

Mathematical Journal of Okayama University

Volume 31, Issue 1

1989

Article 12

JANUARY 1989

Some Generalizations of Boolean Rings

Hiroaki Okamoto* Julie Grosen[†]
Hiroaki Komatsu[‡]

Copyright ©1989 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

[†]University of California

[‡]Okayama University

Math. J. Okayama Univ. 31 (1989), 125-133

SOME GENERALIZATIONS OF BOOLEAN RINGS

HIROAKI OKAMOTO, JULIE GROSEN and HIROAKI KOMATSU

Throughout, R will represent a ring with center C. Let N denote the set of nilpotents in R, and N^* the subset of N consisting of all elements in R which square to zero. Let E be the set of idempotents in R. If $E \subseteq C$ then R is called *normal*. In case R has 1, we denote by U the multiplicative group of units of R. Following [10], R is called (E-N) representable, if each $x \in R$ can be written uniquely in the form x = e + a, where $e \in E$ and $a \in N$. Given $x \in R$, we define inductively $x^{(1)} = x$, $x^{(k)} = x^{(k-1)}$, x, where $x \cdot y = x + y + xy$. In [8], Hirano, Komatsu, Tominaga and Yaqub considered the following condition which arose, presummably, in connection with logic: (*) for any $x, y \in R$, $(x+xy) \cdot (y+yx) = 0$ if and only if x = y, and proved that R satisfies (*) if and only if R is commutative, R/N is a Boolean ring and $a^{(2)} = 0$ for all $a \in N$ (see Theorem 1 below). Obviously, every Boolean ring satisfies the condition (*). If R has 1, then (*) becomes (*)' for any $x, y \in R$, (1+x+xy)(1+y+yx) = 1 if and only if x = y. Recently, Grosen [4] gave a number of characterizations of a ring with 1 in which the condition (*)' holds.

An element x in R is called *strongly regular*, if there exist $y, y' \in R$ such that $x^2y = x = y'x^2$. As is well-known, if x is strongly regular, there exists (uniquely) $z \in R$ such that $x^2z = x$, $z^2x = z$ and xz = zx; furthermore, z commutes with every element which commutes with x. We denote by S the set of strongly regular elements in R. A ring R is called a B'-ring if S = E. Obviously, every Boolean ring is a B'-ring.

A ring R is called s-unital if $x \in Rx \cap xR$ for all $x \in R$, or equivalently if for each finite subset F of R there exists $e \in R$ such that ex = x = xe for all $x \in F$ (see [6]). Following [11], R is called an s^* -unital ring if for each $x \in R$ there exist e', $e'' \in E$ such that xe' = x = e''x, or equivalently if for each finite subset F of R there exists $e \in E$ such that eFe = F (see [11, Corollary 7]). As is easily seen, every s-unital π -regular ring is s^* -unital. In what follows, we shall use freely this fact. A ring R is a cs^* -unital ring if for each $x \in R$ there exists a central idempotent e such that ex = x.

A ring R is called an I-ring (resp. N-ring) if every element of R is expressible as a product of elements in E (resp. N); R is called an NI-ring (or I-ring) if every element of R is expressible as a product of elements in

 $E \cup N$ (see [1] and [7]). Needless to say, every Boolean ring is an I-ring.

Our present objective is to improve several results of Grosen obtained in $[4, \S 5]$ and the main theorems of Abu-Khuzam [1] and reprove the main theorems of [2].

First, as preliminaries, we state the following lemmas.

Lemma 1 ([10, Theorem 4]). The following are equivalent:

- 1) R is (E-N) representable.
- 2) R is normal, and every element of R can be written as a sum of an idempotent and a nilpotent element.
 - 3) R is normal and $x-x^2 \in N$ for every $x \in R$.
 - 4) R is normal, N is an ideal and R/N is a Boolean ring.

Lemma 2 ([8, Lemma 5]). Let $f(X) = k_1X + k_2X^2 + \cdots + k_mX^m$ be a polynomial in $X\mathbb{Z}[X]$ with $(k_1, k_2) = 1$. If N satisfies the identity f(X) = 0, then N satisfies the identities $X^3 = 0 = k_1X + (k_2 - k_1)X^2$.

