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Sugawara: H-spaces and spaces of 1oops

H-SPACES AND SPACES OF _LOOPS
MASAHIRO SUGAWARA

1. Recently, H. Samelson has shown that there exists an H-homo-
morphism of G into the space A (B) of loops in B for an universal bundle
(E, B, G, p) with a group G [3, Theorem I|; and, as an application of
this result, the map (x, ¥) = x¥x~'y~! is not homotopic to the constant
map where x and y run through all the quaternions of norm 1 [3,
Theorem II]. Our purpose of this note is to show that it holds the ana-
logous theorem which assure the existence of an H-homomorphism of an
H-space F into A (Y) for some kind of F and Y; and, applying to the
case F=2S; the 7-sphere in Euclidean 8-space which has an H-structure
by the multiplications of Cayley numbers, there is an H-homomorphism
of S; into A (S5 €) (S; %7 e is the space obtained from 8-sphere S; by
attaching 16-cell ¢ under the Hopf map p:S,,— S; as attaching map).
Therefore the same theorem of [3, Theorem II] for x, ¥ running through
Cayley numbers of norm 1 is obtained by similar processes, as an answer
to the question raised in [3].

2. We first notice the following fact for a fibre space (E, B, F, p)
(E is a fibre space, with base space B, fibre F and projection p: E— B
(cf. [1], Ch. V for the definition)), analogous to Proposition I of [3].
Let 4 (X) be the space of loops in the space X with a base point x, € X,
then it is known that it is an H-space (cf. § 3 below) by the natural multi-
plication (composition of loops) and, on the other hand, there is a
natural isomorphism T between homotopy groups =; (X) and =_, (.1 (X))
(for examples, T is given by (T¢) (%, »+, Xi-1) () = ¢ (X, =+, X1y, 1) for
¢:(I', I'Y—> (X, x,), I' = the product of i-copies of I = [0,1], and I'=
its boundary), (cf. [4], [2]).

Proposition 1. In the fibre space (E, B, F, p), suppose that the
fibre F, considering as the fibre over a point b, B, is contractible to
a point x, € F in E (with x, stationary throughout the contraction).
Then there exists a (continuous) map f of F into A(B) (loops having
b, as a base point), and f induces fiu: 7z (F)— = (A(B)) such that o -
D' o T o fy==the identity map, where 6 is the boundary homomor-
phism",

1) As well known, %i4+1(B) == mi(F)+ ®i+1(E) by the hypothesis of this proposi-
tion (cf. e.g.[5], 17. 10. Theorem), and the last equation implies that the map T o f4
gives an induces embedding of 7:(F) onto direct summand of mi(B).
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Proof. Let k: F X I — E be the contraction giving by hypothesis,
then the map f is defined by

fxy(=p o k(x, 1) forx= F, it 1.

If we take ¢ : (I, I —( F, x;) representing an clement « € 7, (F), the
map ¢ : (I*', I', J)> (E, F, x,) defined by & (x, 8)="Fk(¢ (x), 1) for
(x, e I'x I=I""(J'=(I'"" — ) u IY represents 3 € m (E, F)
which satisfies 4 (3) == w. Because (T (p=¢) (x) ()=pe- k(g (x), )=
(f = ¢ () (), T < ps(3)==fx(a) and the above property is obtained.

3. As usually, we say that a topological space X is an H-space
(have an H-structure) if the following condition is satisfied :

(1) There exists a multiplication ;2 in X, i.e. a (continuous) map s
of X X X into X.

(2) 4 has a homotopy-unit x, € X which means u (x,, x,) = %, and
the two maps X—= (%, x,) and x— p(x, x) of X into itself are both
homotopic to the identity map (with x, stationary).

(3) There is an inversion, i.e. a map ¢ of X into itself such that
a (%) =%, and the two maps x— p (%, ¢ () and x— s (s (x), x) are both
homotopic to constant (with x, stationary).

(We often write xy or x-y instead of 4 (%, ¥) and x~' instead of & (x}.)

We notice here that the homotopy-associative condition is not pre-
supposed, and so, in general, the two maps (x, ¥, 2)— u (p (%, ¥), 2) and
(%, ¥, 2) = p(x, # (¥, 2)) are not homotopic to each other necessarily.

