4) with ¢ trivial. The lifted sum Eg, s = 2,
corresponds to a subgroup Hs of F¥ of the same index m. Now Hj is cyclic
of order rs = (¢**—1)/m, so we can choose a generator v** of Hy. Let f*
be the minimal polynomial of v** over Fgs. It is clear that d = deg (f*)
divides k. Suppose d were a proper divisor of k. Then it follows that
ks __
T = (qu_ll)T = (" Vg™ et 1) > ¢ > g%—1.

On the other hand, +*® is a nonzero element of the finite field of order ¢°¢,
hence

(vr.s':)q"— =1 ,

which implies 7, < ¢°*—1, a contradiction. Thus we have deg(f) = k.
From the earlier discussion we see that there exists a linear recurring
sequence (y%

that

in Fys with minimal polynomial ' and least period zs such

sy :L
2. X (}'n) m Es.

n=>0

For s =1 we write y%' = ya, f"=F, and z, = . From (17) and the
second part of Theorem 2 we obtain then the following result.

Corollary. For all s = 1 we have

(18)

Ts—1
5 x0)
n=10

__ T )\ kspg__ Ts
< (1 qks__l )Q + qks_l .

Furthermore, for every e > 0 there exist infinitely many s with

Ts
> 1_*__ ICS/2.
( q,ks—]. E)Q

&S sy s
Eﬂ X (yz

In case s = ¢**—1 (i.e., m = 1), the second part of the corollary
provides no information. But in this case it is easy to see directly that
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Ts~1
5 2 = -1,
n=0

and so (18) is again best possible.
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