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ON A SUBRING OF AN INTEGRAL DOMAIN
OBTAINED BY INTERSECTING A FIELD

Susumu ODA

Introduction. Let S be an integral domain and let & be a subfield
of the quotient field of 5. We are interested in the ring-extension §/5N K
or the subring SN K itself. We call $N K a subring with reduced quotient
field. It is known that the subring S N K inherits some properties from
S; for example: if S is integrally closed, so is S N K if S is local (not
necessarily Noetherian), so is SN K; if S is a DVR, then SN K is either
a DVR or a field; if S is a Krull domain, so is SN K (see [6],[8]). In these
examples, theory of valuations plays an important role.

Our objective of this paper is to show the ring SN K maintains several
properties of S under certain conditions.

In the section 1, we study the property of Noetherianness. We show
mainly the following result:

(1) Let S is a Noetherian normal domain of characteristic zero with
quotient field L and let K be a subfield of L such that S is integral over
SNK. Then §N K is a Noetherian domain.

In the section 2, we show some basic properties of SN K for later use.
We consider some conditions for a subring R of S to be of type SN K for
some subfield K of the quotient field of S. For instance,

(2) The extension S/S N K is characterized by behavior of divisorial
ideals of S N K (Theorem 2.4).

In the section 3, we treat (2,3)-closedness, root-closedness and quasi-
normality of a subring SN K.

In the section 4, we show: Let S be a Noetherian almost factorial
domain of characteristic zero. If 5 is integral over SN K, then SN K is a
Noetherian almost factorial domain. (Theorem 4.2).

In the section 5, we have the following;:

(3) Let (S, M) be a local factorial domain. If § is LCM-stable over
S NK, then SN K is factorial (Theorem 5.3).

When S is not local, the faithful flatness of S over § N K does not
always ensure the similar result in (3) (Remark 2).

In the section 6, we study the factoriality of S N F for a non-local
domain S. The obstruction of descent of factoriality is anyway that a
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certain principal ideal of S is not necessarily generated by elements in
SNK.

In the section 7, we treat Dedekind domains.

In this paper, we mean by a ring a commutative ring with identity
and by an integral domain (or a domain) a ring which has no non-trivial
zero-divisors, and for an integral domain §, K(S) denotes the quotient
field of S unless otherwise specified. Our unexplained technical terms are
standard and are seen in [10] and [13].

1. A subring of a Noetherian domain. An integral domain is
called to be integrally closed (or normal) if it is integrally closed in its
quotient field. This section treats the following problem, which means a
descent of Noetherianness of ring-extensions:

Problem. Let S be a Noetherian (normal) domain with quotient
field L and let K be a subfield of L. Is the ring S N K Noetherian if S is
integral over SN K ?

This problem is a certain converse to the well known result:

If R is a Noetherian normal domain with quotient field K and L a
finite separable extension of K, then the integral closure S5 of R in L is
Noetherian (See [10, (31.B)]).

Concerning the descent problem as above, we have known the follow-
ing results among other things: Let S O R be a ring-extension with a
Noetherian domain §.

(i) (Faithfully flat descent) If S is faithfully flat over R, then R is
Noetherian.

(ii) (Eakin-Nagata) If S is finitely generated as an R-module, then R
is Noetherian.

The result (i) is well-known (See [10]) and the result (ii) is seen in [5]
and [10], a new proof of which has been given by M. Nagata [14] recently.

Our objective of this section is to settle the problem in the case that
S is integral over S N K with char(A) = 0 and the case that L is not
necessarily algebraic over S N K under certain conditions.

Let A be an integral domain with quotient field L. An element ain L
is called almost integral over A if there exists a non-zero element ¢ in A
such that ca’ € A for all i € N. It is easy to see that the set A" of all
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almost integral elements over A forms a ring between A and L, which is
called the complete integral closure of A. We say that A is completely
integrally closed if A = A. When A is Noetherian, A being completely
integrally closed is equivalent to A being integrally closed. It is known
that a Krull domain is completely integrally closed, and if A is a Krull
domain AN K is also a Krull domain for a field K. Note that a Noetherian
normal domain is a Krull domain (See [6] for details).

We require the following lemma.

Lemma 1.1. Let § be an integral domain and let K be a field. As-
sume that S is algebraic over SN K. Let ( ) denote the complete integral
closure of () in its quotient field. Then S*N K = (SN K)!.

Proof. Since SN K C SN K, we have (SN K C S*n K. Take
B € S*N K. There exists a non-zero element s € S such that s3' € §
for all € N and hence sS[3] C S. Since 3 € §2N K, the quotient fields
of S[8] and S coincide. Since s is algebraic over S N K, there exists an
algebraic dependence:

aps” +ays" 4ot a, =0,

where a¢; € SN K with a, # 0. Then a,S[3] C S. Hence a,3 € SN K
for all i € N. Thus 3 is almost integral over SN K, that is, 8 € (SN K)!.
Therefore S* N K = (SN K)!

