Mathematical Journal of Okayama University

Volume 35, Issue 1

1993

Article 16

JANUARY 1993

The Converse of Badrikian's Theorem

Yoshiaki Okazaki* Yasuji Takahashi[†]

Copyright ©1993 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

[†]Okayama University

Math. J. Okayama Univ. 35(1993), 229-234

THE CONVERSE OF BADRIKIAN'S THEOREM

YOSHIAKI OKAZAKI and YASUJI TAKAHASHI

1. Introduction. Let E be a locally convex Hausdorff space and E' be the topological dual of E. Denote by E'_S the dual with the weak * topology $\sigma(E', E)$. Let μ be a cylinder set measure on E'. Then μ is called a continuous cylinder set measure if the characteristic functional

$$\hat{\mu}(x) = \int_{E'} e^{i\langle x, a \rangle} d\mu(a), \ x \in E$$

is continuous on E.

A family $\{\mu_{\alpha}\}$ of cylinder set measures on E' is called equicontinuous if the characteristic functionals $\{\hat{\mu}_{\alpha}(x)\}$ are equicontinuous on E. It is well-known that if E is a nuclear space, then each equicontinuous family $\{\mu_{\alpha}\}$ is tight on E', that is, for every $\varepsilon > 0$ there exists $\sigma(E', E)$ -compact set K such that $\mu_{\alpha}(K) > 1 - \varepsilon$ for every α (Badrikian's theorem, see Badrikian [2], p. 177). We consider the converse problem.

Problem. Let E be a locally convex Hausdorff space. Suppose that each equicontinuous family $\{\mu_{\alpha}\}$ of cylinder set measures on E' is tight on E'_{S} . Then is E nuclear? We shall prove the following affirmative answer.

Theorem. Let p be 0 and <math>E be a barrelled space. If each equicontinuous family of discrete p-stable cylinder set measures on E' is tight on E'_S , then E is nuclear.

2. Preliminaries. The cylinder set measure μ on E' is called a continuous discrete p-stable cylinder set measure on E' if the characterictic functional $\hat{\mu}(x)$ is given by $\hat{\mu}(x) = \exp(-||T(x)||_{\ell_p}^p)$, $x \in E$, where $T: E \to \ell_p$ is a continuous linear operator, $\ell_p = \{(t_n): ||(t_n)||_{\ell_p} = (\sum_{n=1}^{\infty} |t_n|^p)^{1/p} < \infty\}$ and 0 . See Linde [6].

Let F, G be normed spaces and 0 . A linear operator <math>S: $F' \to G'$ is called p-summing if for every $\{a_n\} \subset F'$ with $\sum_{n=1}^{\infty} |\langle x, a_n \rangle|^p < \infty$ for every $x \in F$, it holds that $\sum_{n=1}^{\infty} ||S(a_n)||_{G'}^p < \infty$. Each p-summing operator is q-summing for p < q. See Schwartz [11].

Let E be a locally convex Hausdorff space. For a closed absolutely convex neighborhood U of 0, we set $N(U) = \{x \in E : p_U(x) = 0\}$ where

 $p_U(x) = \inf\{t > 0 : x \in tU\}$. Denote by x(U) the equivalence class corresponding to $x \in E$ in the quotient space E(U) = E/N(U). E(U) is a normed space with norm $p[x(U)] = p_U(x)$ for $x \in E$.

For a closed absolutely convex bounded subset A of E, we set $E(A) = \{x \in E : x \in tA \text{ for some } t > 0\}$. E(A) is a linear subspace of E. We put the norm on E(A) by $p_A(x) = \inf\{t > 0 : x \in tA\}$ for $x \in E(A)$.

For a neighborhoods U of 0 in E, the polar $U^{\circ} = \{a \in E' : |\langle x, a \rangle| \le 1 \text{ for every } x \in U\}$ is weakly compact absolutely convex subset of E'_S . The normed space $E'(U^{\circ})$ is a Banach space and $E(U)' = E'(U^{\circ})$ by the duality $\langle x(U), a \rangle = \langle x, a \rangle$.

For zero neighborhoods U, V with $V \subset U$ we define a canonical mapping $E(V, U): E(V) \to E(U)$ by associating x(U) with x(V). For two closed absolutely convex bounded subsets A and B with $A \subset B$, it holds that $E(A) \subset E(B)$ and the canonical mapping $E(A, B): E(A) \to E(B)$ is defined by E(A, B)(x) = x for $x \in E(A)$.

