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SOME GENERALIZATIONS OF BOOLEAN RINGS

Hiroaki OKAMOTO, JuLie GROSEN and Hiroaki KOMATSU

Throughout, R will represent a ring with center C. Let N denote the
set of nilpotents in R. and N* the subset of N consisting of all elements in
R which square to zero. Let E be the set of idempotents in R. If EC C
then R is called normal. In case R has 1, we denote by U the multiplicative
group of units of R. Following [10], R is called (E-N) representable, if
each x € R can be written uniquely in the form x = e +a, where ¢ € E and
a € N. Given x € R, we define inductively "' = x, x'* = £* " x, where
x°y=ax+y+xy. In[8], Hirano, Komatsu, Tominaga and Yaqub considered
the following condition which arose, presummably, in connection with logic:
(*) foranyx,y € R, (x+xy)-(y+yx) =0 if and only if x = y,
and proved that R satisfies (*) if and only if R is commutative, R/N is a
Boolean ring and ¢® = 0 for all @ € N (see Theorem 1 below). Obviously,
every Boolean ring satisfies the condition (*). If R has 1, then (*) becomes
(*) foranyx,y € R, (1+x+axy)(1+y+yx) =1 if and only if x = y.
Recently, Grosen [4] gave a number of characterizations of a ring with 1 in
which the condition (*)" holds.

An element x in R is called strongly regular, if there exist y,y € R
such that x’y = x = y'x’. As is well-known, if x is strongly regular, there
exists (uniquely) z € R such that x°z = x, 2% = z and xz = zx ; further-
more, z commutes with every element which commutes with x. We denote by
S the set of strongly regular elements in R. A ring R is called a B'-ring if
S = E. Obviously. every Boolean ring is a B'-ring.

A ring R is called s-unital if x € Rx N zR for all x € R, or equivalent-
ly if for each finite subset F' of R there exists e € R such that ex = x = xe
for all x € F (see [6]). Following [11], R is called an s*-unital ring if
for each x € R there exist ¢’, ¢" € E such that xe’ = x = e'x, or equiva-
lently if for each finite subset F' of R there exists e € E such that eFe = F
(see [11, Corollary 7]). As is easily seen, every s-unital mregular ring is
s*-unital. In what follows, we shall use freely this fact. A ring R is a
cs*-unital ring if for each x € R there exists a central idempotent e such
that ex = x.

Aring R is called an I-ring (resp. N-ring) if every element of R is
expressible as a product of elements in E (resp. N): R is called an NI-ring
(or I'-ring) if every element of R is expressible as a product of elements in
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E U N (see [1] and [7]). Needless to say, every Boolean ring is an I-ring.
Our present objective is to improve several results of Grosen obtained
in [4, §5] and the main theorems of Abu-Khuzam [1] and reprove the main
theorems of [2].
First, as preliminaries, we state the following lemmas.

Lemma 1 ([10, Theorem 4]). The following are equivalent :

1) R is (E-N) representable.

2) R isnormal, and every element of R can be written as a sum of an
idempotent and a nilpotent element.

3) R isnormal and x—x* € N for every x€ R.

4) R isnormal, N is an ideal and R/ N is a Boolean ring.

Lemma 2 ([8, Lemma 5]). Let f(X) = kiX+k X+ +knX™ be a
polynomial in XZ[X] with (ki, ko) = 1. If N satisfies the identity f(X) =
0, then N satisfies the identities X°* = 0 = k' X+ (k.—k\) X2

Lemma 3. If N is closed under = (in particular, if N is an ideal ) and
satisfies the identity X = 0, then N is commutative.

Proof. For any a, bE N, acb=a-(a-b)% b=a%(boa)-b® =

b - a, whence ab = ba follows.

Lemma 4. (1) If R satisfies the identity (X+X*)™® =0, then 8x =
0, =x’andx—x* € N(orx+x* € N) forall x € R. anda’* =0 =a
for all a € N.