Corollary 1.1.1. Let S be a Krull domain and K be a field contained
in K'(S). Let L be a finite Galois extension of K containing S and let S’
be the integral closure of S in L. Then SN K =SNK.

Proof. Put R=5nN K. Take 3 € S'N K. Then 3 is integral over R.
So R[f] is a finite R-module (cf. [13, (10.1)]). Write R[3] = Y7, ;R
(di = bi/c; with bj,¢; € R), where we note that R[3] C K. Put ¢ =
[Ii_,ci. Then ¢ € R:grR[S3), and hence ¢3’ € R for all j € N. Thus
BeR =(5nK) andso S'NK C(SNK)nNK. Since §' is a Krull
domain, R=SNK C(SNKNK =5nNK =SSNk = R by Lemma 1.1,
that is, N K =SNK = R.

We prove the following theorem by using, so-called the Galois-descent.

Theorem 1.2. Let S be a normal domain of characteristic zero with
quotient field L and let K be a subfield of L such that S is integral over
SN K. If S is Noetherian, then sois SN K.
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Proof. Let R = SN K. Let I be an ideal of R. Then IS =
(a1y...,a4)S for some a; € I. Let J be the ideal of R generated
by ai,...,a;. Take & € I. Then b = ZE:I a;e; (a; € S). Put
S" =8N K(ay,...,a;). Then R C §" C S and 5’ is integrally closed
in K(aj,...,a;). Note that b € JS'. Noting that char(K) = 0, there
exists a field L’ such that

(a) L' 2 K(en,y...,o4) 2 K,

(b) L’ is a finite Galois extension of K.

Let G denote the Galois group G(L'/K’) with n = §G. Let §” denote
the integral closure of R in L’. Then 5” is a Galois extension of R. Note
that §”9 = §” for each ¢ € G. Since S is integral over R, we have
§'C SNL C 5" and 59 C §" = §” {for each g € G. Hence o] €
5" for any g € G. By [6, (1.3)], §” is a Krull domain because L' is a
finite extension of K. We see that nb = 3" b9 = )" ¢ () =
Yoo Ygecalod = Yio ai(Xgeqaf). Since 3o cqaf is invariant under
every element in G. Hence 3 cgaf € KNS" = KNS by Corollaty 1.1.1.
Hence nb € 3"i_, a;R. Since char(K) = 0, we have b € J. The implication
I D Jis trivial, and hence I = J = (a;,...,a;)R, a finitely generated ideal
of R. Therefore X = 5 N K is Noetherian.

Corollary 1.2.1. Let R be an integrally closed domain with quotient
field K of characteristic zero and let L be a field extension of K. If the
integral closure of R in L is a Noetherian ring, then R is Noetherian.

Proof. This follows from Theorem 1.2.

Let S be an integral domain with quotient field L. We say that S is
N-1 if the integral closure of S in its quotient field L is a finite S-module;
and that S is N-2 if, for any finite extension T of L, the integral closure
of Sin T is a finite S-module. Tt is known that N-1 is equivalent to N-2
when S is a Noetherian integral domain of characteristic zero ([10, p.232]).
A ring A is called a Nagata ring if it is Noetherian and if A/P is N-2 for
every P € Spec(A).

Corollary 1.2.2. Let R be an N-1 domain with quotient field K of
characteristic zero and let L be an algebraic field extension of K. Let S
denote the integral closure of R in L. If S is a Noetherian domain, then
so is R.

Proof. Since § is a Noetherian normal domain, 5 N K is Noetherian
by Theorem 1.2. Since the quotient field of S is algebraic over K, we have
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SNK =58 NK=(5nK) by Lemma 1.1. Hence § N K is the integral
closure of R in K because SN K is Noetherian. Since R is a N-1 domain,
SN K is a finite R-module. So by Eakin-Nagata’s Theorem, we conclude
that R is Noetherian.

A ring A is called locally Noetherian if Ap is a Noetherian ring for
each prime ideal P of A.

Remark 1. (1) The following is known in [7, (12.7)]: Let R be
an integral closed integral domain with quotient field A and let S be an
integral domain containing R such that S is integral over R. Then for each
prime ideal M of S, Say N K = Rpnp.

(2) Let S be an integral domain and let K™ be a subfield of the quotient
field A'(S) of S such that K(S) is finite algebraic over K. Assume that
S is integral over S N K and that S is locally Noetherian. Then for each
prime ideal p of SN K, S, is Noetherian, where S, denotes (SN K \p)~'S.
Indeed, there are only finitely many prime ideals Py,...,P, of § lying
over p by [10, p.296]. Let T'= §\ U, P;, a multiplicatively closed subset
of §. Then S, = T715 by [7, (11.10)]. Let I be an ideal of S,. Then for

each 1 < i< n, Ip, = (a;1,...,0ai;)Sp for some a;; € I. Put J =3 a;5,.
Then Ip, = Jp, for each 1 < i < n. Thus I = J, which means that 5, is
Noetherian.

