Mathematical Journal of Okayama University

Volume 5, Issue 1 1955 Article 2
OCTOBER 1955

H-spaces and spaces of loops

Masahiro Sugawara*

^{*}Okayama University

H-SPACES AND SPACES OF LOOPS

MASAHIRO SUGAWARA

- 1. Recently, H. Samelson has shown that there exists an H-homomorphism of G into the space A(B) of loops in B for an universal bundle (E, B, G, p) with a group G [3, Theorem I]; and, as an application of this result, the map $(x, y) \to xyx^{-1}y^{-1}$ is not homotopic to the constant map where x and y run through all the quaternions of norm 1 [3, Theorem II]. Our purpose of this note is to show that it holds the analogous theorem which assure the existence of an H-homomorphism of an H-space F into A(Y) for some kind of F and Y; and, applying to the case $F = S_7$ the 7-sphere in Euclidean 8-space which has an H-structure by the multiplications of Cayley numbers, there is an H-homomorphism of S_7 into $A(S_8 \overset{\smile}{\sim} e^{16})$ ($S_8 \overset{\smile}{\sim} e^{16}$ is the space obtained from 8-sphere S_8 by attaching 16-cell e^{16} under the Hopf map $p: S_{16} \to S_8$ as attaching map). Therefore the same theorem of [3, Theorem II] for x, y running through Cayley numbers of norm 1 is obtained by similar processes, as an answer to the question raised in [3].
- 2. We first notice the following fact for a fibre space (E, B, F, p) (E is a fibre space, with base space B, fibre F and projection $p: E \rightarrow B$ (cf. [1], Ch. V for the definition)), analogous to Proposition I of [3]. Let A(X) be the space of loops in the space X with a base point $x_0 \in X$, then it is known that it is an H-space (cf. § 3 below) by the natural multiplication (composition of loops) and, on the other hand, there is a natural isomorphism T between homotopy groups $\pi_i(X)$ and $\pi_{i-1}(A(X))$ (for examples, T is given by $(T\varphi)(x_1, \dots, x_{i-1})(t) = \varphi(x_1, \dots, x_{i-1}, t)$ for $\varphi: (I^i, \dot{I}^i) \rightarrow (X, x_0)$, I^i = the product of i-copies of I = [0, 1], and \dot{I}^i its boundary), (cf. [4], [2]).

Proposition 1. In the fibre space (E, B, F, p), suppose that the fibre F, considering as the fibre over a point $b_0 \in B$, is contractible to a point $x_0 \in F$ in E (with x_0 stationary throughout the contraction). Then there exists a (continuous) map f of F into A(B) (loops having b_0 as a base point), and f induces $f_*: \pi_t(F) \to \pi_t(A(B))$ such that $\partial \circ p_*^{-1} \circ T^{-1} \circ f_* =$ the identity map, where ∂ is the boundary homomorphism¹⁾.

¹⁾ As well known, $\pi_{i+1}(B) \approx \pi_i(F) + \pi_{i+1}(E)$ by the hypothesis of this proposition (cf. e.g. [5], 17. 10. Theorem), and the last equation implies that the map $T \circ f_*$ gives an induces embedding of $\pi_i(F)$ onto direct summand of $\pi_i(B)$.

MASAHIRO SUGAWARA

Proof. Let $k: F \times I \to E$ be the contraction giving by hypothesis, then the map f is defined by

$$f(x)(t) = p \circ k(x, t)$$
, for $x \in F$, $t \in I$.

If we take $\varphi:(I^i,\ \dot{I}^i)\to (F,\ x_0)$ representing an element $a\in\pi_l(F)$, the map $\overline{\varphi}:(I^{l+1},\ I^i,\ J^i)\to (E,\ F,\ x_0)$ defined by $\overline{\varphi}(x,\ t)=k(\varphi(x),\ t)$ for $(x,\ t)\in I^i\times I=I^{l+1}(J^i=(\dot{I}^{l+1}-I^i)\cup\dot{I}^i)$ represents $\beta\in\pi_{l+1}(E,\ F)$ which satisfies $\hat{\sigma}(\beta)=\alpha$. Because $(T(p\circ\overline{\varphi})(x))(t)=p\circ k(\varphi(x),\ t)=(f\circ\varphi(x))(t),\ T\circ p_*(\beta)=f_*(a)$ and the above property is obtained.