A map f of an H-space into second H-space Y is said to be an H-
homomorphism, if f and both the multiplications and inversions are
homotopy-commutative respectively, i. e. two maps (x, ¥) = ./ ( f(x), ()
and (%, ¥) > fo pu(x, ) (x— fea(x) and x— 5> f(x)) of X X Xinto Y (X
into Y) are homotopic where 2 and p'(s and ') are multiplications
(inversions) of X and Y respectively.

4. In this note we consider the following conditions for fibre spaces
(E, B, F, p):

(I) F is an H-space with multiplication .

(I There exists a subset E’ of E and a map ji of E' X F into E
such that E’ contains F (considered as a fibre over a point b, = B) and
-2 is equal to # on F i.e. | F X F==p, and finally 7: maps a point to
that contained in the same fibre i.e. p = 7 (%, x) = p (1) for any u € E’
and x € F. (We often write #x or #-x instead of 7z (%, x) if no confusion.)

In the case that the condition (1) is satisfied, (II) holds if we take

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/2
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E’=F or, more generally, E'=any subset of p~' (V), containing F,
where V is a subset of B containing b, such that p~' (V) is homeomorphic
to the product V' X F. We say that these cases are inessential ; and'it is
a question, for any given fibre spaces, whether a subset E’ could be
taken essentially or not. .

Simple examples of essential cases are principal fibre bundles. In
these cases, E’ can be taken the whole of E as is well known.

5. Another essential example is, as. using afterwards, the fiber
bundle (S;;, Ss S;, p). where S; is the i-sphere in Euclidean (¢ + 1)-space
and p: Sy, — Ssis the Hopf map (cf., for examples, [5], 20.6). Let C be
the (non-associative) division algebra of all Cayler numbers, and sct
Sp=1i(c,d)|¢c,de C and |c|* +|d|" =1}, Ss={c|c € Cor ¢ = oo the
point at infinity} and S;={c|c & C and [c|=1}, then thc Hopf map p
is given by p(c,d)=cd'if d5=0, = o0 if d=10. Setting E' == {(c, d)|
(c,dye S;; and ¢+ 0 or (¢,d)=1(0, 1)}, it contains the fibre over oo :
$(c, 0)||c|=1} whom we identify with S;. If we consider the mutiplica-
tion ;2 of Cayley numbers in S;, it becomes an H-space, and hence (1) is
satisfied. The map un: E' X S; — Sj; can be defined as follows :

zUe, d), c’y=(c-c’, (dc™") + (cc")), if ¢540,
72((0,1), ¢’y = (0, ¢").

The continuity of % at a point (¢, d) with ¢+ 0 is clear. As the norm of
e=(dc™") - (cc’) —c¢'=(dc™) - (c¢’) — ¢ (cc’W=((d — 1) -c') - (cc’) is
equall to |d — 1]|c¢’|, if (¢, d) converges to (0, 1), |e| converges to 0 and
hence e converges to 0. This shows that 7 is continuous at (0,1). 7z|S;
X S; =y is immediate from definitions. If c=0and d50, p-> ((c, d),
¢')=(cc’) - ({(dc™") (cc")) = (ec’) - ((cc’) ' (de™") = (dc™ ") =cd™'=p(c,
d); if c0, p=p((c,0),¢')=(cc’,0)=oc0o=p(c, 0); and finally p o1
(0, 1), ¢') = 0=p(0, 1). Therfore (II) is satisfied by the above E’ and p;
and so the bundle (Sy;, Ss, S;, p) is an essential example, as it is clear
D (E') =S,

By an essentially similar reason, the bundles (S,, S,, S;, p)and (S.,
S., Si, p)? are also essential.

6. Now we state our results. :

Theorem 1. Let X, E, E', F. Y, B be given spaces such that X O

1) The associativity of the subalgebra of C generated by two elements is known,
cf. Dickson, Linear Algebra, Cambridge Univ. Press, 1914.
2) For these bundles, cf. (5], 20.1—20.5.
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EDE DF, Y3 B, and E is contractible to a point in X, and there
exists amap p: (X, E, F)—> (Y, B, b)) (b, € B) satisfying the following
conditions :

(1) (E, B, F, p|E) is a fibre space and it stisfies the conditions
(1) and (11) and the given E' is taken as the subset of (III).

