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ON THE HIGHER DERIVATIONS OF
COMMUNITIVE RINGS

Dedicated to Professor H. Tominaga on the occasion of his 60th birthday
Sapt ABU-SAYMEH and Masatosu IKEDA

1. Intreduction. In the paper [3]. Y. Nakai pointed out that the n-th
term of any Hasse-Schmidt sequence of higher derivations [2] (an H-S se-
quence for short) of a commtative ring A is an n-th order derivation of A in
the sense of H. Osborn [4]. but the converse is not always the case. He
further raised the question how to characterize the terms of an H-S sequence.
The first author [1] has recently given an answer to this question, under the
assumption that A is a commutative algebra over a field & of characteristic
zero, by giving an explicit formula of the n-th term of an H-S sequence of A
as a non-commutative polynomial of a special type in k-derivations of A. He
has further shown that there is a bijection between the set of all H-S sequences
of A and the direct product of Der,(A), the Lie algebra of all k-derivations
of A. The aim of this note is two-fold: We first give another explicit formula
for the terms of an H-S sequence of A over a field k of characteristic zero
and discuss its relation with the formula given in [1]. We then consider a
special class of k-algebras which includes the case of separably generated
fields, and we show that, for such an algebra A/k, any finite sequence A, =
|D,: r=0,1 nt with D, € Hom,(A, A) satisfying conditions (i) and
(ii) imposed upon H-S sequences can be completed to an H-S sequence of A,

3 eaen

This fact can be interpreted in terms of the embeddings of A into the formal
power series ring A[[T]].

Throughout this note we always understand by a k-algebra a commutative
algebra with unity over a commutative ring k.

A sequence | D,: r =0,1,2,...| with D, € Hom,(A4, A) is called an
H-S sequence of the k-algebra A if (i) D, = id,, and (ii) for every r =1,

DAxy) = i(,) Ds(x)D;_s{y) hold for all x.y € A.
2. The case where k is a field of characteristic zero.

Proposition 1. Let A be an algebra over a field k of characteristic zero,
and 1D,: r=0,1,2....} an H-S sequence of A. Then there is a unique
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sequence {d,: r =1, 2,...| of k-derivations of A such that, for every r =1,
the following equality holds :

) n n
(1) D, —Z'.Wd 'dyt...d,
. L >
where N, = (n,, ny. ..., ns) is a solution of X in; = r, n;’s are non-negative
i=1

integers, Ny!! = n,!n,!...n,!, and the summation is taken over all soluiions
N,. Conversely, if{id,: r = 1,2,...| is any sequence of k-derivations of A,
then the sequence {Dr: v =0,1,2,...| defined by (1) is an H-S sequence
of A.

Proof. We shall prove the first half by induction on 7. The assertion
is true for r = 1. Assume that we have already found a sequence {d,,...,d,_. |
such that (1) holds for all s < r—1. Observe that N, is either (0,...0,1)

r—1
or of the form N; = (n.,..., nr_.. 0), satisfying 2 in; = r.
=
Set

\Z\, N ” dn:dnz dzf z’

P,
d, ,— P

H
o

Further set 8d.(x, y) = d-(xy)—xd(y) —yd,(x) for every x,y € A and
similarly éD,(x, y) and 8P,(ax, ¥). So to prove the assertion it is sufficient
to show that d, is a k-derivation of A. First we have

8D, (x, y) = Dr(xy) —xD:(y) —yD(x) =:.§ Di(x)D;_aly),

then by induction hypothesis we get

= mi 1 1 r—
() e ) = & [Dgppdd (B i)
A
where My = (m,, ..., my) is a solution of }, im; = Aand Ly_» = ({i,..., I;_a)

i=1

—A
is a solution of T;', il; = r— A. Notice that M, and L,_, are not trivial,
-1
i.e. 2om;=+= 0 and 2., #+ 0, and Z} {m+1;) = r if we set m; = 0 for

every A+1 < i< r—1 and /; =0 for every r—A+1 < ; < r—1.
On the other hand by Leibniz formula we have
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Play) = 28, (it dir) [Ty am) )
T Ny mi+ b= M” L"
1<i<T-— 1

Note that M = (mi,..., myr_,) and L =({,,..., l[,—,) may be trivial. So,
separating the terms corresponding to the trivial M or L and the non-trivial
M and L, we get

(**) Prxy) = xP(y)+yP(x)+
> [—},,dm‘ A7y (I)][—L,—,d" d'r’-'l'(y)],

Ny mi+li=n
I<i<sr-1
where ) stands for the sum over the non-trivial M and L.
From ( *) and (**) it is easily seen that dd.(x, y) = 0, which proves
that d, is a k-derivation of A.
To prove the second half we verify condition (ii).