A locally convex Hausdorff space E is called nuclear if it has a fundamental system $U_F(E)$ of zero neighborhoods which has the following property (see Pietsch [8], 4.1.2):

For each $U \in U_F(E)$ there exists $V \in U_F(E)$ with $V \subset U$ such that the canonical mapping $E'(U^{\circ}, V^{\circ}) : E'(U^{\circ}) \to E'(V^{\circ})$ is 2-summing.

For the theory of locally convex space, we refer to Schaefer [10].

3. Converse of Badrikian's theorem. We consider the converse of Badrikian's theorem as formulated in Section 1.

Lemma 1. Let E be a barrelled space, F be a Banach space and $0 . Let <math>\pi : E \to F$ be a continuous linear mapping and $\pi' : F' \to E'$ be the adjoint of π . Suppose that for each equicontinous family of discrete p-stable cylinder set measures $\{\mu_{\alpha}\}$ on F', the image $\{\pi'(\mu_{\alpha})\}$ is $\sigma(E', E)$ -tight on E'_S . Then there is a zero neighborhood U of E such that for each continous discrete p-stable cylinder set measure μ on F', $\pi'(\mu)$ is $\sigma(E'(U^{\circ}), E(U))$ -Radon on $E'(U^{\circ})$.

Remark 1. If the assumption of Lemma 1 is satisfied, then for every continous p-stable cylinder set measure on F', by the 0-1 law of the p-stable measure (Dudley and Kanter [3]), there exists a zero neighborhood

 $V = V(\mu)$ which depends on each μ such that $\pi'(\mu)(E'(V^{\circ})) = 1$. This lemma asserts that V is independent of each continuous p-stable cylinder set measure μ .

Proof. Let $B=\{T: T \text{ is a continous linear operator from } F \text{ to } \ell_p \text{ with norm } ||T|| \leq 1\}$. Consider the equicontinous family $\{\mu_T: T \in B\}$, where $\hat{\mu}_T(y) = \exp(-||T(y)||_{\ell_p}^p)$, $y \in F$. Then the family $\{\pi'(\mu_T): T \in B\}$ is $\sigma(E', E)$ -tight. There exists a $\sigma(E', E)$ -compact set K such that $\inf\{\pi'(\mu_T)(K): T \in B\} > 0$. Since E is barrelled, there exists a zero neighborhood U such that $K \subset U^\circ$. By the 0-1 law (Dudley and Kanter [3]), it follows that $\pi'(\mu_T)(E'(U^\circ)) = 1$ for every $T \in B$. For every continous p-stable cylinder set measure μ on F' with $\hat{\mu}(y) = \exp(-||S(y)||_{\ell_p}^p)$, where $S: F \to \ell_p$ is a continous linear operator, we have $\pi'(\mu)(E'(U^\circ)) = 1$. In fact, for μ_1 with $\hat{\mu}_1(y) = \exp(-||S_1(y)||_{\ell_p}^p)$ where $S_1(y) = S(y)/||S||$, $||S_1|| = 1$, it holds that $\pi'(\mu_1)(E'(U^\circ)) = 1$. Since $\pi'(\mu)$) is the image of $\pi'(\mu_1)$ by the constant multiple: $a \to ||S||a$, we have $\pi'(\mu)(E'(U^\circ)) = 1$. This proves the lemma.

Lemma 2. Let F, G be Banach spaces, $\psi: G \to F$ be a continous linear mapping and $\psi': F' \to G'$ be the adjoint of ψ . Let $0 and <math>(a_i) \subset F'$ be $\sum_{i=1}^{\infty} |\langle x, a_i \rangle|^p < \infty$ for every $x \in F$. Let μ be a continous discrete p-stable cylinder set measure on F' with $\hat{\mu}(x) = \exp(-\sum_{i=1}^{\infty} |\langle x, a_i \rangle|^p)$. Suppose that the image $\psi'(\mu)$ is $\sigma(G', G)$ -Radon on G'_S . Then it holds that $\sum_{i=1}^{\infty} ||\psi'(a_i)||_{G'}^p < \infty$.