(2) If N satisfies the identity (X+X*)® =0, thenda =0 anda’ =0
= a” for all a € N.

Proof. (1) Since 6x’+2x' = (x+x*)*+(—x+(—2))® =0 and 4x
+4x' = (x4+x)P—(—x+(—x))® =0, we get 8x = (4x+4x)(2+12%)—
2(6x*+2x*)x = 0. Further, noting that 2x+ 3x*+ 2x°+x* = (x+x)? = 0,
we can easily see that ¢’ =0 = ¢® for all a € N (Lemma 2). Since (x
+2°)° = [(x+2")"=2(x+2")' = —8(x+x")* = 0, we have (x+x)°=0
(and (x—x*)* = 0) by the above, and therefore x’—x’ = (x+2?)°—(x+
x)%e® = 0.

(2) By the proof of (1), we obtain 8¢ =0 and ¢ = 0 = ¢ for all
a € N. Henceda = —24* =4a*=0.
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Lemma 5. Let x€ R. If2x€ N and x"—x"**" € N for some inte-
gersn> 0 and k= 0, thenx—x* € N.

Proof. As is easily seen,

E+1

k
(x—x) 2" = (x"—2 )P+ LT (—l)i(_zl. )xzhhn-l-.?xz e N.

Hence x—x° € N.

Lemma 6. The following are equivalent :

1) R is normal.

2) Ife, f€ Eand e—f€ N*, thene = /.
In particular, if (*) holds in —E, then R is normal.

Proof. Ife,f € E. ef= feand e—f€ N*, thene—f= (e—f)* = 0.
Conversely, suppose 2). Lete € E, andx € R. Then f= e—ex(1—e) €
Eand e—f= ex(1—e) € N*. Hence we have ex = exe : similarly, xe =
exe. This proves that R is normal. Now, let e, f€ E. Then(—e+(—e)
(—f)) o (=f+(—f)(—e)) = ef+fe—e—f. This enables us to see the latter

assertion.

Corollary 1. Suppose that x’y—y’x€ NN C for all x, y € R\N.
Then x—x* € N for all x € R, and R is normal.

Proof. If x € N, clearly x—a* € N. If x € R\N, then (x—x")x’ =
2 x'—(x*?c e N. Thusx—x* € Nforallx€ R. Now, lete, f€ E and
e—f€ N*. Then ef+fe = e+ fand ef—fe € C, and so e = elef+fe—e
—flete=cfe= efetielef—fe)—(ef—fe)el = —efet+ef+fe= —ete
+f=f. Hence R is normal, by Lemma 6.

Lemma 7. Let R be a ring with 1. If US E+N, then 2 € N. If,
Sfurthermore, R is normal and for each x € R\U there exist integers n> 0
and k = 0 such that x"—x™**" € N, thenx—x' € N for all x € R.

Proof. let —1 =e+a, e€ Eanda& N. Then —(14+a) =e=1,
since —{(14+a) € U. Hence 2= —a & N. If R is normal, then u—u* €
N for any u € U. Now, the latter assertion is clear, by Lemma 5.

We are now ready to complete the proof of our first theorem.
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Theorem 1. The following are equivalent :

1) R satisfies (*).

2) R is commutative, x—x" € N for all x € R (or R/N is a Boolean
ring), and a¥ = 0 for all a € N.

3) Risnormal, x—x" € Nforallx € R, and a® = 0 forall a € N.

4) R is (E-N) representable and a® = 0 for all a € N.

5) R is normal and satisfies the identity (X+ X*)® = 0.

6) R is normal, N satisfies the identity (X+X*)* = 0, and x—x" €
N for all x € R.

7) R is normal, 2R C N, for each x € R there exist integers n> 0
and k = 0 such that x"—x"* € N, and a® = 0 foralla € N.