Corollary 1.2.3. Let S be a locally Noetherian, normal domain of
characteristic zero and let K be a subfield of the quotient field K(S) of S
such that K(S) is finite algebraic over K. Assume that S is integral over
SNK. Then SN K is locally Noetherian.

Proof. Note first that for each prime ideal P of SN I, there exists a
prime ideal M of S such that M N K = P because § is integral over SN K.
Hence Remark 1(2) and Theorem 1.2 yield our conclusion.

Example. Let k be a field (chark # 1) and let ¢; ({ € N) and X,
Y be indeterminates. Put S = k(t1,%2,...)[X,Y], which is a Noetherian
domain, and for 7 € N, put d; = t2; X + to;1Y. Let K = k(d;,d2,...).
Then SN K = k[dy,ds,...] := R, which is not Noetherian. Note that S/R
is not integral.

Proposition 1.3 (cf. [8, p.73, Ex.4]). Let (S,M) be a local domain
and K a subfield of the quotient field K(S) of S. Then SN K is a local
domain with the mazimal ideal M N K.
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Proof. Suppose that there exists a maximal ideal m which properly
contains M N K. Then mS = S and we have "7 ; a;5; = 1 in § with
a; € mand 8; € S. Since S is a local domain with maximal ideal M,
there exists 7, say ¢ = 1 such that a; is a unit in S. Hence a1 = 1 for
some a € 5. So we have o = 1/a; € § N K, which means that a; is a
unit in SN K. This is absurd. Therefore SN K is a local domain with the
maximal ideal M N K.

2. Basic properties of a subring with reduced quotient field.
In this section, we study the conditions for a subring to be a subring with
reduced quotient field and show some preliminary results which will be
used later. We start with the following lemma.

Lemma 2.1. Let S be an integral domain, let K be a subfield of the
quotient field of S and let R be a subring of S which is contained in K.
Then the following statements are equivalent:

(i) aSNK = aR for anya € K;

(ii) R=SNK.

If furthermore K is the quotient field of R, (i) is equivalent to the
following:

(iii) aSN R = aR for any a € R.

Proof.  (ii)== (i). Take z € aSN K. Then z = as for some s € §
and hence z/a = s € SN K = R. Thus z € aR.
The implications (i) = (ii) is trivial.
Assume that K is the quotient field of R. The implications (i) = (iii) is
trivial.

(ii)) = (iii). Take s € SNK. Since K is the quotient field of R, s = b/a
for some a,b € R. Hence b=as € RNaS = aR. Thus s € R.

Corollary 2.1.1. Let S be an integral domain and let K be a subfield
of the quotient field of S. Then for any a,b € R := S N K, the following
hold:

(a) aR = bR if and only if aS = bS,

(b) vaR = VbR if and only if VaS = VbS.

Moreover for any a,8 € K,
(a') @R = SR if and only if aS = BS.

Proof. (a) The implication aR = bR=>a8 = bS is obvious. Con-
versely, aR = aS N K =bSN K = bR by Lemma 2.1 (i) <= (ii).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 37/issl/4



Oda: On a Subring of an Integral Domain Obtained by Intersecting a

ON A SUBRING OF AN INTEGRAL DOMAIN 43

(b) Assume that vaS = v/bS. Take z € VaR. Then 2" € aR CaS C
V/bS for some positive integer n. Hence z™ € bSNK = bR for some positive
integer m by (a). Thus z € VbR. By symmetry, we have vaR = VbR.
Conversely, assume that vaR = vbR. Then VA\/aRS = Vv,\/bRS and
hence \/ﬁ = \/b_S

(a') There exist ¢,d € R such that ca,d3 € R. By (a), we have
cdaR = cdBR <= cdaS = ¢df3S. Hence aR = SR<= oS = 3S.

Corollary 2.1.2. Let S, K and R be the same as in the above corol-
lary 2.1.1. If S satisfies the ascending chain condition for principal ideals,
then so does R.

Proof. Let a;R C ayR C ... be an ascending chain of principal ideals
of R. Then we have the ascending chain @15 C a2S5 C ... of principal ideals
of §. Since S satisfies the ascending chain condition for principal ideals,
there exists an integer r such that for any n > r, a.S = a,S5. Thus by
Corollary 2.1.1, we have a,R = a,R for any n > r, which means that R
has the ascending chain condition for principal ideals.

Proposition 2.2. Let S be an integral domain, let K be a subfield of
the quotient field of S and let R be its subring SNK. Then (aS:sbS)NK =
aR:pbR for any a,b € R. In particular, if a,b € R is an S-sequence, then
a, b is an R-sequence.

