Mathematical Journal of Okayama University

Volume 25, Issue 1

1983

Article 5

JUNE 1983

On separable polynomials and Frobenius polynomials in skew polynomial rings. II

Shûichi Ikehata*

^{*}Okayama University

Math. J. Okayama Univ. 25 (1983), 23-28

ON SEPARABLE POLYNOMIALS AND FROBENIUS POLYNOMIALS IN SKEW POLYNOMIAL RINGS. II

SHÛICHI IKEHATA

Throughout this paper, B will mean a ring with 1, ρ an automorphism of B, and D a ρ -derivation of B (i.e. an additive endomorphism such that $D(ab) = D(a)\rho(b) + aD(b)$ (a, $b \in B$)). Let $R = B[X;\rho,D]$ be the skew polynomial ring in which the multiplication is given by $aX = X\rho(a) + D(a)$ ($a \in B$). In particular, we set $B[X;\rho] = B[X;\rho,0]$, B[X;D] = B[X;1,D], and as usual, B[X] = B[X;1,0]. By $R_{(0)}$, we denote the set of all monic polynomials g in R with gR = Rg. A polynomial g in $R_{(0)}$ is called to be separable if R/gR is a separable extension of B. Let f be a polynomial in $B[X;\rho]_{(0)}$ (resp. $B[X;D]_{(0)}$) whose coefficients are ρ -invariant. As was shown in [3], if the derivative f' of f is invertible in R modulo fR, then f is separable in R. In this case, f is called a $\tilde{\rho}$ -separable (resp. \tilde{D} -separable) polynomial. Such polynomials are applicable to Galois theory of skew polynomials.

In this paper, we shall give some sufficient conditions for a separable polynomial to be $\tilde{\rho}$ -separable (resp. \tilde{D} -separable). The study contains some generalizations of the results of [3].

We shall use the following conventions:

Z = the center of B, C(A) = the center of a ring of A.

 $B^{\rho} = \{a \in B \mid \rho(a) = a\}, B^{D} = \{a \in B \mid D(a) = 0\}.$

 u_r = the right multiplication effected by $u \in B$.

 I_u = the inner derivation effected by $u \in B$; $I_u(a) = au - ua$.

 $\rho^*: B[X;\rho] \to B[X;\rho]$ is the ring automorphism defined by $\rho^*(\sum_i X^i d_i)$ = $\sum_i X^i \rho(d_i)$.

 $D^*: B[X;D] \to B[X;D]$ is the inner derivation defined by $D^*(\sum_i X^i d_i)$ = $\sum_i X^i D(d_i)$.

1. $\tilde{\rho}$ -separable polynomials. In this section, we assume that $R = B[X;\rho]$ and f is in $R_{(0)} \cap B^{\rho}[X]$ of degree m. First, we shall define the discriminant of f. As was shown in [3, Remark 1.3], f is in $C(B^{\rho})[X]$. The $C(B^{\rho})$ -module $C(B^{\rho})[X]/fC(B^{\rho})[X]$ has a free basis $\{1, x, \dots, x^{m-1}\}$ where $x = X + fC(B^{\rho})[X]$. Let π_i be the projection of $C(B^{\rho})[X]/fC(B^{\rho})[X]$ on to the coefficients of x^i . The trace map t is defined by $t(z) = \sum_{i=0}^{m-1} \pi_i(zx^i)$ $(z \in C(B^{\rho})[X]/fC(B^{\rho})[X])$. Then the discriminant $\delta(f)$ is defined by

1

24 S. IKEHATA

 $\delta(f) = \det \| t(x^k x^l) \|$ $(0 \le k, l \le m-1)$. By [4, Theorem 2.1] and [3, Theorem 2.1], we see that f is $\tilde{\rho}$ -separable if and only if $\delta(f)$ is invertible in B.

Now, we shall begin our study with the following

Lemma 1.1.
$$a\delta(f) = \delta(f)\rho^{m(m-1)}(a)$$
 for all $a \in B$.