- 3. As usually, we say that a topological space X is an H-space (have an H-structure) if the following condition is satisfied:
- (1) There exists a multiplication μ in X, i. e. a (continuous) map μ of $X \times X$ into X.
- (2) μ has a homotopy-unit $x_0 \in X$ which means $\mu(x_0, x_0) = x_0$ and the two maps $x \to \mu(x_0, x_0)$ and $x \to \mu(x_0, x)$ of X into itself are both homotopic to the identity map (with x_0 stationary).
- (3) There is an inversion, i.e. a map σ of X into itself such that $\sigma(x_0) = x_0$ and the two maps $x \to \mu(x, \sigma(x))$ and $x \to \mu(\sigma(x), x)$ are both homotopic to constant (with x_0 stationary).

(We often write xy or $x \cdot y$ instead of $\mu(x, y)$ and x^{-1} instead of $\sigma(x)$.) We notice here that the homotopy-associative condition is not presupposed, and so, in general, the two maps $(x, y, z) \rightarrow \mu(\mu(x, y), z)$ and $(x, y, z) \rightarrow \mu(x, \mu(y, z))$ are not homotopic to each other necessarily.

A map f of an H-space into second H-space Y is said to be an H-homomorphism, if f and both the multiplications and inversions are homotopy-commutative respectively, i. e. two maps $(x, y) \to \mu'(f(x), f(y))$ and $(x, y) \to f \circ \mu(x, y)$ $(x \to f \circ \sigma(x))$ and $x \to \sigma' \circ f(x)$ of $X \times X$ into Y(X) into Y are homotopic where μ and $\mu'(\sigma)$ and σ' are multiplications (inversions) of X and Y respectively.

- 4. In this note we consider the following conditions for fibre spaces (E, B, F, p):
 - (I) F is an H-space with multiplication μ .
- (II) There exists a subset E' of E and a map $\overline{\mu}$ of $E' \times F$ into E such that E' contains F (considered as a fibre over a point $\mathbf{b}_0 \in B$) and $\overline{\mu}$ is equal to μ on F i. e. $\overline{\mu} \mid F \times F = \mu$, and finally $\overline{\mu}$ maps a point to that contained in the same fibre i. e. $p = \overline{\mu}(u, x) = p(u)$ for any $u \in E'$ and $x \in F$. (We often write ux or $u \cdot x$ instead of $\overline{\mu}(u, x)$ if no confusion.)

In the case that the condition (I) is satisfied, (II) holds if we take

6

E'=F or, more generally, E'= any subset of $p^{-1}(V)$, containing F, where V is a subset of B containing b_0 such that $p^{-1}(V)$ is homeomorphic to the product $V\times F$. We say that these cases are inessential; and it is a question, for any given fibre spaces, whether a subset E' could be taken essentially or not.

Simple examples of essential cases are principal fibre bundles. In these cases, E' can be taken the whole of E as is well known.

$$\overline{\mu}((c, d), c') = (c \cdot c', (dc^{-1}) \cdot (cc')), \quad \text{if } c \neq 0,
\overline{\mu}((0, 1), c') = (0, c').$$

The continuity of $\overline{\mu}$ at a point (c,d) with $c \neq 0$ is clear. As the norm of $e = (dc^{-1}) \cdot (cc') - c' = (dc^{-1}) \cdot (cc') - c^{-1} \cdot (cc')^{1)} = ((d-1) \cdot c^{-1}) \cdot (cc')$ is equall to |d-1||c'|, if (c,d) converges to (0,1), |e| converges to (0,1), |e| converges to (0,1). $\overline{\mu} \mid S_7 \times S_7 = \mu$ is immediate from definitions. If $c \neq 0$ and $d \neq 0$, $p \cdot \overline{\mu}$ $((c,d),c') = (cc') \cdot ((dc^{-1})(cc'))^{-1} = (cc') \cdot ((cc')^{-1} \cdot (dc^{-1})^{-1}) = (dc^{-1})^{-1} = cd^{-1} = p(c,d)$; if $c \neq 0$, $p \cdot \overline{\mu}$ $((c,0),c') = (cc',0) = \infty = p(c,0)$; and finally $p \cdot \overline{\mu}$ ((0,1),c') = 0 = p(0,1). Therfore (II) is satisfied by the above E' and $\overline{\mu}$; and so the bundle (S_{16},S_8,S_7,p) is an essential example, as it is clear $p(E') = S_8$.