Proof. The implication aR:grbR C (aS:565) N K is obvious and it is
clear that (aS:sbS)NK C R. Takez € (aS:5b5)NK. Then zb € aSNK =
aR by Lemma 2.1 (i) <= (ii). Hence z € aR:gbR. Next if aS:sbS = a¥§,
then aR:rbR = aR by the above argument, which means that if a,b € R
is an S-sequence, then a, b is an R-sequence.

Let S be an integral domain with quotient field L. We say that .J is
a fractional ideal of S if J is an S-submodule of L such that sJ C S for
some non-zero element s € 5. Let J be a fractional ideal of §. We denote
by J* a fractional ideal S:J := {z € L|zJ C S}. We also write §:J for
S J if no confusion takes place. We say that a fractional ideal J of .5 is
divisorial if J** := S:p(S:pJ) = J.

Lemma 2.3. Let S be an integral domain with quotient field K(S)

and let I be a divisorial integral ideal of S. Then I = (;(b;5:5a;5) for
some a;,b; € S.

Produced by The Berkeley Electronic Press, 1995



Mathematical Journal of Okayama University, Vol. 37 [1995], Iss. 1, Art. 4

44 S. ODA

Proof. Let y = z/z be an element in K(S) with z,z € S. Then
yS N § = 25:525. Indeed, if a € 25:525, then az € 25 and hence
a€(z/z)SNS =ySNS. Conversely,if a € ySN S, then a = ys = (2/z)s
for some s € §. So za= 2s € 25. Hence a € 25:5z5. Since [ is a
divisorial integral ideal of S, I is an intersection of principal fractional
ideals, that is, I = NyS N S, where I C yS, y € K(S) (See [6, p.12] for
details). By the above argument, [ is written as ();(2;5:sb;5) for some
a;,b; € S.

Theorem 2.4. Let S be an integral domain and let R be its subring
with quotient field K. Then the following statements are equivalent:
(i) R=SnNK;
(ii) aS N R = aR for each a € R;
(i) SN K = aR for each a € K;
(iii) ISN R = I for each divisorial integral ideal I of R;
(i) IS N K = I for each divisorial fractional ideal I of R;
(iv) (IS)y™* N R = I for each divisorial integral ideal I of R;
(iv') (IS N K =1 for each divisorial fractional ideal I of R.

Proof. (i) <= (ii) <= (ii’) have been shown in Lemma 2.1.
Let J be a fractional ideal of R. Then there exists a non-zero element d
in R such that dJ C R. It is easy to see that if (dJS)N & = dJ holds,
then JS N K = J holds. Hence in (iii’") and (iv'), we can assume that [ is
an integral ideal, i.e., I C R.

(iv) = (iii) (resp. (iv') = (iii’)) follows from the implications: I C
ISNRC(ISY"NR=1(resp. ICISNK C(IS)Y™*NK =1I).

(iv)=> (ii) and (iv')=> (ii’) are trivial because a principal ideal is
divisorial.
We must show the implication (i) = (iv) (resp. (i) = (iv’)). The ideal I
is written as ();(a;R:pb;R) for some a;,b; € R by Lemma 2.3. Hence
we have IS C ;((e;iR:rb;R)S) C N;(a;S:5b6;S). Thus IS C (IS5)™ C
Ni(aiS:sb;S). So we have I CISNRC (IS)"NRCN;(a;iS:sb:;:S)NR =
Ni(aiR:gpb;R) = I (resp. ICISNK C(IS)NK C;(a;S:sb;S)NK =
Ni(a; R:rb; R) = I) by Proposition 2.2, which means that (IS)"NR = 1.
(resp. (IS)™*N K =1).

Corollary 2.4.1. Let S, K and R be the same as in Theorem 2.4
and assume that R = SN K. Let I and J be divisorial fractional ideal
of R. Then I = J if and only if (15)** = (J§)**.
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Proof. The implication I = J=(15)** = (JS)** is obvious. Let
I, J be divisorial fractional ideals with (/§)* = (JS)*. Then there
exist non-zero elements a,b € R such that both a/ and bJ are integral
ideals of R, which are divisorial. Then (ablS)*™ = ab(IS)** = ab(JS)** =
(abJ S)*. By Theorem 2.4, we have abl = (abIS)**NR = (abJS)**NR =
abJ. Thus we have I = J.

For a domain D, Inv(D) denotes the set of the invertible ideals of D.
Define Prin(D) to be the set {aD|a € K(D),a # 0}. It is easy to see that
Prin(D) is a subgroup of Inv(D). Define Pic(D) = Inv(D)/Prin(D), which
is equipped with the commutative group structure induced from that of
Inv(D). We call Pic(D) the Picard group of D, which can be regarded as
the group of isomorphic classes of invertible D-modules. We denote the
composition in Pic(D) additively.

Let S and K be the same as in Theorem 2.4. The inclusion SNK — §
induces the canonical map ¢: Inv(§ N K) — Inv(S) defined by sending
ITelnv(SNK)tolS € Inv(S).