Proof. For $k \ge 0$, we set $x^k = x^{m-1}b_{m-1} + x^{m-2}b_{m-2} + \cdots + xb_1 + b_0$ $(b_i \in C(B^\rho))$. Then, we have $X^k \equiv X^{m-1}b_{m-1} + \cdots + Xb_1 + b_0 \pmod{fR}$. Since $aX^k = X^k\rho^k(a)$ $(a \in B)$, it follows that $ab_i = b_i\rho^{k-i}(a)$ and so, $a\pi_i(x^k) = \pi_i(x^k)\rho^{k-i}(a)$ $(0 \le i \le m-1)$. Since $t(x^\nu) = \sum_{i=0}^{m-1} \pi_i(x^{i+\nu})$, we obtain $at(x^\nu) = t(x^\nu)\rho^\nu(a)$. Then the assertion is now easy.

In the rest of this section, we assume that $f = X^m + X^{m-1}a_{m-1} + \cdots + Xa_1 + a_0$ is a separable plynomial. Then by [3, Theorem A], there exists $y \in R$ with deg y < m such that $\rho^{m-1}(a)y = ya$ $(a \in B)$ and $\sum_{j=0}^{m-1} Y_j y X^j \equiv 1 \pmod{fR}$, where $Y_j = X^{m-j-1} + X^{m-j-2}a_{m-1} + \cdots + Xa_{j+2} + a_{j+1}$. Under this situation, we shall prove the following

Lemma 1.2. Assume that $u \in B^{\rho}$ and $au = u\rho^{n}(a)$ (or $\rho^{n}(a)u = ua$) $(a \in B)$ with a positive integer n. Then

$$f'(\sum_{k=0}^{n-1} \rho^{*k}(y)u) = (\sum_{k=0}^{n-1} \rho^{*k}(y)u)f' \equiv nu \pmod{fR}.$$

Proof. Since $u \in B^{\rho}$ and $au = u\rho^{n}(a)$, we have uy = yu and $yu = u\rho^{*n}(y) = \rho^{*n}(y)u$. Hence $\rho^{*}(\sum_{k=0}^{n-1}\rho^{*k}(y)u) = \sum_{k=0}^{n-1}\rho^{*k}(y)u$. Since $Y_{j} \in C(B^{\rho})[X]$ ([3, Lemma 1.2]) and $f' = \sum_{j=0}^{m-1} Y_{j}X^{j}$, it follows that

$$nu \equiv \sum_{j=0}^{m-1} Y_j(\sum_{k=0}^{n-1} \rho^{*k}(y)u)X^j$$

= $f'(\sum_{k=0}^{n-1} \rho^{*k}(y)u) = (\sum_{k=0}^{n-1} \rho^{*k}(y)u)f' \pmod{fR}.$

This completes the proof.

Corollary 1.3.

$$(f' \sum_{i=0}^{m-i-1} \rho^{*k}(y)) a_i = (\sum_{i=0}^{m-i-1} \rho^{*k}(y)f') a_i \equiv (m-i)a_i \pmod{fR},$$
 for $0 \le i \le m-1$.

Proof. Since $f \in R_{(0)} \cap B^{\rho}[X]$, we have $aa_i = a_i \rho^{m-i}(a)$ $(a \in B)$ and $\rho(a_i) = a_i$ by [3, Lemma 1.3 a)].

Now, we shall prove the following theorem which contains a generalization of [3, Theorem 2.2] and a partially generalization of [5, Theorem 2.7].