8) N satisfies the identity (X+X)* = 0, and x’y—y’x € NN C for
all x, y € R\N.

Proof. By Lemma 6, 1) implies 5).

3) = 4) =>2). By Lemma 1, and Lemmas 1 and 3, respectively.

5) = 7) = 3). By Lemma 4 (1), and Lemma 5, respectively.

8) = 6) = 3). By Corollary 1, and Lemma 4 (2), respectively.

1) => 8). We have seen that 1) implies 3) and 2). Hence x’y—y’x =
(x*—x)y—(y*—y)x € Nforall x, y € R.

2)=>1). Letx, y€ R, and put a = x+xy, b = y-+yx. Obviously.
x+x2* € N, and (x+x)® = 0. Conversely, if a- b= 0 then a*+(a+a’)b
=ala-b) =0, and so a* = —(a+d’)b € N. This implies that a € N.
Hence y+xy=0-b=a"b=0a-(a°b) = a-0 = x+xy, whence y=x
follows.

The next includes [4, Theorems 5.5, 5.6 and Corollaries 5.1, 5.3,
5.7] and improves [4, Theorems 5.14, 5.15 and Corollary 5.6].

Corollary 2. Let R be a ring withl. Then the following are equivalent :

1) R satisfies (*).

2) R is commutative, R/N is a Boolean ring, and u* =1 for allu € U
(or 1+a)* =1 forall ae N).

3) Risnormal, x—x' € Nforallx € R, andu® =1 foralluc U.

4) R is (E-N) representable and u* = 1 for all u € U.

5) R is normal and saiisfies the identity (X+X*)* = 0.

6) R is normal, N satisfies the identity (X+X*)" =0, and x—x* €
N for all x € R.

7) R isnormal, 2 € N, and for each x € R there exist iniegers n > 0
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and k = 0 such that x"—x"**" € N, andu> = 1 for all u € U.
8) N satisfies the identity (X+X*)* =0, and x’y—y’x € NN C for
all x, y € R\N.
9) R is normal, U satisfies the identity (X+X*)* =0, and x—x* €
N for all x € R.
10) R is normal, 2 € N, and for each x € R there exists a positive
integer n such that x"—x"** = 0.
11) R is normal, 2 € N, for each x € R there exist integers n > 0 and
k=0 such that x"—x™ " € N. and if u, v € U and u—v € N then v’ =
2
v,
12) R is normal, UC E+N, for each x € R\U there exist integers
n> 0and k= 0 such that "= ™" e N, and ifu, ve Uand u—v € N
then u® = v°.

Proof. Obviously, 1) = 11) and 12). and the equivalence of 1) —10) is
clear by Lemma 4 (1) and Theorem 1.

11) (resp. 12)) => 3). By Lemma 5 (resp. Lemma 7), x—x* € N for
all x € R. In particular, for each u € U, we obtain 1 —u= u'(u—u’) €
N, and so 1 = %

Theorem 2. The following are equivalent :

1) R satisfies (*).

2) 2R C N, and there exists a subset A of R containing NU (—E)
such that (*) holds in A and RN\AC E+N.

3) R is normal. and there exists a subset A of R containing N and

satisfying the identity (X+ X*)* = 0 such that R\—AC E +N.

Proof. By Theorem1, 1) = 2) and 3).

2) = 1), By Lemma 6, R is normal, and so x—x* € N for all x €
R\A. Now, let x € A. Then (x—x°)* = (x+x)’—4x’ = —2(x+x"+ 227
€ N. Hence x—x* € N for all x € R, and therefore R satisfies (*), by
Theorem 1 6).