Proof. We follow Linde [6], Cor. 6.5.2 and Maurey [7], Prop. 2b). For every N let λ_N , τ_N be the cylinder set measures on G' with

$$\hat{\lambda}_N(z) = \exp(-\sum_{n=1}^N |\langle z, \psi'(a_n) \rangle|^p)$$

$$\hat{\tau}_N(z) = \exp(-\sum_{n=N+1}^\infty |\langle z, \psi'(a_n) \rangle|^p), \ z \in G.$$

Then we have $\lambda_N * \tau_N = \psi'(\mu)$, where * denotes the convolution. By the manner same to Hoffmann-Jørgensen [4], Th. 2.6, it holds that for every q < p

$$\int_{G'} ||a||_{G'}^q d\lambda_N(a) \le K \int_{G'} ||a||_{G'}^q d\psi'(\mu)(a),$$

where $K = 2^{1-q}$ for 0 < q < 1 and K = 1 for $q \ge 1$. Let $\{f_n(\omega)\}$ be a sequence of independent identically distributed symmetric p-stable random variables on a probability space (Ω, P) with the characteristic functional

 $e^{-|t|^p}$. Let q be fixed such that 0 < q < p. For every N, we set

$$S_N(\omega) = \sum_{n=1}^N \psi'(a_n) f_n(\omega).$$

 S_N is a random variable which values in a finite-dimensional subspace of G' and the distribution of S_N is λ_N . If we set

$$H_N(\omega) = \max_{1 \le n \le N} ||\psi'(a_n) f_n(\omega)||_{G'}$$

then by Kwapien [5], Remark 1, it follows that

232

$$\int_{\Omega} H_N(\omega)^q dP(\omega) \leq 8C^2 \int_{\Omega} ||S_N(\omega)||_{G'}^q dP(\omega)$$
$$= 8C^2 \int_{G'} ||a||_{G'}^q d\lambda_N(a),$$

where C = 1 for 0 < q < 1 and $C = 2^{q-1}$ for $q \ge 1$. Consequently, we have

$$\int_{\Omega} H_N(\omega)^q dP(\omega) \leq 8C^2 K \int_{G'} ||a||_{G'}^q d\psi'(\mu)(a).$$

Since $\psi'(\mu)$ is a *p*-stable $\sigma(G', G)$ -Radon measure on G' and 0 < q < p, we have

$$L = \int_{G'} ||a||_{G'}^q d\psi'(\mu)(a) < \infty$$

(see de Acosta [1], Linde [6], Cor. 6.7.5). Thus we have

$$\int_{\Omega} \max_{1 \le n \le N} ||\psi'(a_n) f_n(\omega)||_{G'}^q dP(\omega) \le 8C^2 KL < \infty$$

for every $N=1,\ 2\cdots$. Letting $N\to\infty$, we have

$$\int_{\Omega} \sup_{n} ||\psi'(a_n f_n(\omega))||_{G'}^q dP(\omega) < \infty.$$

Hence there exists R > 0 such that

$$\begin{split} & P(\omega: \sup_{n} ||\psi'(a_n f_n(\omega))||_{G'} \le R) \\ & = \prod_{n=1}^{\infty} \{1 - P(\omega: ||f_n(\omega)|| > R/||\psi'(a_n)||_{G'})\} > 0, \end{split}$$

where we have used the independence of $\{f_n(\omega)\}$. This implies that

$$\sum_{n=1}^{\infty} P(\omega: |f_n(\omega)| > R/||\psi'(a_n)||_{G'}) < \infty.$$

We remark that for every n,

$$\int_{\Omega} ||\psi'(a_n) f_n(\omega)||_{G'}^q dP(\omega) = ||\psi'(a_n)||_{G'}^q \int_{\Omega} |f_n(\omega)|^q dP(\omega)$$

$$\leq 8C^2 K L,$$

that is, $\sup_{n} ||\psi'(a_n)||_{G'} < \infty$. Furthermore, it is known that $P(\omega : |f_n(\omega)| > t) \sim t^{-p}$ as $t \to \infty$, so we obtain for sufficiently large R,

$$|P(\omega: |f_n(\omega)| > R/||\psi'(a_n)||_{G'}) \sim ||\psi'(a_n)||_{G'}^p/R^p.$$

Hence it follows that $\sum_{n=1}^{\infty} ||\psi'(a_n)||_{G'}^p < \infty$.

Lemma 3. Let F, G be Banach spaces and $0 . Let <math>\psi$: $G \to F$ be a continous linear mapping and ψ' : $F' \to G'$ be the adjoint of ψ . Suppose that for every continous discrete p-stable cylinder set measure μ on F', the image $\psi'(\mu)$ is $\sigma(G', G)$ -Radon. Then ψ' : $F' \to G'$ is p-summing.