Lemma 3. If N is closed under \circ (in particular, if N is an ideal) and satisfies the identity $X^{(2)} = 0$, then N is commutative.

Proof. For any $a, b \in N$, $a \circ b = a \circ (a \circ b)^{(2)} \circ b = a^{(2)} \circ (b \circ a) \circ b^{(2)} = b \circ a$, whence ab = ba follows.

Lemma 4. (1) If R satisfies the identity $(X+X^2)^{(2)} = 0$, then 8x = 0, $x^5 = x^3$ and $x-x^2 \in N$ (or $x+x^2 \in N$) for all $x \in R$, and $a^3 = 0 = a^{(2)}$ for all $a \in N$.

(2) If N satisfies the identity $(X+X^2)^{(2)}=0$, then 4a=0 and $a^3=0=a^{(2)}$ for all $a \in N$.

Proof. (1) Since $6x^2+2x^4=(x+x^2)^{(2)}+(-x+(-x)^2)^{(2)}=0$ and $4x+4x^3=(x+x^2)^{(2)}-(-x+(-x)^2)^{(2)}=0$, we get $8x=(4x+4x^3)(2+x^2)-2(6x^2+2x^4)x=0$. Further, noting that $2x+3x^2+2x^3+x^4=(x+x^2)^{(2)}=0$, we can easily see that $a^3=0=a^{(2)}$ for all $a\in N$ (Lemma 2). Since $(x+x^2)^6=|(x+x^2)^{(2)}-2(x+x^2)|^3=-8(x+x^2)^3=0$, we have $(x+x^2)^3=0$ (and $(x-x^2)^3=0$) by the above, and therefore $x^5-x^3=(x+x^2)^3-(x+x^2)^{(2)}x^2=0$.

(2) By the proof of (1), we obtain 8a=0 and $a^3=0=a^{(2)}$ for all $a\in N$. Hence $4a=-2a^2=a^3=0$.

Lemma 5. Let $x \in R$. If $2x \in N$ and $x^n - x^{n+2^k} \in N$ for some integers n > 0 and $k \ge 0$, then $x - x^2 \in N$.

Proof. As is easily seen,

$$(x-x^2)^{2^k}x^n=(x^n-x^{n+2^k})x^{2^k}+\sum_{i=1}^{2^k-1}(-1)^i\binom{2^k}{i}x^{2^{k+i+n}}+2x^{2^{k+i+n}}\in N.$$

Hence $x-x^2 \in N$.

Lemma 6. The following are equivalent:

- 1) R is normal.
- 2) If $e, f \in E$ and $e-f \in N^*$, then e = f. In particular, if (*) holds in -E, then R is normal.

Proof. If $e, f \in E$, ef = fe and $e - f \in N^*$, then $e - f = (e - f)^3 = 0$. Conversely, suppose 2). Let $e \in E$, and $x \in R$. Then $f = e - ex(1 - e) \in E$ and $e - f = ex(1 - e) \in N^*$. Hence we have ex = exe; similarly, xe = exe. This proves that R is normal. Now, let $e, f \in E$. Then $(-e + (-e)(-f)) \circ (-f + (-f)(-e)) = ef + fe - e - f$. This enables us to see the latter assertion.

Corollary 1. Suppose that $x^2y - y^2x \in N \cap C$ for all $x, y \in R \setminus N$. Then $x-x^2 \in N$ for all $x \in R$, and R is normal.

Proof. If $x \in N$, clearly $x-x^2 \in N$. If $x \in R \setminus N$, then $(x-x^2)x^3 = x^2 \cdot x^2 - (x^2)^2 x \in N$. Thus $x-x^2 \in N$ for all $x \in R$. Now, let $e, f \in E$ and $e-f \in N^*$. Then ef+fe=e+f and $ef-fe \in C$, and so e=e(ef+fe-e-fe)e+e=efe=efe+|e(ef-fe)-(ef-fe)e|=-efe+ef+fe=-e+e+f=f. Hence R is normal, by Lemma 6.

Lemma 7. Let R be a ring with 1. If $U \subseteq E+N$, then $2 \in N$. If, furthermore, R is normal and for each $x \in R \setminus U$ there exist integers n > 0 and $k \ge 0$ such that $x^n - x^{n+2^k} \in N$, then $x - x^2 \in N$ for all $x \in R$.