1 n (4
(I) Dr(x,)’) = % .IVT!! dl ---d»r (Iy)

=22, e ea@ ) g i)

1<i<7T

On the other hand,

() 3 Dula)Deosly) =
S (mrer e @ (3, g o))

s=1 Mg Lr-s Lr-s!!

+xDy)+yD.(x)

S
where Mg = (m,, ..., ms) is a solution of 25 im; = sand Ly_s = (L,...., [,-¢)
i=1

r—-8
is a solution of Zl il; = r—s. It is clear that xD,(y) and yD,(x) appear

in (I). Setting M, = (m,,..., ms,0,...,0) and L, = (L1,...,1+_5,0,...,0)
we see that each term in (II) appears in (I). Conversely if M, = (m,,..., m,)

and L, = ({,,..., l;) are given such that i}]ml #+ 0, i": {,#+ 0 and g ilm;+1,)

T T
= r. Setting LZ im;=s and 2 il;,=1r—s, we see that 1 < s < r—1,
=1 =1
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m; =0 forevery s+1 < i< 7, and {; =0 for every r—s+1 < i < r.
Hence each term in (I) also appears in (II).

Remark. Notice that if 1 < r, <-.-< r, such that i‘{ r; =71 then
P
drdr,...dr, can be written uniquely as dz\d7,...dn, where 1 < m, < m, <--
s S
< ms e;s=1, 2, e;= qand 21 e;m; = r. Hence equation (1) in propo-
i=1 i=

sition 1 can be written as

(2) D=3 Elriy .o, 7o)dpdry...dy
q=1 Tit-+Tp=T
]K'{']S"-STq

q

1
.

where E(ri,...,7¢) = ————
€1.€3,...€5.

Thus to each H-S sequence | D,: r = 0| we can associate a unique sequence
{dy: r = 11| of k-derivations such that the equality (2) holds and by the main
theorem in-[1] we can also associate to it the sequence {8-: r = 1| of
k-derivations given by

r (_1)81—1
é\r - Z ZI DTxDTz'~'DTs .
§=1 s Ti+ Ter+Ts=1
Tizt
Hence
.
O =2 2, Clry,.... Tq)dﬂdrz...drq for every r = 1

a=1 Ti++7qg="7

ri=1

where, if 1 < r, < r, <.--< 7,4, we have

Clry,....7q) =
q (_1>s+1
Z‘I - Z E('rl ety TQ1)“'E(’r91+~--+QS—1+1 LA Tq)
8=1 $ Q1+ -+ Qs=q
and if (71, ..., 70) =(T11, cesTiprs cesT2pas coes TypeeensTip ) such that 7y < <y,

for every 1 < i < land r;, > 1441, forevery 1 < i < /—1, then we have
i
Clry,.cci1q) = 1_'I] Clrirseees 7ip,)

i

It is easily seen that for ¢ = 1 we have C(r) = 1 for every r = 1 and
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for ¢ = 2 such that r, = r, =.--r, = m we have

q _1 S+1 1
=2 =07 2 P E—
s=1 S G1++9s=q G1....Q5s.
= coeflicient of x? in the Taylor's expansion
of x = In[1+(e*—1)].

Thus C(m....,m) =0 and C(r,,...,7q) = 0 if there is 1 < i< [ such
that Ty = = = Tip;e

3. Algebras of type H,. Let A be a k-algebra, and let M be a unitary
A-bimodule satisfying the condition am = ma forall e € A, m € M. By a
symmetric 2-cochain of A to M, we understand a k-bilinear map f from AX A
to M such that f(ax, y) = f(y, =) for all x, y € A. A symmetric 2-cochain f
is 2-cocycle if 8,f = 0, where

&f(x, y. 2) = xfly. z)—flay. 2)+fx. y2)—flx, y)2.

Note that, for any 1-cochain g, i.e. for any g € Homy(A, M), &g is a sym-
metric 2-cocycle where &g(x, y) = xg(y)—gl(xy) +g(x)y. So we can speak
of the symmetric 2-cohomology group Hs*(A, M) which is the factor group of
the group of all symmetric 2-cocycles modulo the subgroup of all coboundries
o g with g € Hom,(A, M).

Now if Hs*(A, A) = 0 for a k-algebra A, we say that A is of type H,.
Of course this type of algebras includes (commutative) algebras of cohomo-
logical dimension one. Another example of this type is any field separably
generated over another field. Although this is well-known, we shall give
an elementary proof of this fact.

Before entering into the proof, we insert a remark about symmetric
2-cocycles: If fis a symmetric 2-cocycle, we have f(x, 1)= f(1, x) = xf(1,
1). Putting g{x) = xf(1. 1) for all x € A, we get (8:,g)(a, y)=xy(1, 1),
hence, for f' = f—&.g, we get f(x, 1) = f(1, x) = 0. We say that f' is
normalized.