Theorem 1.4. Let $f = X^m + X^{m-1}a_{m-1} + \cdots + Xa_1 + a_0$ be in $R_{(0)} \cap B^{\rho}[X]$. Assume that f is separable. If there holds one of the following conditions (1)—(6), then f is $\tilde{\rho}$ -separable:

- (1) There exists a regular element u in B and a positive integer n such that $au = u\rho^n(a)$ (or $ua = \rho^n(a)u$) ($a \in B$), and n is invertible in B.
 - (2) m(m-1) is invertible in B.
 - (3) Both a_0 and a_1 are regular elements (i.e., non-zero divisors) in B.
 - (4) a_{m-1} is a regular element in B.
 - (5) $\rho \mid Z = 1_Z$ and m-1 is invertible in B.
 - (5') $\rho \mid Z = 1_Z$ and m is in the Jacobson radical rad(B) of B.
 - (6) $\rho \mid Z = 1_Z$ and a_1 is in rad(B).

Moreover, if (2) is satisfied then every separable polynomial in $R_{(0)} \cap B^{\rho}[X]$ is $\tilde{\rho}$ -separable.

Proof. Case (1). Since $au = u\rho^n(a)$ ($a \in B$), we have $\rho^n(u) = u$ and $a\rho^{\nu}(u) = \rho^{\nu}(u)\rho^n(a)$. We set here $v = u\rho(u)\cdots\rho^{n-1}(u)$. Then $\rho(v) = v$. Since v is regular in B, so is in R/fR. Hence by Lemma 1.2, f' is invertible in R modulo fR. Thus, f is $\tilde{\rho}$ -separable.

Cases (2) and (3). By [1, Lemma 1], there exist $a, \beta \in B$ such that $a_0\alpha + a_1\beta = 1$. By Corollary 1.3, there exist $z_1, z_2 \in R$ such that $ma_0 \equiv f'z_1a_0$ and $(m-1)a_1 \equiv f'z_2a_1 \pmod{fR}$. Therefore, if both a_0 and a_1 are regular elements in B, f' is invertible in R modulo fR. Next, we assume that m(m-1) is invertible in R. Then f' is invertible in R modulo fR since

$$m(m-1) \equiv f'((m-1)z_1a_0\alpha + mz_2a_1\beta) \pmod{fR}.$$

Moreover, $\delta(f)$ is invertible in B and $a\delta(f)=\delta(f)\rho^{m(m-1)}(a)$ $(a\in B)$ by Lemma 1.1. Therefore, every separable polynomial in $R_{(0)}\cap B^{\rho}[X]$ is $\tilde{\rho}$ -separable by case (1).

Case (4). It is obvious by Corollary 1.3.

Cases (5), (5') and (6). Obviously, (5') implies (5).

We put here $y = X^{m-1}c_{m-1} + \cdots + Xc_1 + c_0$. Then we have

$$\begin{split} \sum_{j=0}^{m-1} Y_{j} y X^{j} &= \sum_{j=0}^{m-1} Y_{j} X^{j} \rho^{*j}(y) \\ &= \sum_{j=0}^{m-1} (\sum_{\nu=j}^{m-1} X^{\nu} a_{\nu+1}) \rho^{*j}(y) \\ &= a_{1} y + \sum_{\nu=1}^{m-1} \sum_{j=0}^{\nu} \sum_{\mu=0}^{m-1} X^{\nu+\mu} a_{\nu+1} \rho^{j}(c_{\mu}). \end{split}$$

Comparing the constant terms modulo fR of the both sides, we have

$$1 = a_1 c_0 + \sum_{\nu=1}^{m-1} \sum_{\mu=0}^{m-1} \sum_{j=0}^{\nu} b_{\nu+\mu} a_{\nu+1} \rho^j(c_{\mu}),$$

where b_k is the constant term of X^k modulo fR and $a_m = 1$. It is obvious that $ab_{\nu+\mu} = b_{\nu+\mu}\rho^{\nu+\mu}(a)$, $aa_{\nu+1} = a_{\nu+1}\rho^{m-\nu-1}(a)$ and $\rho^{m-1+\mu}(a)c_{\mu} = c_{\mu}a$