Proof. Let -1=e+a, $e\in E$ and $a\in N$. Then -(1+a)=e=1, since $-(1+a)\in U$. Hence $2=-a\in N$. If R is normal, then $u-u^2\in N$ for any $u\in U$. Now, the latter assertion is clear, by Lemma 5.

We are now ready to complete the proof of our first theorem.

128

Theorem 1. The following are equivalent:

- 1) R satisfies (*).
- 2) R is commutative, $x-x^2 \in N$ for all $x \in R$ (or R/N is a Boolean ring), and $a^{(2)} = 0$ for all $a \in N$.
 - 3) R is normal, $x-x^2 \in N$ for all $x \in R$, and $a^{(2)} = 0$ for all $a \in N$.
 - 4) R is (E-N) representable and $a^{(2)} = 0$ for all $a \in N$.
 - 5) R is normal and satisfies the identity $(X+X^2)^{(2)}=0$.
- 6) R is normal, N satisfies the identity $(X+X^2)^{(2)}=0$, and $x-x^2\in N$ for all $x\in R$.
- 7) R is normal, $2R \subseteq N$, for each $x \in R$ there exist integers n > 0 and $k \ge 0$ such that $x^n x^{n+2^k} \in N$, and $a^{(2)} = 0$ for all $a \in N$.
- 8) N satisfies the identity $(X+X^2)^{(2)}=0$, and $x^2y-y^2x\in N\cap C$ for all $x, y\in R\backslash N$.

Proof. By Lemma 6, 1) implies 5).

- 3) \Rightarrow 4) \Rightarrow 2). By Lemma 1, and Lemmas 1 and 3, respectively.
- $5) \Rightarrow 7) \Rightarrow 3$). By Lemma 4 (1), and Lemma 5, respectively.
- $8) \Rightarrow 6) \Rightarrow 3$). By Corollary 1, and Lemma 4 (2), respectively.
- 1) \Rightarrow 8). We have seen that 1) implies 3) and 2). Hence $x^2y y^2x = (x^2 x)y (y^2 y)x \in N$ for all $x, y \in R$.
- 2) \Rightarrow 1). Let $x, y \in R$, and put a = x + xy, b = y + yx. Obviously, $x + x^2 \in N$, and $(x + x^2)^{(2)} = 0$. Conversely, if $a \circ b = 0$ then $a^2 + (a + a^2)b = a(a \circ b) = 0$, and so $a^2 = -(a + a^2)b \in N$. This implies that $a \in N$. Hence $y + xy = 0 \circ b = a^{(2)} \circ b = a \circ (a \circ b) = a \circ 0 = x + xy$, whence y = x follows.

The next includes [4, Theorems 5.5, 5.6 and Corollaries 5.1, 5.3, 5.7] and improves [4, Theorems 5.14, 5.15 and Corollary 5.6].

Corollary 2. Let R be a ring with 1. Then the following are equivalent:

- 1) R satisfies (*).
- 2) R is commutative, R/N is a Boolean ring, and $u^2 = 1$ for all $u \in U$ (or $(1+a)^2 = 1$ for all $a \in N$).
 - 3) R is normal, $x-x^2 \in N$ for all $x \in R$, and $u^2 = 1$ for all $u \in U$.
 - 4) R is (E-N) representable and $u^2 = 1$ for all $u \in U$.
 - 5) R is normal and satisfies the identity $(X+X^2)^{(2)}=0$.
- 6) R is normal, N satisfies the identity $(X+X^2)^{(2)}=0$, and $x-x^2\in N$ for all $x\in R$.
 - 7) R is normal, $2 \in \mathbb{N}$, and for each $x \in \mathbb{R}$ there exist integers n > 0