(2) [Fis contractible in E' to a homotopy-unit x, F (with x, sta-
tionary throitghout the contraction).

Then there exists a map f of F into the space 1 (B) of loops in B
with base point b, such that the composition io f: F— A(Y) of f and
the inclusion map i:d(B)— A(Y) is an H-homomorphism.

Proof. We proof this result by an essentially same manner to proofs
of Theorem I of [3]. The resulting map f is the map giving in proposi-
tion 1 by making use of the contraction %2 in E’, i.e. 2 (F X 1) CE".
Let p: F— F, 0<t<1, be the homotopy between ,(X)== 1 (%, x)
=%-x and g, = tl_le identity map giving by (2) of §3, and we define a
map P of F X F X I’into E by:

Xo, for t=1, 0<u<],
Xy, for t==0, 0<lu<1,
E(x-y1), for u=0, 0Lt
@ (x, 9,8, 1) == 1
E(x, 3t -y, for =1, 0<t<§,
1
a1 (Y), for =1, §<t<§,
By, 3t—2),  for u==1, §.<t<1,

for any x, y € F, where - of the fourth row is = of (II) and the others are
¢« the multiplication in F. It is clearly continuous. We extend this map
#toa map @ of F X Fx I’into X: for each (x, ¥) € F X F, we map

the center (—;—, %) of I into * € X to which E is contractible in X by

—%—, -‘%-) on the
path, described by the point @ (x, ¥, t, #) under the contraction of E to
*, From this map, we obtain a-map # of F X F x I into 4 (Y) (loops
with the base point b,) as usually: ¥ (x,y, u) ({}=D - c/7(x, ¥, i u), as
@(x, 91, u)e Ffort=20,1. Thus we have a homotopy between #, and

Yy FX F— 1Y), defined by #u(x, ¥) =7 (x,y,u) (0<«<1). By

the hypothesis, and the segment from any (£, %) I*to (

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/2
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the definitions, #,(x, ¥) is identical with i - f(x-y. On the other hand,
by the properties ¢ (x, y,¢,1) € F for % <tL % and p ((z, y)) = ﬁ(zj
forze E'and y € F(p==p| E), ¥, (x, ») is identical with

Po ((S(x) - ) - SN =((iof(x))-e)+ (iof(y),

where - are the multipications in 4 (B) and A(Y) (i is clearly H-homo-
morphic), and e,, is the constant loop (i. e. e, (¢) = &, for all 0 ¢ < 1) of
A(B) and /A (Y) respectively. It it clear that the last map is homotopic
to the map #.: F X F— (YY) such that #.(x, )= (i< f(x) - (i> f(y)
for x, ye F; and so #, and #. are homotopic. Hence the homotopy-
commutativity of the diagram:

FxF — " F
l(i:f)xu':f)Tiof
DY) X A(Y)—-> A(Y)

is proved.

The homotopy-commutativity of ¢- f and the inversion can be
treated similarly, and can be proved strictly same to §5 of [3]. There-
fore we shall omit its proofs, and finish the proofs of Theorem 1.

Remark. 1f E’is connected, the contractible condition to x, in (2)
is an easy consecquence of a contractibility to any point of E’, and, if F
is a CW-complex and E’ is simply connected in addition, a contraction
being x, stationary can be constructed from any contraction, by making
use of Homotopy Extension Theorem (cf. e. g. [1], Ch. VII, Theorem 1.4).

7. We apply above results to the fibre space (S;;, S, S;, p) treated
in.§5. Let " be an (open) 16-cell bounded by the 15-sphere S;; in Eucli-
dean 16-space, and S; 7 e'° the space constructed from S; attaching e"
by the Hopf map p:S;;— Ss as the attaching map (cf. e. g. [1], Ch. VI,
§2). We denote by p the characteristic map (e", Sy)— (Ss% ", Ss)
which is a homeomorphism on €* and p|S,.==p (" == closure of '),
Then, for X==¢", E=S8% Y ==S:Ye", B=Ss;and p, the hypotheses
of Theorem 1 is fulfilled. ¢" is clearly contractible and the condition (1)
is seen in §5. The condition (2) is also immediate from Remark of §6
and the fact that E’ (giving in §5) itself is contractible to the point (0, 1)
by arcs of great circles. Hence, by Theorem 1, we obtain the following
result:

Proposition 2. There exists a (continuous) map f of S; into . (Ss)

v

Produced by The Berkeley Electronic Press, 1955



Mathematical Journal of Okayama University, Vol. 5[1955], Iss. 1, Art. 2

10 MASAHIRO SUGAWARA

such thal the composed map g =1i-f:5:— A4(S:5e") is an H-homo-
morphism with respect to the multiplication of Cayley numbers and
loops respectively, where i: A (Ss)— A4 (S5 e"™) is the inclusion map.

8. It folds the following properties for this map i f;

Proposition 3. The map g =i-f of Proposition 2 induces an
isomorphism of =(S;) onto =, (A(S;5e") for i< 20.

Proof. By Proposition 1, f*:2:(S;)— 7,(4(Ss)) is an isomorphism
into. In the following diagram

ix
Palmiai(Si)) + Exi(S:) = 71(Ss) — 7514-1(53\,,/916)
* Ty

7 S7) — m(..](ss)) _, m(d(Ss‘,,’e“‘)

where E is the suspension homomorphism, commutative relations hold"
and T are isomorphic onto for all ¢, Therefore it is sufficient to show
that kernel 7y (in the upper line) = px(mi41(S);)) and iy is onto. We con-
sider now the following diagram:

0 ix
et = T:s+:(ss\,;}emy Ss) = 743(Ss) — Ht+|(Ss\:em) > e

7142(€"% Si) = 7141(Sis)

where the upper line is a homotopy sequence of the pair (Ss%/e", S;); the
commutative relation holds clearly. The map p is isomorphic onto for
2<i+2<22 by Theorem 2.14 of Chapter VI of [1], and & (in the
lower line) is evidently an isomorphism for all i. Hence, for i<C 20,
kernel i, = image 6 = image p%, and 9 (in the upper line) is isomorphic
into because py is. By the exactness, 74 is onto, and therefore Proposi-
tion 3 is obtained.

9. We now come to the situation to solve the problem: Are the
Cayley numbers of norm 1 homotopy-abelian ?

Theorem 2. The map »:S; X S;— S;, defined by :(x,y)=xy x~"
¥y~ is not homotopic fo a constant; S; is not homotopy-commulative.

1) The commutativity in the triangle follows from the fact that 7 of, is the
induced embedding of mi(S7) into ®i+1(Se) = 7i(S7) + ®i+1(S15), cf. footnote 1) of p.
5, and so is the suspension by precisely analogous arguments of Theorem 3.1 of [1],
Ch. VI.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/2
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Proof of this theorem is now essentially same to it of Theorem II of
[3], and we follow proofs briefly. By Proposition 2, to obtain the above
result, it is sufficient to prove the fact that d: S; X S; = A(S;5/e") giving
by d(x, ¥) = (g(x) - g(») - (g(x)"" - g(y)~") is not homotopic to a constant
map. Let « € 7(S;5e") be represented by the inclusion map 7, and s
denote the standard map of (I", I onto (S; X S;, S;\VVS:), then T g,
a] € z,(A(S:e") is represented, up to sign, by d -s, by the processes
of [2] and Lemma 2 of [3] ({«, «] is so-called Whitehead product of «).
This reduces the problem to the question whether [u, «] € 7,:(S:e") is
not zero. This clement is clearly the image of [:4, ¢x] under 7, (¢ is the
homotopy class of identity Si—S;), and it is known that [+, ¢s] —2u5 is a
suspension of a non-zero clement of =z(S;) (vs==the element represented
by the Hopf map) (cf. [6], Theorem (4.1)). Therefore we have [a, «]=
Ty Les ts] == 74 [¢s, cs] — 2us]) is not zero, by the properties of i, studied in
proofs of Proposition 3. Theorem III is thus obtained.

Remark. Similarly, we can apply Theorem 1 to the bundle (S;, S,
S:, p) and the properties analogous to Propositions 2 and 3 consist.
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