3) = 1). In view of Theorem 1, it suffices to show that x—x* € N for
all x € R. First, we consider the case that x € A. If —x & A, clearly
x—x*€ N. If —x&€ A then, by the proof of Lemma 4 (1). 8x= 0,
and so 2x € N. Hence (x—x%)° = (x+x°)°'—4x* = —2(z+2"+22°) € N ;
x—x € N. Next, we consider the case that x& A: a= x+x* € N.
Since 2x & A forces a contradiction 2x = 4a—(2x+4x*) € NC A, we
see that 2xr € A. Then (4da—2x)* = (2x+ 42" = —2(2x+4xY) = —2(4a
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—2x), whence 4(x—x*) € N follows. Combining this with x+x’=a €
N, we obtain8x € N, andso 2x* € Nand x—x° = a—2x* € N.

Let R be a ring with 1. A subset A of R is called a weakly normal
subset if for each x € R, either —x or x—1 is in A; a weakly normal
subset A of R is called a normal subset if e, f€E E and e—f & N* imply
—e, —f€ A or —e, —f& A. As is easily seen, if a weakly normal
subset A of R satisfies the identity (X4 X*)® = 0 then R satisfies the same
identity ; if (*) holds in a normal subset A of R then R is normal. (Note
that if e, f € E, then (—e+{(—e)(—f)) o (—f+(—f)(—e)) = eftfe—e—
fand (e—14+(e—1)(f—1)) - (f—1+(f—1)(e—1)) = ef+fe—e—f.)

The next includes [4, Theorems 5.1, 5.2, 5.7, 5.12 and 5.13].

Corollary 3. Let R be aring with1l. Then the following are equivalent :

1) R satisfies (*).

2) 2 € N, and there exists a subset A of R containing NU (—E) such
that (*) holds in A and R\A C E+N.

3) There exists a subset A of R containing UU (—E) such that (*)
holds in A and R\A C E+N.

4) R is normal, and there exists a subset A of R containing N and
satisfying the identity (X+ X*)® = 0 such that R\—A C E +N.

5) There exists a subset A of R satisfying the identity (X+X*)*" =0
such that A2 N, (—A) N EC {0, 1| and every element in R\—A is
uniquely expressible as e+ a withe € Eand a € N,

6) R is normal, and there exists a weakly normal subset A of R satisfy-
ing the identity (X+ X*)*'=0.

7) There exists a normal subset A of R in which (*) holds.

Proof. Obviously, 1) = 2)}—7). By Theorem 2, each of 2) and 4)
implies 1). Further, combining Corollary 2 with the remark stated just
above, we readily see that each of 6) and 7) implies 1).

3) = 1). Obviously, 8 = (1+1%*+2(1+1% =0, and so 2 € N.
Furthermore, R is normal, by Lemma 6. Now, it is easy to see that x—x?
€ N for all x € R. (See the proof of 2} => 1) of Theorem 2.) Hence R
satisfies ( * ), by Corollary 2 9).

5) = 1). By Lemma 6 and Theorem 2.

The next proves the latter part of [2, Theorem 2] and improves [12,
Theorem B].
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Theorem 3. (1) If for each x € R there exists a positive integer n
such that x™' = x", then N is an ideal of R and R/ N is a Boolean ring.
(2) Let R be an s-unital ring. If for each x € R there exists a positive

n+1

integer n such that x"*'—x" € C, then R is commutative.

Proof. (1) In the complete matrix ring M{D ) over a division ring D
with t > 1, (14+ew)™ "' #+ (1+ew)” for each positive integer k. Thus, in
virtue of the structure theorem of primitive rings, we can easily see that
any primitive homomorphic image of R is a division ring. This shows that
R/J is a reduced ring, where J is the Jacobson radical of R. Since J is a
nil ideal, we conclude that /= N and R/N is a Boolean ring.

(2) In virtue of {6, Proposition 1], we may assume that R has 1. Let
x be an arbitrary element in R. Then there exists a positive integer n such
that (1+x)™'—(14+x)"€ C. Since (1+X)"™'—(1+X)"= X—X’fX)
with some fAX) € Z[X]., R is commutative by [5, Theorem 19].

Now, we shall reprove [2, Theorem 1].