- and $k \ge 0$ such that $x^n x^{n+2^k} \in N$, and $u^2 = 1$ for all $u \in U$.
- 8) N satisfies the identity $(X+X^2)^{(2)}=0$, and $x^2y-y^2x\in N\cap C$ for all $x, y\in R\backslash N$.
- 9) R is normal, U satisfies the identity $(X+X^2)^{(2)}=0$, and $x-x^2\in N$ for all $x\in R$.
- 10) R is normal, $2 \in \mathbb{N}$, and for each $x \in \mathbb{R}$ there exists a positive integer n such that $x^n x^{n+2} = 0$.
- 11) R is normal, $2 \in N$, for each $x \in R$ there exist integers n > 0 and $k \ge 0$ such that $x^n x^{n+2^k} \in N$, and if $u, v \in U$ and $u v \in N$ then $u^2 = v^2$.
- 12) R is normal, $U \subseteq E+N$, for each $x \in R \setminus U$ there exist integers n > 0 and $k \ge 0$ such that $x^n x^{n+2^k} \in N$, and if $u, v \in U$ and $u-v \in N$ then $u^2 = v^2$.
- *Proof.* Obviously, $1) \Rightarrow 11$) and 12), and the equivalence of 1)-10) is clear by Lemma 4 (1) and Theorem 1.
- 11) (resp. 12)) \Rightarrow 3). By Lemma 5 (resp. Lemma 7), $x-x^2 \in N$ for all $x \in R$. In particular, for each $u \in U$, we obtain $1-u=u^{-1}(u-u^2) \in N$, and so $1=u^2$.

Theorem 2. The following are equivalent:

- 1) R satisfies (*).
- 2) $2R \subseteq N$, and there exists a subset A of R containing $N \cup (-E)$ such that (*) holds in A and $R \setminus A \subseteq E + N$.
- 3) R is normal, and there exists a subset A of R containing N and satisfying the identity $(X+X^2)^{(2)}=0$ such that $R\setminus -A\subseteq E+N$.

Proof. By Theorem 1, 1) \Rightarrow 2) and 3).

- 2) \Rightarrow 1). By Lemma 6, R is normal, and so $x-x^2 \in N$ for all $x \in R \setminus A$. Now, let $x \in A$. Then $(x-x^2)^2 = (x+x^2)^2 4x^3 = -2(x+x^2+2x^3) \in N$. Hence $x-x^2 \in N$ for all $x \in R$, and therefore R satisfies (*), by Theorem 1 6).

-2x), whence $4(x-x^2) \in N$ follows. Combining this with $x+x^2=a \in N$, we obtain $8x \in N$, and so $2x^2 \in N$ and $x-x^2=a-2x^2 \in N$.

Let R be a ring with 1. A subset A of R is called a weakly normal subset if for each $x \in R$, either -x or x-1 is in A; a weakly normal subset A of R is called a normal subset if $e, f \in E$ and $e-f \in N^*$ imply $-e, -f \in A$ or $-e, -f \in A$. As is easily seen, if a weakly normal subset A of R satisfies the identity $(X+X^2)^{(2)}=0$ then R satisfies the same identity; if (*) holds in a normal subset A of R then R is normal. (Note that if $e, f \in E$, then $(-e+(-e)(-f)) \circ (-f+(-f)(-e)) = ef+fe-e-f$ and $(e-1+(e-1)(f-1)) \circ (f-1+(f-1)(e-1)) = ef+fe-e-f$.)

The next includes [4, Theorems 5.1, 5.2, 5.7, 5.12 and 5.13].

Corollary 3. Let R be a ring with 1. Then the following are equivalent:

- 1) R satisfies (*).
- 2) $2 \in N$, and there exists a subset A of R containing $N \cup (-E)$ such that (*) holds in A and $R \setminus A \subseteq E + N$.
- 3) There exists a subset A of R containing $U \cup (-E)$ such that (*) holds in A and $R \setminus A \subseteq E + N$.
- 4) R is normal, and there exists a subset A of R containing N and satisfying the identity $(X+X^2)^{(2)}=0$ such that $R\setminus -A\subseteq E+N$.
- 5) There exists a subset A of R satisfying the identity $(X+X^2)^{(2)}=0$ such that $A\supseteq N$, $(-A)\cap E\subseteq \{0,\ 1\}$ and every element in $R\setminus -A$ is uniquely expressible as e+a with $e\in E$ and $a\in N$.
- 6) R is normal, and there exists a weakly normal subset A of R satisfying the identity $(X+X^2)^{(2)}=0$.
 - 7) There exists a normal subset A of R in which (*) holds.
- *Proof.* Obviously, $1) \Rightarrow 2)-7$). By Theorem 2, each of 2) and 4) implies 1). Further, combining Corollary 2 with the remark stated just above, we readily see that each of 6) and 7) implies 1).
- 3) \Rightarrow 1). Obviously, $8 = (1+1^2)^2 + 2(1+1^2) = 0$, and so $2 \in N$. Furthermore, R is normal, by Lemma 6. Now, it is easy to see that $x-x^2 \in N$ for all $x \in R$. (See the proof of 2) \Rightarrow 1) of Theorem 2.) Hence R satisfies (*), by Corollary 2.9).
 - 5) \Rightarrow 1). By Lemma 6 and Theorem 2.