Corollary 2.4.2. Let S and K be the same as above. Then
w: Inv(S N K) — Inv(S) is injective.

Proof. Take two invertible ideals I and J of SNK such that IS = JS.
Then I = ISNK = JSNK = J by Theorem 2.4, which means ¢ is
injective.

Question. Let § and K be the same as above. When is the canonical
group homomorphism Pic(§ N K) — Pic(5) injective i.e., Inv(S N K)N
Prin(S) = Prin(S N K')?

Let S be an integral domain and let D(S) denote the collection of
divisorial fractional S-ideals. Define D(S) x D(S) — D(S) by (a,b) —
5:(S:ab). Then D(S) is a commutative monoid. It is known that D(S5) is
a group if and only if S is completely integral closed [6, (3.4)]. Note here
that a Krull domain is completely integral closed [6, (3.6)].

Let R C S be Krull domains. We say that S/R satisfies the condi-
tion (PDE) if ht(P N R) < 1 for each P € Ht;(95).

It is known that if § is a Krull domain, then S N K is also a Krull
domain for any field [6, (1.2)].

Proposition 2.5. Let S be a Krull domain and let K be a subfield
of the quotient field of S. Then the extension SN K C S satisfies (PDE)
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and the canonical group homomorphism D(S N K) — D(S) defined by
I — (IS)y* is injective.

Proof. The second statement follows from Corollary 2.4.1. Since §
is a Krull domain, S = [; Vi, where V; is a DVR on the quotient field
of § which contains §. Let m; denote the maximal ideal of V;. Then
SNK =N;(V;n K), where V; N K is either a DVR with maximal ideal
m;N K or a field. Take P € Ht;(S). Then there exists a DVR V; such that
m;NS = P. Hence PNK = m;NSNK =m;NK is (0) or in Ht;(SNK).

3. (2,3)-closed, root-closed and quasinormal. Let D be an in-
tegral domain with quotient field K (D) and let L be a field containing
K (D). We say that D is (2,3)-closed in L if every element o € L such that
a?,a® € D is an element of D, and we say “(2,3)-closed” when L = K (D).
We say that D is root-closed in L if every element a € L such that o™ € D
for some n € N is an element of D. We say that D is quasinormal if the
canonical homomorphism: Pic(D) — Pic(D[X, X ~1]) is an isomorphism,
where X denotes an indeterminate over D.

Theorem 3.1. Let S be an integral domain and let L be a field
containing the quotient field K(S) of S. Let K be a field. If S is (2,3)-
closed in L, then S N K is (2,3)-closed in LN K.

Proof. Take a € LNK with o?,0® € §NK. Then o?,a® € S implies
o € S because S is (2,3)-closed in L. Hence a € $ N K, which means that
SN K is (2,3)-closed in LN K.

In [4], the following is proved:

Lemma 3.2. Let D be an integral domain and let X be an indeter-
minate over D. Then the following conditions are equivalent:

(i) D is (2,3)-closed,

(ii) the canonical homomorphism Pic(D) — Pic(D[X]) is an isomor-
phism.

Corollary 3.2.1. Let S, K be the same as in Theorem 3.1 and let
S[X] be a polynomial ring. If Pic(S) — Pic(S[X]) is an isomorphism,
then Pic(§ N K) — Pic((S N K)[X]) is an isomorphism.

Proof. This follows from Theorem 3.1 and Lemma 3.2.
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Theorem 3.3. Let S, L and K be the same as in Theorem 3.1. If
S is root-closed in L, then S N K is root-closed in LN K.

Proof. Take a € LN K with o™ € SN K for some n € N. Then
a™ € § implies a € § because 5 is root-closed in L. Hence o € SN K,
which means that SN K is root-closed in L.

Let D be integral domain and let I be an invertible ideal of D. We
denote by [I] the equivalence class containing I in Pic(D).

Theorem 3.4. Let S be an integral domain, let X be indeterminate
and let K be a field. Assume that the canonical homomorphism Pic((S N
K)[X, X 1) — Pic(S[X, X)) is injective. If S is quasinormal, then so
isSNK.

Proof. Put R := §N K. Take I € Inv(R[X,X"']). Consider the
commutative diagram:

Pic(R) 25  Pic(8)

sl T

Pic(R[X, X 1)) =2 Pic(S[X, X 1))

where ¢ and ¢/ are the canonical maps and ¢ and ;- are the ones
induced frO.m the maps sending X to 1. It is clear that ¥ -/ = 1
and ¥ = 1. So ¢ and ¢k are injective. By definition, ¥, ([I]) = [I']
for some I’ € Inv(R). Since @-iy([I']) = ¢([I'S]) = [I'S[X, X)), we
have [I'S[X,X~']] € Imi;. By the diagram above, we have i3([]) =
p-ix([I]) = @ir([I']) = d2-psx([I'])- Since iz is injective, we have that
(1] = ¢/x([I']). Thus @/ is bijective.