26 S. IKEHATA

 $(a \in B)$. Hence $b_{\nu+\mu}a_{\nu+1}\rho^j(c_\mu) \in Z$. Since $b_{\nu+\mu}$, $a_{\nu+1} \in B^\rho$ and $\rho \mid Z = 1_Z$, we have $b_{\nu+\mu}a_{\nu+1}\rho^j(c_\mu) = b_{\nu+\mu}a_{\nu+1}c_\mu$. Then we obtain

$$1 = a_1 c_0 + \sum_{\nu=1}^{m-1} \sum_{\mu=0}^{m-1} (\nu+1) b_{\nu+\mu} a_{\nu+1} c_{\mu}.$$

Moreover, one will easily see that $b_{\nu+\mu}=0$ ($\nu+\mu\leq m-1$) and $b_{\nu+\mu}\in a_0B$ ($\nu+\mu\geq m$). Since $(\nu+1)a_0a_{\nu+1}=ma_0a_{\nu+1}-(m-(\nu+1))a_{\nu+1}a_0$, it follows from Corollary 1.3 that there exists $z\in R$ such that $1\equiv a_1c_0+f'z$ (mod fR). Now, if a_1 is in rad(B) then f' is invertible in R modulo fR. Next, if m-1 is invertible in B, then $m-1\equiv (m-1)a_1c_0+(m-1)f'z$ (mod fR), and whence, f' is invertible in R modulo fR by Corollary 1.3 again. This completes the proof.

As an immediate consequence of Theorem 1.4, we have the following

Corollary 1.5. Assume that B is an algebra over a field of characteristic zero. Then, every separable polynomial which is in $R_{(0)} \cap B^{\rho}[X]$ is $\tilde{\rho}$ -separable.

Corresponding to [2, Theorem], we have the following

Corollary 1.6. Assume that B is of prime characteristic p > 0 and $\rho \mid Z = 1_Z$. Then a monic polynomial $g = X^p + Xb_1 + b_0$ in $R_{(0)}$ is separable if and only if b_1 is invertible in B.

Proof. First, we consider the case p=2. Then we have $\rho(b_0)=b_0$ by [3, Lemma 1.3]. Hence, if g is separable then it is in $B^{\rho}[X]$ by [3, Proposition 3.1]. Moreover, if b_1 is invertible in B, then $b_1=b_1^{-1}b_1^2=b_1^{-1}b_1\rho(b_1)=\rho(b_1)$, and so $g\in B^{\rho}[X]$. Thus, the assertion follows from Theorem 1.4 and [3, Theorem 2.1]. Next, we consider the case p>2. Then we have $g\in B^{\rho}[X]$ by [3, Remark 1.4]. Hence the assertion follows from Theorem 1.4 and [3, Theorem 2.1].

2. \widetilde{D} -separable polynomials. In this section, we assume that R = B[X;D]. The following theorem is a sharpening of [3, Theorems 2.7 and 4.4].

Theorem 2.1. If there holds one of the following conditions (1) and (2), then every separable polynomial in $B[X;D]_{(0)}$ is \tilde{D} -separable.

- (1) $(b_n)_r D^n + (b_{n-1})_r D^{n-1} + \dots + (b_1)_r D = I_{b_0}$ with some $b_i \in B^D$ $(0 \le i \le n)$ where b_1 is invertible in B.
 - (2) $B[X;D]_{(0)}$ contains at least one \tilde{D} -separable polynomial.

Proof. Let f be a separable polynomial of degree m. Then by [3, Theorem A] there exists $y \in R$ with deg y < m such that ay = ya ($a \in B$) and $\sum_{j=0}^{m-1} Y_j y X^j \equiv 1 \pmod{fR}$, where $Y_j = X^{m-j-1} + X^{m-j-2} a_{m-1} + \cdots + X a_{j+2} + a_{j+1}$.