The next proves the latter part of [2, Theorem 2] and improves [12, Theorem B].

- **Theorem 3.** (1) If for each $x \in R$ there exists a positive integer n such that $x^{n+1} = x^n$, then N is an ideal of R and R/N is a Boolean ring.
- (2) Let R be an s-unital ring. If for each $x \in R$ there exists a positive integer n such that $x^{n+1}-x^n \in C$, then R is commutative.
- *Proof.* (1) In the complete matrix ring $M_t(D)$ over a division ring D with t > 1, $(1 + e_{12})^{k+1} \neq (1 + e_{12})^k$ for each positive integer k. Thus, in virtue of the structure theorem of primitive rings, we can easily see that any primitive homomorphic image of R is a division ring. This shows that R/J is a reduced ring, where J is the Jacobson radical of R. Since J is a nil ideal, we conclude that J = N and R/N is a Boolean ring.
- (2) In virtue of [6, Proposition 1], we may assume that R has 1. Let x be an arbitrary element in R. Then there exists a positive integer n such that $(1+x)^{n+1}-(1+x)^n \in C$. Since $(1+X)^{n+1}-(1+X)^n=X-X^2f(X)$ with some $f(X) \in \mathbb{Z}[X]$, R is commutative by [5, Theorem 19].

Now, we shall reprove [2, Theorem 1].

Theorem 4. The following are equivalent:

- 1) R is a Boolean ring.
- 2) R is an s-unital, π -regular B'-ring.
- 3) R is an s-unital B'-ring satisfying the identity $(X+X^2)^{(2)}=0$.
- 4) R is a cs*-unital B'-ring and an NI-ring.
- 5) R is a B'-ring and an I-ring.
- 6) R is a semiprime I-ring and N^* is commutative.
- 7) R is a semiprime NI-ring and PI ring, and N^* is commutative.
- 8) R is an s-unital ring, and for each $x \in R$ there exists a positive integer n such that $x^{n+1} = x^n$.

Proof. Obviously, 1) implies 3), 4), 7) and 8).

- $3) \Rightarrow 2$). By Lemma 4 (1).
- $4) \Rightarrow 5$). By [7, Lemma 1].
- $5) \Rightarrow 1$). Let $a \in N^*$, and choose $e \in E$ with eae = a Then $e-a = (e-a)^2(e+a)$, and $e-a \in E$, whence a=0 follows. Hence N=0 and E is central.
- 2) \Rightarrow 1). As above, we see that N=0. Now, let $x \in R$. Then there exists $y \in R$ such that $x^nyx^n=x^n$ for some n. Since x^ny and yx^n are central idempotents, we obtain $x^{2n}y=x^n=yx^{2n}$. As is well-known, there exists $z \in R$ such that xz=zx and $x^{n+1}z=x^n$. Then $(x-x^2z)^n=$

132

$$\textstyle \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} x^{n+i} z^{i} = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} x^{n} = (x-x)^{n} = 0, \text{ whence } x = x^{2} z.$$

This proves that R is strongly regular, and consequently Boolean.

- $6) \Rightarrow 1$). Let $e \in E$. Then $(1-e)ReR(1-e)Re = (1-e)R|eR(1-e) \cdot (1-e)Re|e = (1-e)R|(1-e)Re \cdot eR(1-e)|e = 0$, whence (1-e)Re = 0 follows; similarly, eR(1-e) = 0. Hence E is central and R is Boolean.
 - 7) \Rightarrow 6). By [9, Theorem 3], N = 0.
- $8) \Rightarrow 1$). By Theorem 3 (1), it suffices to show that N=0. Suppose, to the contrary, that $N \neq 0$, and choose a non-zero a in N^* . Then there exists an idempotent e such that ea = ae = a. By hypothesis, there exists a positive integer n such that $(e+a)^{n+1} = (e+a)^n$. But this forces a contradiction a=0.