4. A subring of an almost factorial domain. Let S be an integral
domain and let & be a subfield of the quotient field of S. An ideal I of §
is called radically principal if I = /8§ for some f € S. A Krull domain

is called almost factorial if its divisor class group is a torsion group.

Lemma 4.1 ([16, Proposition 7]). Let R be a Krull domain. Then
R is almost factorial if and only if any P € Ht,(R) is radically principal.

Theorem 4.2. Let S be a Noetherian almost factorial domain of
characteristic zero. Assume that S is integral over SN K. Then SN K 1is
a Noetherian almost factorial domain.
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Proof. By Theorem 1.2, SN K is Noetherian. Since S is normal, so is
SN K. Since S is almost factorial, any prime ideal of height one is radically
principal by Lemma 4.1. Take P € Ht;(S N K). Then any prime divisor
of V/PS is of height one by Going-Down Theorem. So v/P§ = /f5 for
some f € PS. Let P = (ay,...,a,)(SN K). Then taking a non-negative
integer s, we have af = fb; for some b; € S. Put 5" = SN K(f,by,...,bn).
Then SN K C 5’ C § and 8’ is integrally closed in K(f,b1,...,b,). Note
here that char(K) = 0. There exists a field L’ such that

(a)y L' D K(f.br,...,bn) 2 K,

(b) L’ is a finite Galois extension of K.

Let G denote the Galois group G(L'/K) with m = §G. Let S” denote
the integral closure of S N K in L’. Then S” is a Galois extension of
SN K. Note that §”7 = §” for each 0 € G. Since S is integral over R,
we have ' C SN L' C §” and § C §" = §” for each 0 € G. Hence
fo.69,....0% € S” for any 0 € G. By [6, (1.3)], §” is a Krull domain.

The elements [ e f7: [Ioegd? (¢ = 1,...,n) are invariant under every
element in G. Hence [I e 7, [loeqd? € K NS" for (i = 1,...,n). By
Corollaty 1.1.1, we have S"NK = SNK. Thus [I,ec f7. [loeq? € KNS
for (i = 1,...,n). So f = ai/b; and [[,eq 7 = [loec @/ lsect? €
SNK. Put g =Tl,eq f°- Then ai™ =[], f7 [loeq b, where §G = m.
Hence for a sufficiently large integer £, PY C g($ N K). Thus we have

P =/g(SNK), and hence SN K is almost factorial by Lemma 4.1.

Theorem 4.3. Let S be an almost factorial domain. Assume that
S is integral over SN K. Then SN K is an almost factorial domain.

Proof. The proof is similar to that of Theorem 4.2,

Corollary 4.3.1. Let R be a Krull domain and let L be a field ezx-
tension of K(R). If the integral closure S of R in L is almost factorial,
then so is R.

Proof. Note that S is a Krull doamin. Since SN A(R) = R, our
conclusion follows from Theorem 4.3.

5. A subring of a locally factorial domain and LCM-stable-
ness. We mean by a local ring a ring with unique maximal ideal. It is
known that an integral domain § is factorial domain if and only if S is a
Krull domain in which each P € Ht;(S) is principal [6, (6.1)].
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Lemma 5.1. Let (S, M) be a local domain and let K be a subfield
of the quotient field of S. Let I be an ideal of SN K. If IS is principal,
then so is I.

Proof. Let I be generated by a set {a;};eca. Since IS is a principal
ideal of S, there exists aS = IS5. So for each 7 € A, a; = as; for some
s; € §. Suppose that the set {s;|¢ € A} generates a proper ideal of S.
Then oS = IS C aMS C aS, that is, S = aMS. Hence § = M, a
contradiction. So there exists a unit s; so that ;5 = as;5 = aS = IS.
Wehave ICISNK = a;SNK = a;(SNK) C I by Lemma 2.1 (i) <= (ii).
Therefore I = a;(S N K).

Corollary 5.1.1. Let (5,M) and K be the same as in Lemma 5.1.
Assume that for each P € Ht;(S N K), Asss(S/PS) C Ht1(S). If S is a
factorial domain, then so is SN K.

Proof. Take P € Ht,(S N K). Since Assg(S/PS)C Ht;(5),PSisa
divisorial ideal of S because S is a Krull domain. Since § is factorial, PS
is a principal ideal and hence P is principal by Lemma 5.1.

A ring A is called locally factorial if Ap is factorial for each prime
ideal P.

Theorem 5.2. Let S be a locally factorial domain and K a field.
Assume that S is integral over SN K. Then SN K is locally factorial,

Proof. Note first that for each prime ideal P of SN K, there exists a
prime ideal M of § such that M N K = P because § is integral over SN K
and that K can be assumed to be the quotient field of SN A, Hence our
assertion follows from Lemma 5.1 and Remark 1(1) in the section one.