Case (1). Since $b_i \in B^D$ ($0 \le i \le n$), we have $(b_n)_r D^{*n} + \dots + (b_1)_r D^* = I_{b_0}^*$. Hence

$$0 = yb_0 - b_0 y = \sum_{i=1}^n D^{*i}(y)b_i = D^*(\sum_{i=1}^n D^{*i-1}(y)b_i).$$

We put here $u = \sum_{i=1}^n D^{*i-1}(y)b_i$. Then Xu = uX and $Y_ju = uY_j$ ([3, Lemma 1.2]). Therefore, noting $\sum_{j=0}^{m-1} Y_j D^*(y) X^j \equiv 0 \pmod{fR}$, we have

$$b_1 \equiv \sum_{i=0}^{m-1} Y_i (\sum_{i=1}^n D^{*i-1}(y) b_i) X^j$$

$$\equiv \sum_{i=0}^{m-1} Y_i u X^j = f' u \neq u f' \pmod{fR}.$$

Thus, f' is invertible.

Case (2). Let $g=X^n+X^{n-1}d_{n-1}+\cdots+Xd_1+d_0$ be \tilde{D} -separable polynomial in R. Then by [3, Theorem 2.1], g' is invertible in $C(B^D)[X]$ modulo $gC(B^D)[X]$. Therefore, there exists an element $h=\sum_{i=0}^{n-1}X^ic_i$ in $C(B^D)[X]$ such that $g'h\equiv 1\pmod{gC(B^D)[X]}$. Comparing the constant terms modulo $gC(B^D)[X]$ of the both sides, we have

$$1 \equiv \sum_{k=0}^{n-1} \sum_{i=0}^{n-1} (k+1) h_{k+i} d_{k+1} c_i,$$

where $h_{\nu} \in C(B^{D})$ is the constant term of X^{ν} modulo $gC(B^{D})[X]$. Now, by [3, Lemma 1.6], we have

$$d_{k}a - ad_{k} = \sum_{\nu=k+1}^{n} {\binom{\nu}{k}} D^{\nu-k}(a) d_{\nu} \ (a \in B) \ \text{and} \ d_{\nu} \in B^{D}.$$

We set here $v = \sum_{\nu=k+1}^{n} {\binom{\nu}{k}} D^{*\nu-k-1}(y) d_{\nu}$. Then, by making use of the same methods as in the proof of (1), we see that Xv = vX and $Y_{j}v = vY_{j}$. Therefore, we obtain

$$(k+1)d_{k+1} \equiv \sum_{j=0}^{m-1} Y_j(\sum_{\nu=k+1}^n {\binom{\nu}{k}} D^{*\nu-k-1}(y)d_{\nu})X^j$$

$$\equiv f'v \equiv vf' \pmod{fR}.$$

Since $1 = \sum_{k=0}^{n-1} \sum_{i=0}^{n-1} (k+1) d_{k+1} h_{k+i} c_i$, we conclude that f' is invertible in R modulo fR. This completes the proof.

REFERENCES

- [1] S. IKEHATA: On a theorem of Y. Miyashita, Math. J. Okayama Univ. 21 (1979), 49-52.
- [2] S. IKEHATA: A note on separable polynomials in skew polynomial rings of derivation type, Math. J. Okayama Univ. 22 (1980), 59—60.
- [3] S. IKEHATA: On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ. 22 (1980), 115—129.

28 S. IKEHATA

- [4] T. NAGAHARA: On separable polynomials over a commutative rings II, Math. J. Okayama Univ. 15 (1972), 149—162.
- [5] T. NAGAHARA: On separable polynomials of degree 2 in skew polynomial rings, Math. J. Okayama Univ. 19 (1976), 65—95.
- [6] T. NAGAHARA: A note on separable polynomials in skew polynomial rings of automorphism type, Math. J. Okayama Univ. 22 (1980), 73-76.

DEPERTMENT OF MATHEATICS OKAYAMA UNIVERSITY

(Received November 11, 1982)