By an essentially similar reason, the bundles (S_7, S_4, S_2, p) and $(S_2, S_2, p)^2$ are also essential.

6. Now we state our results.

Theorem 1. Let X, E, E', F. Y, B be given spaces such that $X \supset$

¹⁾ The associativity of the subalgebra of $\mathcal C$ generated by two elements is known, cf. Dickson, Linear Algebra, Cambridge Univ. Press, 1914.

²⁾ For these bundles, cf. [5], 20.1-20.5.

8

 $E \supset E' \supset F$, $Y \supset B$, and E is contractible to a point in X, and there exists a map $\overline{p}: (X, E, F) \to (Y, B, b_0)$ $(b_0 \in B)$ satisfying the following conditions:

- (1) $(E, B, F, \overline{p} | E)$ is a fibre space and it stisfies the conditions (I) and (II) and the given E' is taken as the subset of (III).
- (2) F is contractible in E' to a homotopy-unit $x_0 \in F$ (with x_0 stationary throughout the contraction).

Then there exists a map f of F into the space A(B) of loops in B with base point b_0 such that the composition $i \circ f : F \to A(Y)$ of f and the inclusion map $i : A(B) \to A(Y)$ is an H-homomorphism.

Proof. We proof this result by an essentially same manner to proofs of Theorem I of [3]. The resulting map f is the map giving in proposition 1 by making use of the contraction k in E', i. e. k $(F \times 1) \subset E'$. Let $\mu_t: F \to F$, $0 \le t \le 1$, be the homotopy between $\mu_0(x) = \mu(x_0, x) = x_0 \cdot x$ and μ_1 = the identity map giving by (2) of § 3, and we define a map θ of $F \times F \times \dot{I}^2$ into E by:

$$\phi(x, y, t, u) = \begin{cases}
x_0, & \text{for } t = 1, & 0 \le u \le 1, \\
x \cdot y, & \text{for } t = 0, & 0 \le u \le 1, \\
k(x \cdot y, t), & \text{for } u = 0, & 0 \le t \le 1, \\
k(x, 3t) \cdot y, & \text{for } u = 1, & 0 \le t \le \frac{1}{3}, \\
\mu_{3t-1}(y), & \text{for } u = 1, & \frac{1}{3} \le t \le \frac{2}{3}, \\
k(y, 3t-2), & \text{for } u = 1, & \frac{2}{3} \le t \le 1,
\end{cases}$$

for any $x, y \in F$, where \cdot of the fourth row is $\overline{\mu}$ of (II) and the others are μ the multiplication in F. It is clearly continuous. We extend this map $\overline{\psi}$ to a map $\overline{\psi}$ of $F \times F \times I^2$ into X: for each $(x, y) \in F \times F$, we map the center $\left(\frac{1}{2}, \frac{1}{2}\right)$ of I^2 into $* \in X$ to which E is contractible in X by the hypothesis, and the segment from any $(t, u) \in \overline{I}^2$ to $\left(\frac{1}{2}, \frac{1}{2}\right)$ on the path, described by the point $\psi(x, y, t, u)$ under the contraction of E to *. From this map, we obtain a map \mathscr{F} of $F \times F \times I$ into A(Y) (loops with the base point b_0) as usually: $\mathscr{F}(x, y, u)$ $(t) = \overline{p} \circ \overline{\psi}(x, y, t, u)$, as $\overline{\psi}(x, y, t, u) \in F$ for t = 0, 1. Thus we have a homotopy between \mathscr{F}_0 and $\mathscr{F}_1: F \times F \to A(Y)$, defined by $\mathscr{F}_u(x, y) = F(x, y, u)$ $(0 \le u \le 1)$. By

the definitions, $\Psi_0(x, y)$ is identical with $i \circ f(x \cdot y)$. On the other hand, by the properties $\Psi(x, y, t, 1) \in F$ for $\frac{1}{3} \leqslant t \leqslant \frac{2}{3}$ and $p(\overline{\mu}(z, y)) = p(z)$ for $z \in E'$ and $y \in F(p = \overline{p} \mid E)$, $\Psi_1(x, y)$ is identical with

$$i \circ ((f(x) \cdot e_{b_0}) \cdot f(y)) = ((i \circ f(x)) \cdot e_{b_0}) \cdot (i \circ f(y)),$$

