Mathematical Journal of Okayama University

Volume 20, Issue 1

1978

Article 3

MARCH 1978

Note on commutativity of rings

Isao Mogami* Motoshi Hongan[†]

^{*}Tsuyama College of Technology

[†]Tsuyama College of Technology

NOTE ON COMMUTATIVITY OF RINGS

ISAO MOGAMI and MOTOSHI HONGAN

Throughout R will represent a ring. Following [4], R is called a left (resp. right) s-unital ring if for each $a \in R$ there exists some $e \in R$ such that ea = a (resp. ae = a). Given $a, b \in R$, [a, b] will denote the commutator ab - ba. An element $a \in R$ is defined to be almost central if for each $b \in R$ there exist positive integers n and m such that

(1)
$$(ab)^k = a^k b^k$$
, $k = n, n+1, n+2$;

(2)
$$(ba)^h = b^h a^h, \qquad h = m, m+1, m+2.$$

In this note, we shall prove the following:

Theorem. Let R be (left and right) s-unital. If $a \in R$ is almost central, then for each $b \in R$ there exists a positive integer s such that $a^{\epsilon}[a, b] = 0 = [a, b]a^{\epsilon}$.

As application of the theorem, we shall improve also the main results of [1], [2] and [3] (Corollary 2).

In advance of proving our theorem, we state two lemmas.

Lemma 1. (a) If F is a finite subset of an s-unital ring R, then there exists an element e such that ea = ae = a for all $a \in F$.

- (b) If a left s-unital ring R contains a regular element a, then R contains 1.
- *Proof.* (a) By [4, Theorem 1], there exist elements e' and e'' such that e'a = a and ae'' = a for all $a \in F$. Then, one will easily see that the element e = e' + e'' e''e' has the property requested.
- (b) Choose an element e with ea = a. Since (be b) a = 0 for all $b \in R$, e is a right identity of R. Accordingly, we obtain also a(eb b) = 0, namely, eb = b.

Lemma 2. Let $a \in R$ be almost central, and $b \in R$.

- (a) Assume that R is left (resp. right) s-unital. If ab = 0 (resp. ba = 0) then $ba^s = 0$ (resp. $a^sb = 0$) with some positive integer s.
 - (b) Assume that R is a ring without non-zero nil right (resp. left)

1

¹⁾ This lemma is due to Prof. H. Tominaga who kindly permitted us to cite it here. We are indebted to him for his helpful suggestions and advices.

22

ideals. If $a^sb = 0$ (resp. $ba^s = 0$) for some positive integer s, then ab = 0 (resp. ba = 0). In particular, if R is right (resp. left) s-unital and a is nilpotent then a = 0.

Proof. (a) By [4, Theorem 1], there exists an element e such that ea = a and eb = b. Since $(ba)^2 = 0$, there holds $b^{m+1}a^{m+1} = 0$ by (2). Now, choose a positive integer p such that

$$\{(b+e)\ a\}^h = (b+e)^h a^h, \quad h=p, \ p+1, \ p+2.$$

Noting that ab = 0, we have $\{(b+e)a\}^h = ba^h + a^h = (b+e)a^h$. Hence,

$$\{(b+e)^h-(b+e)\}\ a^h=0, \quad h=p, \ p+1, \ p+2$$

and
$$b^{m+1} a^{m+p+1} = 0$$
. If $b^t a^{m+p+1} = 0$ for some $t > 1$, then
$$0 = b^{t-2} [\{(b+e)^{p+1} - (b+e)\} a^{p+1} a^m - \{(b+e)^p - (b+e)\} a^p a^{m+1}]$$
$$= b^{t-2} (b+e)^p b a^{m+p+1} = b^{t-1} a^{m+p+1}.$$

This means $ba^{m+p+1} = 0$.

(b) Suppose s>1. For any $c \in R$, there is an integer t>1 such that $\{a(a^{s-2}bc)\}^t=a^t(a^{s-2}bc)^t=a^{t-2}a^sbc(a^{s-2}bc)^{t-1}=0$. Hence, $a^{s-1}bR$ is a nil right ideal, whence it follows $a^{s-1}b=0$. This means evidently ab=0.