Corollary 4 (cf. [2, Lemma 1 (3) and Theorem 2]). If R is a π -regular B'-ring, then for each $x \in R$ there exists a positive integer n such that $x^{n+1} = x^n$.

Proof. There exists $y \in R$ such that $x^m y x^m = x^m$ for some m. Then $e' = x^m y$ is an idempotent and e' R e' is a Boolean ring by Theorem 4.2). Hence $x^{2m} y = e' x^m e'$ is an idempotent, and so $x^{2m} = x^{2m} y x^m = (x^{2m} y)^2 x^m = x^{3m}$. This proves that $e = x^{2m}$ is in E. Again by Theorem 4.2), eRe is a Boolean ring, and therefore $x^{2m+2} = ex^2 = (exe)^2 = exe = x^{2m+1}$.

Finally, we state the following which includes [1, Theorems 1, 2 and 3]

Theorem 5. Let R be an NI-ring.

- (1) If R is Artinian, then N is a nilpotent ideal of R and R/N is the finite direct sum of copies of GF(2).
- (2) If R is a π -regular PI ring, then N coincides with the prime radical of R and R/N is a Boolean ring.
- (3) If N is commutative, then N is a commutative ideal of R and R/N is a Boolean ring.
- *Proof.* (1) As is well-known, the Jacobson radical J of R is nilpotent and R/J is a finite direct sum of matrix rings over division rings. Then, by [7, Lemma 1], R/J is a Boolean ring and J = N.
 - (2) This is [7, Corollary 1].
 - (3) By [3, Theorem 2], N is a commutative ideal of R. Since R/N is

a reduced I-ring, it is normal and Boolean.

REFERENCES

- [1] H. ABU-KHUZAM: A note on rings which are multiplicatively generated by idempotents and nilpotents, Internat. J. Math. Sci. 11 (1988), 5-8.
- [2] H. ABU-KHUZAM and H. TOMINAGA: On rings in which every strongly regular element is idempotent, Proc. 10th Symps. on Semigroups (1986), 61-64.
- [3] H. E. Bell and H. Tominaga: On periodic rings and related rings, Math. J. Okayama Univ. 28 (1986), 101-103.
- [4] J. GROSEN: Rings satisfying polynomial identities or constraints on certain subsets, Thesis, University of California, Santa Barbara, 1988.
- [5] I. N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871.
- [6] Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
- [7] Y. HIRANO and H. KOMATSU: A characterization of Boolean rings (III), Math. J. Okayama Univ. 27 (1985), 33-34.
- [8] Y. HIRANO, H. KOMATSU, H. TOMINAGA and A. YAQUB: On rings satisfying the identity $X^{2k} = X^k$, Math. J. Okayama Univ. 30 (1988), 25-31.
- [9] Y. HIRANO and H. TOMINAGA: Some remarks on the set of idempotents and the set of elements square zero, Math. J. Okayama Univ. 25 (1983), 133-138.
- [10] Y. HIRANO, H. TOMINAGA and A. YAQUB: On rings in which every element is uniquely expressible as a sum of nilpotent element and a certain potent element, Math. J. Okayama Univ. 30 (1988), 33-40.
- [11] H. KOMATSU and H. TOMINAGA: On s'-unital, s'-unital, and s*-unital rings, Proc. 8th Sympos. on Semigroups (1984), 45-51.
- [12] M. A. QUADRI and M. ASHRAF: Commutativity of generalized Boolean rings, Publ. Math. Debrecen 35 (1988), 73-75.

H. OKAMOTO AND H. KOMATSU

DEPARTMENT OF MATHEMATICS

OKAYAMA UNIVERSITY

J. GROSEN

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

OKAYAMA, 700 JAPAN SANTA BARBARA, CALIFORNIA 93106, U.S.A.

(Received November 30, 1988)