Theorem 4. The following are equivalent :

1) R is a Boolean ring.

2) R is an s-unital, n-regular B'-ring.

3) R is an s-unital B'-ring satisfying the identity (X+ X*)'* = 0.

4) R is a cs*-unital B'-ring and an Nl-ring.

5) R isa B'-ring and an I-ring.

6) R is a semiprime I-ring and N* is commutative.

7) R is a semiprime NIl-ring and PI ring, and N* is commutative.

8) R is an s-unital ring, and for each x € R there exists a positive
n+1

integer n such that x™*' = x".

Proof. Obviously, 1) implies 3), 4), 7) and 8).

3) = 2). By Lemma 4 (1).

4) = 5). By [7, Lemma 1].

5) = 1). Let a € N*. and choose e € E with eae = a Then e—a =
(e—a)*(e+a), and e—a € E, whence a = 0 follows. Hence N= 0 and E
is central.

2) = 1). As above, we see that N=0. Now. let x€ R. Then
there exists y € R such that x"yx" = x" for some n. Since x"y and yx"

2n

are central idempotents, we obtain x*"y = x" = yx*". As is well-known,
Y Y.

there exists z € R such that xz = zx and ™'z = ™. Then (x—2x%z)" =

Produced by The Berkeley Electronic Press, 1989



Mathematical Journal of Okayama University, Vol. 31[1989], Iss. 1, Art. 12

132 H. OKAMOTO, J. GROSEN and H. KOMATSU

?=o(—1)i(7;)x"”zi = ZL.,(—I)’(?)x" = (x—x)" = 0, whencex = x’z.

This proves that R is strongly regular, and consequently Boolean.

6) =>1). Letec E. Then (1—e)ReR(1—e)Re = (1—e)R{eR(1—
e)(1—e)Rele=(1—e)R|(1—e)Re-eR(1—e)le = 0, whence (1—e)Re
= 0 follows ; similarly, eR(1—e) = 0. Hence E is central and R is
Boolean.

7) = 6). By [9, Theorem 3], N= 0.

8) = 1). By Theorem 3 (1), it suffices to show that N= 0. Suppose,
to the contrary, that N5 0, and choose a non-zero a in N*. Then there
exists an idempotent e such that ea = ae = a. By hypothesis, there exists
a positive integer n such that (e+a)™"' = (e+a)”. But this forces a con-
tradiction a = 0.

Corollary 4 (cf. [2, Lemma 1(3) and Theorem 2]). IfR is a n-regular

n+1

B'-ring, then for each x € R there exists a positive integer n such that x™ =

x".

Proof. There exists y € R such that x"yx™ = x™ for some m. Then e’
= x™y is an idempotent and e'Re’ is a Boolean ring by Theorem 4 2). Hence
'™y = e'x™e’ is an idempotent, and so x*" = x*"yx" = (x*"y )%™ = ",
This proves that e = x°™ is in E. Again by Theorem 4 2), eRe is a Boolean

ring, and therefore x’"** = ex’ = (exe)’=exe = """,

Finally, we state the following which includes [1, Theorems 1, 2 and 3]

Theorem 5. Let R be an Nl-ring.

(1) If R is Artinian, then N is a nilpotent ideal of R and R/N is the
finite direct sum of copies of GF(2).

(2) IfR is a m-regular PI ring, then N coincides with the prime radical
of R and R/N is a Boolean ring.

(8) If N is commutative, then N is a commutative ideal of R and R/N is
a Boolean ring.

Proof. (1) As is well-known, the Jacobson radical J of R is nilpotent
and R/J is a finite direct sum of matrix rings over division rings. Then, by
[7, Lemma 1], R/J is a Boolean ring and J = N.

(2) This is [7, Corollary 1].

(3) By [3, Theorem 2], N is a commutative ideal of R. Since R/N is
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a reduced I-ring, it is normal and Boolean.
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