Lemma 1. Let K be a field separably generated over a field k. Then
every symmelric 2-cocycle f of K to K splits, that is, there is a g € Hom,(K,
K) satisfying f = 6.g.

Proof. We may assume that f is normalized, i.e., f(x, 1) = f(1, x) =
0 for all x € K. Now let M be a K-bimodule isomorphic to the K-bimodule K.
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Then we have xm = mx for all x € K and m € M. We can put a k-algebra
structure on L = KX M by defining operations :

(x, m)+{(x, m') = (x+x, m+m'):
(x, m)(x', m") = (xx', xm'+x'm+fax, x));
alx, m) = (ex, m) for a € k.

Since f is a symmetric 2-cocycle, L is a commutative k-algebra. (1, 0) is
the unity of L, because f is normalized. Furthermore, M ={(0,m): m€ M|
is an ideal of L satisfying M? =0 and L/M = K. Note that if an element
of L is not contained in M, it is invertible in L.

Now if we can construct a subfield K of L in such a way that K is iso-
morphic to K by the projection IIy: L — K, then we are done. To this end,
first choose a maximal purely transcendental subfield £(X) = k(xq: 2 € A)
of K. Then K/k(X) is separable algebraic. Now X = | %, = (xq,0): a € A}
generates a purely transcendental extension E(X) in L which is isomorphic
to k(X) by the projection II,. Let w €K, and let f(T) € KX)[T] bean
irreducible polynominal satisfied by w. Since w is separable the formal
derivative f(T) is not satisfied by w, i.e. f(w)#0. By f(.T) we understand
the polynominal in k(X)[T] obtained by replacing the coefficients of f(T)
by the corresponding elements in &(X). Then, for # = (w, 0), we have
f~(ﬁ~) € M. Furthermore, Filw) & M, hence it is invertible in L. Now we
wish to adjust # by an element @ = (0, m) € M so that f(#w+m) = 0. If
this is possible then w+m = (w, m) generates a finite algebraic extension
of k(X) which is isomorphic to &(X)(w) under the projection IIx. Then
repeating this process, we arrive at a subfield K isomorphic to K by I.
Now the condition for our m = (0, m) is f(ﬁ-’—l—ﬁz) = 0. But, since M* =0,
this condition just takes the form f(#)+f(#)-m = 0. Because f(#) is
invertible, we have a unique # € M satisfying this condition. This completes
the proof.

Lemma 2. Let A be a k-algebra, and D, ={D,: r=10,1,2,...,nl a
sequence with D, € Hom. (A, A) satisfying the conditions (i) and (ii).
Then f(x, y) = Ti_‘,l D(x)Dypyy_o(y) is a symmetric 2-cocycle of A to A.

Proof. flx, y) = f(y, x) is trivial. So we show that &f(x, y, 2) =

xf(y, z)—flxy, z)+f(x, y2)—f(x, y)z vanishes.
By the condition (ii) we can write &f(x, y, 2) in the form
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&flx, ¥, 2)

= g] xDr(y )Dn+l—r(2)'— [g ID’I'(y)Dn-H—r(Z)

n

+ 2 Dix)yDnsr—o(2) + » 5 Ds(x)Dr-s(y)Dnﬂ—r(z)]

5

=1 =2 8=1

+( 2 Di@)3Dacr- o)+ 5 Do) D)2
+ 50 5 Do) Duly) Daror-sl2) | 33 Do) Davr-rly).
Since
33 23 Do(@) Dr-s(3) Dner-o(2)

= Z Du(x)Dv(y)Dw(z)

U+ V+ W=n+1
u*0,2%0, w0

n—1 n—

-3 2 Dy(x) Ds(y) Dpsrr-s(2)

we have &f = 0.

Proposition 2. Let A be a k-algebra of type H,, and Ay, = {Dy: r =
0,1,2,....,n] a sequence with D, € Hom,(A, A) satisfying the conditions
(i) and(ii). Then one can find a D,., € Hom,(A, A) so that An,, =1|D,:
r=0,1,2,...,n+1| still satisfies the conditions (i) and (ii). The choice
of Dpy, is unique up to k-derivations of A. Hence any such D, can be completed
to an H-S sequence D of A.

Proof. By Lemma 2, f(x, y) = ri{ DAx)Dpi\_(y) is a symmetric 2-co-

cycle, hence there is a D,,; € Hom,(A, A) satisfying flx, y) = (8, Dps1){x,
4). But this shows nothing but that the condition (ii) is satisfied by An,;.

Corollary. Let A be a k-algebra of type H,, and A[[T]] the ring of
Jormal power series over A. Then, for any n = 1, any embedding ¢ of A into

A [[TN/{T™) such that Ing(mod{(T)) = A can be lifted to an embedding of
A into A[[T]].
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