Proof. For each $(a_i) \subset F'$ with $\sum_{i=1}^{\infty} |\langle y, a_i \rangle|^p < \infty$ for every y in F, let μ be a continous p-stable cylinder set measure on F' satisfying $\hat{\mu}(y) = \exp(-\sum_{i=1}^{\infty} |\langle y, a_i \rangle|^p)$. Then $\psi'(\mu)$ is $\sigma(G', G)$ -Radon. By Lemma 2, it follows that $\sum_{i=1}^{\infty} ||\psi'(a_i)||_{G'}^p < \infty$, which proves the assertion.

Theorem 1. Let E be a barrelled space and p be $0 . Suppose that each equicontinous family of discrete p-stable cylinder set measures on <math>E_S'$ is $\sigma(E', E)$ -tight. Then E is nuclear.

Proof. Let $\{U_{\alpha}\}$ be a fundamental system of zero neighborhoods of E. Let α be arbitrarily fixed. For every continous linear operator $T: E(U_{\alpha}) \to \ell_p$, let μ_T be the corresponding continous discrete p-stable cylinder set measure on $E'(U_{\alpha}^{\circ})$ with $\hat{\mu}_T(x) = \exp(-||T(x)||_{\ell_p}^p)$, $x \in E(U_{\alpha})$. Let $\tau_{\alpha}: E'(U_{\alpha}^{\circ}) \to E'$ be the canonical injection. Then by the assumption, image $\tau_{\alpha}(\mu_T)$ is $\sigma(E', E)$ -Radon on E'_S . By Lemma 1, there exists $\beta = \beta(\alpha)$ with $U_{\beta} \subset U_{\alpha}$ (depends only on α , not on each T) such that for every continous p-stable cylinder set measure μ on $E'(U_{\alpha}^{\circ})$, $\tau_{\alpha}(\mu)$ is Radon on $E'(U_{\beta}^{\circ})$. By Lemma 3, the canonical injection $E'(U_{\alpha}^{\circ})$, U_{β}° is p-summing and also 2-summing since p < 2. This completes the proof.

Remark 2. In Theorem 1, the barrelledness is essential. Let τ_S be the Sazonov topology on the infinite-dimensional Hilbert space H. Then

234

Y. OKAZAKI and Y. TAKAHASHI

 τ_S is not nuclear but each τ_S -equicontinous family of cylinder set measures is tight, see Sazonov [9].

REFERENCES

- [1] A. de ACOSTA: Stable measures and seminorms, Ann. of Prob., 3(1975), 865-875.
- [2] A. BADRIKIAN: Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques, L. N. in Math. 139, Springer-Verlag, New York-Heidelberg-Berlin 1970.
- [3] R. M. DUDLEY and M. KANTER: Zero-one laws for stable measures, Proc. of A. M. S., 45(1974), 245-252.
- [4] J. HOFFMANN-JØRGENSEN: Sums of Banach space valued random variables, Studia Math., 52(1974), 159-186.
- [5] S. KWAPIEN: Sums of Banach space valued random variables, Séminaire Maurey-Schwartz 1972/1973, N° VI, École Polytechnique.
- [6] W. LINDE: Probability in Banach Spaces-Stable and Infinitely Divisible Distributions, John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore 1986.
- [7] B. MAUREY: Espaces de cotype p, 0 , Séminaire Maurey-Schwartz 1972/1973, N° VII, École Polytechnique.
- [8] A. PIETSCH: Nuclear Locally Convex Space, Ergebnisse der Math. 66, Springer-Verlag, New York-Heidelberg-Berlin 1972.
- [9] V. V. SAZONOV: A remark on characteristic functionals, Theory of Prob. and its Appl., 3(1958), 201-205.
- [10] H. H. Schaefer: Topological Vector Space, Graduate Texts in Math. 3, Springer-Verlag, New York-Heidelberg-Berlin 1971.
- [11] L. SCHWARTZ: Applications p-sommantes et p-radonifiantes, Séminaire Maurey-Schwartz 1972/1973, N° III, École Polytechnique.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
KYUSHU INSTITUTE OF TECHNOLOGY
AND
SCHOOL OF HEALTH SCIENCES
OKAYAMA UNIVERSITY

(Received November 27, 1992)

CURRENT ADDRESS OF Y. TAKAHASHI:
DEPARTMENT OF SYSTEM ENGINEERING
OKAYAMA PREFECTURAL UNIVERSITY