Remark 2. In [6, (6.11)], it is seen that when a local R-algebra S
is faithfully flat over R, R is a factorial domain if S is factorial. But in
general, not even factoriality descends through faithfully flat extensions.
That is, if S is not local, then the above conclusion does not always hold.
Indeed, we have the following example (cf. [6, p.39],[8, p.74],[18, p.105]):
Consider a Dedekind domain R which is not a principal ideal domain.
Let T be the multiplicative subset of the polynomial ring R[X] generated
by the polynomials whose coefficients generate R. Then the ring § :=
T-!'R[X] is factorial (more precisely, a principal ideal domain) and it is
a faithfully fat extension of R. But R is not factorial. Let K denote the

Produced by The Berkeley Electronic Press, 1995

13



Mathematical Journal of Okayama University, Vol. 37 [1995], Iss. 1, Art. 4

50 S. ObA

quotient field of R. Then S N K = R. This example shows that even if §

is a factorial domain, S N K is not necessarily factorial for a field K.
Moreover even if a Noetherian normal domain S is a finite Galois

extension of S N K, the factoriality of S does not necessarily yield that of

SN K [6,(16.5)].

Let S be a ring and let M be a S-module. We say that M is LCM-
stable over S if aM NbdM = (a5 NbS)M for any a,b € S and that M
is @Q-stable over S if aM:prb = (aS:sb)M for any a,b € 5. It is easy to
see that if a S-module M is flat, then M is LCM-stable over §, but the
converse does not always hold.

Let R C S be integral domains. It is known that S is LCM-stable
over R if and only if S is Q-stable over R [1, Lemma 1].

We know that a maximal proper divisorial integral ideal of a Krull
domain S is a prime ideal of height one with the form S:(zS 4 §) for
some z € K(§), the quotient field of §, which is equal to yS:s52.5 for some
¥,z € 5 [6, (3.5)). Moreover in a Krull domain S, P € Ht;(S) if and only
if P is a maximal divisorial prime ideal [6, (3.11)].

Theorem 5.3. Let (5, M) be a local domain and let K be a subfield
of the quotient field of §. Assume that S is LCM-stable over SN K. If S
ts a factorial domain, then so is SN K.

Proof. Put R = SN K. Let P be a prime ideal of R of height one.
Then P = aR:pbR for some a,b € R. Since S is LCM-stable over R,
equivalently Q-stable over R, PS = (aR:gbR)S = aS:sbS, which is a
divisorial integral ideal of §. Hence Asss(S/PS) C Ht(S), which yields
that R is a factorial domain by Corollary 5.1.1.

The following result is known: let (R, m) be a local domain with quo-
tient field K and let S be an integral domain containing R with m§ # §S.
If § is LCM-stable over R, then SN K = R (cf. [17, (1.11)]).

Corollary 5.3.1. Let (R,m) be a local domain and let § be an in-
tegral domain containing R with mS # 5. Assume that § is LCM-stable
over R. If S is a factorial domain, then so is R.

Proof. This follows from Theorem 5.3 and the preceding known re-
sult.

6. A subring of a factorial domain. Let S be an integral domain
and let K be a subfield of the quotient field of S. In this section, we treat
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mainly factoriality. Recall that an integral domain S is a factorial domain
(or a unique factorization domain or a UFD) provided every element in S
is uniquely (up to multiplication by a unit) a finite product of irreducible
(or prime) elements. Even if § is a factorial domain, § N K is not always
factorial (see [6, (16.5)] or [3, VIL,§3,Ex.11] for instance). In fact, we can
see the following example in [3, VIL§3,Ex.11]:

Example. Let K be a field, § = K[X,Y] be a polynomial ring and
L=K(X2Y/X)C K(X,Y). Then S is factorial but $n L is not.

So our aim is to study when S N K is factorial if S is factorial.

In [6, (6.1)], we see that an integral domain S is factorial if and only
if § has the ascending chain condition for principal ideals and a maximal
proper principal ideal is a prime ideal.

Theorem 6.1. Let S be an integral domain and let K be a subfield
of the quotient field of S. Assume that S satisfies the ascending chain
condition for principal ideals. Then S N K is factorial if for each P €
H1t1(S) there exists a non-unit a € S N K such that PN K C a(SNK).

Proof. Put R = SN K. By Corollary 2.1.2, R has the ascending
chain condition for principal ideals. Let dR be a maximal proper principal
ideal of R. Then dS is contained in a prime ideal in Ht{(S). Indeed, if
dS = SthendR=dSNK =SnK by Lemma 2.1, a contradiction. So
by assumption, dR C PN K and PN K C a§ for some non-unit e in R.
By the maximality, we have dR = PN K = aR and hence dR is a prime
ideal. Thus R is a factorial domain.