Proof of Theorem. By Lemma 1 (a), there exists an element e such that ea = ae = a and eb = be = b. The first two equations of (1) induce $a^n[a, b^n]b = 0$, and the last two equations of (1) do $a^{n+1}[a, b^{n+1}]b = 0$. By Lemma 2 (a), we have then $[a, b^n]ba^q = 0$ and $[a, b^{n+1}]ba^q = 0$ for some positive integer q. Hence, $[a, b]b^{n+1}a^q = [a, b^{n+1}]ba^q - b[a, b^n]ba^q = 0$. Again by Lemma 2 (a), it follows $a^r[a, b]b^{n+1} = 0$ for some positive integer r. Considering b + e instead of b, we see that $a^s[a, b](b + e)^{n+1} = 0$ for some $s \ge r$ and some p > 0. Since $a^s[a, b]b^n = a^s[a, b]$ ($b + e)^{n+1}b^n = 0$, we obtain eventually $a^s[a, b] = a^s[a, b](b + e)^{n+1} = 0$. Now, our assertion is evident by Lemma 2 (a).

Corollary 1. (a) If R is an s-unital ring without non-zero nil one-sided ideals, then every almost central element is central.

- (b) If R is s-unital and a regular element $a \in R$ is almost central, then R contains 1 and a is central.
- (c) If R contains 1, and both a and a + 1 are almost central, then a is central.
- *Proof.* (a) Let $a \subseteq R$ be almost central, and b an arbitrary element of R. Combining Theorem with Lemma 2 (b), we readily obtain

- [a, b]a = 0. Since [a, b]ca = [a, bc]a b[a, c]a = 0 for any $c \in R$, we see that [a, b]R[a, b] = 0. This means that [a, b]R is nilpotent, and hence [a, b] = 0.
- (b) By Lemma 1 (b), R contains 1. Furthermore, by Theorem and the hypothesis, [a, b] = 0 for any $b \in R$.
- (c) Let b be an arbitrary element of R. By Theorem, $a^s[a, b] = 0$ and $(a+1)^t[a+1, b] = 0$ for some non-negative integers s, t. If s > 0, then $0 = a^{s-1}(a+1)^t[a+1, b] = a^{s-1}[a, b]$. Hence, [a, b] = 0.

Corollary 2 (cf. [1, Theorems 1, 2], [2, Theorem] and [3, Theorem]). Assume that for each $a, b \in R$ there exists a positive integer n such that

$$(ab)^k = a^k b^k,$$
 $k = n, n + 1, n + 2.$

- (a) If R is s-unital, then R is commutative.
- (b) If R is semiprimitive, then R is commutative.
- *Proof.* (a) Let a and b be arbitrary elements of R, and choose an element e with ea = ae = a and eb = be = b (Lemma 1 (a)). By Theorem, $a^s[a, b] = 0$ and $(a + e)^t[a + e, b] = 0$ for some positive integers s, t. If s > 1, then $0 = a^{s-1}(a+e)^t[a+e, b] = a^{s-1}[a, b]$. This means a[a, b] = 0. Thus, we obtain [a, b] = (a+e)[a+e, b] a[a, b] = 0.
- (b) As is shown in the proof of [1, Theorem 1], R is a subdirect sum of division rings. Hence R is commutative by (a).
- Remark 1. Let $a, b \in R$. Assume that $a^s[a, b] = 0 = [a, b]a^s$ for some positive integer s (cf. Theorem). Then, by $[a^k, b] = a^{k-1}[a, b] + [a^{k-1}, b]a$, one will easily see that $a^s[a^k, b] = 0 = [a^k, b]a^s$ for any positive integer k. Hence, $a^{s+k}b = a^sba^k$ and $ba^{s+k} = a^kba^s$, in particular, $a^{2s}b = a^sba^s = ba^{2s}$. Moreover, if s > k > 0 then $a^{s+k}ba^{s-k} = a^sba^s = a^{2s}b = ba^{2s}$.

Remark 2. Let K be a field, and $R = \sum_{i \geq j} Ke_{ij}$ where e_{ij} 's are matrix units of $(K)_4$. Then every element of the radical $J = \sum_{i \geq j} Ke_{ij}$ is almost central. We see therefore that almost central quasi-regular elements of R need not be central, and that Corollary 2 (a) is not true in general for rings without 1.

REFERENCES

- [1] A. KAYA: On a commutativity theorem of Luh, Acta Math. Acad. Sci. Hungar. 28 (1976), 33-36.
- [2] A. KAYA and C. Kog: Remarks on some commutativity theorems, Rev. Fac. Sci. Univ. Istanbul, Ser. A, 30 (1976), 1—3.

I. MOGAMI and M. HONGAN

24

- [3] S. LIGH and A. RICHOUX: A commutativity theorem for rings, Bull. Austral. Math. Soc. 16 (1977), 75-77.
- [4] H. Tominaga: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

TSUYAMA COLLEGE OF TECHNOLOGY

(Received August 1, 1977)