where \cdot are the multipications in $\Lambda(B)$ and $\Lambda(Y)$ (i is clearly H-homomorphic), and e_{b_0} is the constant loop (i. e. $e_{b_0}(t) = b_0$ for all $0 \le t \le 1$) of $\Lambda(B)$ and $\Lambda(Y)$ respectively. It it clear that the last map is homotopic to the map $\Psi_2 \colon F \times F \to \Lambda(Y)$ such that $\Psi_2(x, y) = (i \circ f(x)) \cdot (i \circ f(y))$ for $x, y \in F$; and so Ψ_0 and Ψ_2 are homotopic. Hence the homotopy-commutativity of the diagram:

$$F \times F \longrightarrow F$$

$$\downarrow (i \circ f) \times (i \circ f) \uparrow i \circ f$$

$$A(Y) \times A(Y) \longrightarrow A(Y)$$

is proved,

The homotopy-commutativity of $i \circ f$ and the inversion can be treated similarly, and can be proved strictly same to §5 of [3]. Therefore we shall omit its proofs, and finish the proofs of Theorem 1.

Remark. If E' is connected, the contractible condition to x_0 in (2) is an easy consequence of a contractibility to any point of E', and, if F is a CW-complex and E' is simply connected in addition, a contraction being x_0 stationary can be constructed from any contraction, by making use of Homotopy Extension Theorem (cf. e. g. [1], Ch. VII, Theorem 1.4).

7. We apply above results to the fibre space (S_{15}, S_8, S_7, p) treated in § 5. Let e^{16} be an (open) 16-cell bounded by the 15-sphere S_{15} in Euclidean 16-space, and $S_8 \underset{p}{\smile} e^{16}$ the space constructed from S_8 attaching e^{16} by the Hopf map $p: S_{15} \to S_8$ as the attaching map (cf. e. g. [1], Ch. VI, § 2). We denote by \overline{p} the characteristic map $(\overline{e}^{16}, S_{15}) \to (S_8 \underset{p}{\smile} e^{16}, S_8)$ which is a homeomorphism on e^{16} and $\overline{p} \mid S_{15} = p$ ($\overline{e}^{16} = \text{closure of } e^{16}$). Then, for $X = \overline{e}^{16}$, $E = S^{15}$, $Y = S_8 \underset{p}{\smile} e^{16}$, $B = S_8$ and \overline{p} , the hypotheses of Theorem 1 is fulfilled. \overline{e}^{16} is clearly contractible and the condition (1) is seen in § 5. The condition (2) is also immediate from Remark of § 6 and the fact that E' (giving in § 5) itself is contractible to the point (0, 1) by arcs of great circles. Hence, by Theorem 1, we obtain the following result:

Proposition 2. There exists a (continuous) map f of S_7 into A (S_8)

10

such that the composed map $g = i \circ f: S_7 \to A(S_8 \circ e^{16})$ is an H-homomorphism with respect to the multiplication of Cayley numbers and loops respectively, where $i: A(S_8) \to A(S_8 \circ e^{16})$ is the inclusion map.

8. It folds the following properties for this map $i \circ f$:

Proposition 3. The map $g = i \circ f$ of Proposition 2 induces an isomorphism of $\pi_i(S_7)$ onto $\pi_i(A(S_8) e^{16})$ for $i \leq 20$.

Proof. By Proposition 1, $f*: \pi_i(S_7) \to \pi_i(A(S_8))$ is an isomorphism into. In the following diagram

$$p_{*}(\pi_{i+1}(S_{15})) + E_{\pi_{i}}(S_{7}) = \pi_{i+1}(S_{8}) \xrightarrow{i_{*}} \pi_{i+1}(S_{8}) \xrightarrow{p} e^{16})$$

$$\uparrow E f_{*} \downarrow T i_{*} \downarrow T$$

$$\pi_{i}(S_{7}) \xrightarrow{j} \pi_{i}(A(S_{8})) \xrightarrow{j} \pi_{i}(A(S_{8})) \xrightarrow{p} e^{16})$$

where E is the suspension homomorphism, commutative relations hold¹⁾ and T are isomorphic onto for all i. Therefore it is sufficient to show that kernel i_* (in the upper line) = $p_*(\pi_{i+1}(S_{i,i}))$ and i_* is onto. We consider now the following diagram:

$$\cdots \rightarrow \pi_{i+2}(S_s \underbrace{\stackrel{\circ}{p}} e^{16}, S_s) \xrightarrow{\partial} \pi_{i+1}(S_s) \xrightarrow{i_*} \pi_{i+1}(S_s \underbrace{\stackrel{\circ}{p}} e^{16}) \rightarrow \cdots$$

$$\uparrow \overline{p}_* \xrightarrow{\partial} \uparrow p_*$$

$$\pi_{i+2}(\overline{e}^{16}, S_{15}) \rightarrow \pi_{i+1}(S_{15})$$

where the upper line is a homotopy sequence of the pair $(S_s) e^{i\delta}$, S_s ; the commutative relation holds clearly. The map p_* is isomorphic onto for $2 \le i + 2 \le 22$ by Theorem 2.14 of Chapter VI of [1], and \hat{o} (in the lower line) is evidently an isomorphism for all i. Hence, for $i \le 20$, kernel $i_* = \text{image } \hat{o} = \text{image } p_*$, and \hat{o} (in the upper line) is isomorphic into because p_* is. By the exactness, i_* is onto, and therefore Proposition 3 is obtained.

9. We now come to the situation to solve the problem: Are the Cayley numbers of norm 1 homotopy-abelian?

Theorem 2. The map $\kappa: S_7 \times S_7 \to S_7$, defined by $\kappa: (x, y) = x y x^{-1}$ is not homotopic to a constant; S_7 is not homotopy-commutative.

¹⁾ The commutativity in the triangle follows from the fact that $T \circ f_*$ is the induced embedding of $\pi_i(S_7)$ into $\pi_{i+1}(S_8) \approx \pi_i(S_7) + \pi_{i+1}(S_{15})$, cf. footnote 1) of p. 5, and so is the suspension by precisely analogous arguments of Theorem 3.1 of [1], Ch. VI.

Proof of this theorem is now essentially same to it of Theorem II of [3], and we follow proofs briefly. By Proposition 2, to obtain the above result, it is sufficient to prove the fact that $d: S_7 \times S_7 \to A(S_8) e^{16}$ giving by $d(x, y) = (g(x) \cdot g(y)) \cdot (g(x)^{-1} \cdot g(y)^{-1})$ is not homotopic to a constant map. Let $u \in \pi_8(S_8) e^{16}$ be represented by the inclusion map i, and s denote the standard map of (I^{14}, \dot{I}^{14}) onto $(S_7 \times S_7, S_7 \vee S_7)$, then $T[a, a] \in \pi_{14}(A(S_8) e^{16})$ is represented, up to sign, by $d \circ s$, by the processes of [2] and Lemma 2 of [3] ([a, a] is so-called Whitehead product of a). This reduces the problem to the question whether $[a, a] \in \pi_{15}(S_8) e^{16}$ is not zero. This element is clearly the image of $[\iota_8, \iota_8]$ under $i_*(\iota_8) = 16$ is a suspension of a non-zero element of $\pi_{14}(S_7)$ (ν_8 is the element represented by the Hopf map) (cf. [6], Theorem (4.1)). Therefore we have $[a, a] = i_*([\iota_8, \iota_8]) = i_*([\iota_8, \iota_8]) = i_*([\iota_8, \iota_8]) = i_*([\iota_8, \iota_8])$ is not zero, by the properties of i_* studied in proofs of Proposition 3. Theorem III is thus obtained.

Remark. Similarly, we can apply Theorem 1 to the bundle (S_7, S_4, S_3, p) and the properties analogous to Propositions 2 and 3 consist.

REFERENCES

- [1] P. J. Hilmon, Homotopy Theory, Cambridge Univ. Press, 1953.
- [2] H. Samelbon, A connection between the Whitehead and the Pontrjagin product, Amer. J. Math., 75 (1953), 744-752.
- [3] H. Samelson, Groups and spaces of loops, Comm. Math. Helv., 28 (1954), 278-287.
- [4] J. P. Serre, Homologie singulières des espaces fibrés. Applications. Ann. Math., 54 (1951), 425-505.
- [5] N. E. STEENROD, Topology of Fibre Bundles, Princeton, 1951.
- [6] H. Toda, Some relations in homotopy groups of spheres, J. Inst. Polytech., Osaka City Univ., 2 (1952), 71-80.

(Received March 2, 1955)