Corollary 6.1.1. Let S be a factorial domain and let K be a subfield
of the quotient field of S. Then SNK is factorial if for each non-unitz € S
there exists a non-unita € SN K such that 2SN K C a(SNK).

Proof. Since S is factorial, any P € Ht,(S) is a principal ideal. So
apply Theorem 6.1 and we get our conclusion.

Recall that a ring extension S 2 R is called to be innert if z,y € §
with zy € R yields zs,ys~! € R {or some unit s in § (cf. [2]). For example,
let S be a polynomial ring R[X]. Then the extension S D R is innert.

Let S be an integral domain and let K be a subfield of the quotient
field of S. We say that K is innert with respect to § if z,y € § with
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zy € K yields that zs,ys™! € K for some unit s in S. This is equivalent
to the extension S/S N K being innert in the above sense.

Theorem 6.2. Let S be an integral domain and let K be a subfield
of the quotient field of 5. Assume that K is innert with respect to S. If §
is factorial, then so is SN K.

Proof. Put R = SN K. Then R is a Krull domain because S is a
Krull domain. By Corollary 2.1.2, R has the ascending chain condition
for principal ideals. Let dR be a maximal proper principal ideal. We have
only to show that dR is prime. Suppose that dR is not prime. Then dS is
not prime because dSN K = dR by Lemma 2.1. So there exists a prime
ideal b5 in S containing dS properly. Thus we can write d = bs for some
non-unit s € §. Since bs = d € SN K = R, there exists a unit ¢ in S
such that bt,st~! € R by assumption. Hence dS C bt5 N st~'5 and hence
dR=dSNK C(SNK)N(st"!'SNK)=>btRNst™ 'R by Lemma 2.1.
Since dR is not prime, dR # bSN K = btSN K = btR by Lemma 2.1 but
by the maximality, dR = bt R, which is a prime ideal of R, a contradiction.

We close this section by showing the following result.

Proposition 6.3. Let S be an integral domain and let K be a subfield
of the quotient field of S. Assume that K is innert with respect to S and
that U(S) = U(S N K'), where U( ) denotes the group of the units. Then
SN K is algebraically closed in S.

Proof. Take a € §. Then there is an algebraic dependence:
age™ + a4 a, =0,

where a; € SN K. Thus a(a‘oa”_1 +aa™ 24 4 apn—1) € SNK. Hence
there exists a unit ¢ in S such that ot € SN KA. By assumption, t is also a
unit in SN K, we have @« € SN K. This shows that SN A is algebraically
closed in §.

7. Remarks on Dedekind domains. In this section, we investi-
gate Dedekind domains.

Proposition 7.1. Let S be a Noetherian domain, let K(S) be its
quotient field and let K be a subfield of K(S). Let m be a mazimal ideal
of a subring K 0 S of S such that mS # S. Then ht(m) < dim §.
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Proof. Put B = KNS. Since mS # S and m is a maximal ideal of B,
there exists a prime ideal M of § with M NB = m. There exists a valuation
ring (W, N) in K(S) such that SC W, NNS§ =M and dimW = ht(M)
by [13, (11.9) and its proof]. Similarly there exists a valuation ring (V,n)
in K(B) such that BCV,nN B =m and dimV = ht(m). Let W’ be a
subring generated by V and W in K(S). Since W C W' C K(S) and W
is a valuation ring, W’ is also a valuation ring by [13, (11.3)]. Let N’ be
the maximal ideal of W/. Then N'NW C N and W' = Wniqw by [13,
(11.3)]. Note that mW' # W'. Hence m C N'N B C N N B = m, that is,
N'nB = m. Since V.C W/NK, we have N'NV C n. Since ht(m) = ht(n),
we have n = N'NV, which yields that W/'Nn K =V by [13, (11.3)]. Hence
ht(m) = dimV =dimW'Nn K <dm W' <dimW = ht(M) < dim S.

We require the following Lemma:

Lemma 7.2 ([11, (12.5)]). An integral domain A is a Dedekind do-
main if and only if A is a one-dimensional Krull domain.

We have known the following example:

Example (cf. [3, VIL,§2,Ex.5(a)]). Let k be afield and L = k(X,Y),
where X, Y are indeterminates. Let S = L[Z] be a polynomial ring, which
is actually a PID,and let K = k(Z,X+Y Z). Then SNK is not a Dedekind
domain. In fact, dimSNK =2 and (Z,X + YZ)S = § for a maximal
ideal (Z, X +YZ)of SNK.

Proposition 7.3. Let § be a Dedekind domain and K a subfield
of K(S). Assume that mS # S for each m € Spec(SN K). Then SN K
is a Dedekind domain.

Proof. Note that a Dedekind domain is a Noetherian normal domain
of dimension one. Since mS # S for any maximal ideal m of § N K,
dimS N K < 1 by Proposition 7.1. Hence S N A is a Krull domain of
dimension one. So by Lemma 7.2, S N A" is a Dedekind domain.
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