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Let R be a ring with unit element. A (unital) left R-module Q is called
pure-injective if, for any left R-module A and a pure submodule B of A, every
homomorphism B = Q can be extended to a homomorphism A = Q, or equiva-
lently, if, for any left R-module M which contains Q as a pure submodule, @
is a direct summand of M. Warfield proved in [4, Theorem 2] that the notion
of pure-injective R-modules coincides with the notion of algebraically compact
R-modules, where a left R-module Q is called algebraically compact if, given
a row-finite I X J-matrix [a;] over R and a vector [q.] in Q’, the system of
linear equations f;', ayx; = q (i € I) is solvable in Q whenever it is finitely

solvable in Q. Warfield gave an elegant proof to the theorem by using the
theory of compact Abelian groups. Since however both the notions are purely
algebraic, it is desirable to prove the theorem without using the topological
concept of compactness. In the following, we shall give an algebraic proof
to the theorem. Our proof seems somewhat lengthy, but the point is to prove
that, for any right R-module M, M* = Hom ,(M, U) is always an algebraically
compact left R-module, where U is the factor group of the additive group Q
of rational numbers modulo its subgroup Z of integers.

Proposition 1. Let Q be a left R-module. Then the following conditions
are equivalent :

(1) @ is algebraically compact ;

(2) IfAis aleft R-module, B a submodule of A and h: B— Q a homo-
morphism such that, for any finitely generated submodule B, of B, the restric-
tion of h to By can be extended to a homomorphism A = Q, then h itself can be
extended to a homomorphism A - Q;

(3) The condition (2) holds for all free left R-modules A :

(4) If A, Bare left R-modules, n: B~ A a homomorphism and h: B —
Q a homomorphism such that, for any finitely generated submodule B, of B,
there exists a homomorphism f, : A = Q for which the restrictions of foon and
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h to By coincide, then there exists a homomorphism f: A = Q such that fon =
h.

Proof. (4)=>(2) and (2) =>(3) are clear. (2)=>(4) : Assume (2), and
let A, B, 7, h be modules and homomorphisms satisfying the assumption in (4).
Let K be the kernel of 7, and c an arbitrary element of K. Then there exists
a homomorphism g: A = @ such that the restrictions of go7 and h to the
cyclic submodule Re coincide, i.e., g(n(c)) = h(c). But since 5(c) = 0, it
follows h{c) = 0. Thus K is contained in the kernel of 4, and so h can be
regarded as a homomorphism B/K = Q. On the other hand, B/K can be re-
garded as a submodule of A by identifying the coset b+ K with 5(b) for each
b € B. Let (B,+K)/K be any finitely generated submodule of B/K, where
B, is a suitable finitely generated submodule of B. Then there exists a homo-
morphism f; : A = Q such that the restrictions of fyo 7 and & to B, coincide,
or what is the same thing, f, is an extension of the restriction of h: B/K -~ Q
to (Bs+K)/K. Therefore, by our assumption, & can be extended to a homo-
morphism f: A = Q, which means that fon = h.

(3)=(2) : Assume (3). Let A be an arbitrary left R-module, B a sub-
module of A and A: B— @ a homomorphism satisfying the assumption in (2).
Let F be a free left R-module having an epimorphism 7: FF = A. Let G be the
inverse image 2~ '(B) of B and p the restriction of #to G. Then p is an epi-
morphism G = B. Let G, be a finitely generated submodule of G. Then B, =
0(Gs) (= 7(G,)) is a finitely generated submodule of B. Let ho be the restric-
tion of A to Bo. Then ho can be extended to a homomorphism g, : A = Q. Let
00 be the restriction of o to Go. Then ho 0 0o : Go = Q is the restriction of
hop: G—= Q to Go, while goon: F— Q is an extension of A o ps. There-
fore, by assumption, hop can be extended to a homomorphism f: F— Q. If
K denotes the kernel of # then K C G and so we have f(K) = h(o(K)) =
R(0) = 0. Since x is an epimorphism, this implies the existence of a homo-
morphism g: A = Q such that gor = f. Since p is an epimorphism, this
implies that g is an extension of h.

(1) =>(3) : Let F be a free left R-module. We may assume that F = R
for some set J. Let [x,] be any (column) vector in Q’. Then, by associating
each (row) vector (r,) € F with (7,)[xz;] = 2 7,x, € Q. we have a homomor-
phism F = Q. Conversely, let f: F = Q be any homomorphism. Then, as
is well-known, there is a unique vector [x,] € @’ such that f(r,) = (r,)[x,]
for all (r,) € F. Let G be a submodule of F, and let g: G — Q be a homo-
morphism such that its restriction to any finitely generated submodule of G is
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extended to a homomorphism F = Q. Let {x,|i € Il be a system of genera-
tors of G, and denote by a;, the j-th entry of x;. Let 2 = [a;;] be the row-
finite IX J-matrix over R whose (i, j)-entry is a;;, or what is the same thing,
whose i-th row is g;. Put further q; = g(u;) for each i € I. Now assume
(1). Let I, be any finite subset of I, and let G, be the finitely generated sub-
module of G generated by | ;| i € L}. Then the restriction of g to G, is ex-
tended to a homomorphism f, : F = Q. Let [z%] € Q’ be the vector corre-
sponding to f,. Then it satisfies @;[x]] = 2J aux) = q: for all i € I,. Since
Q is algebraically compact, there exists a vector [x,] € Q” such that x;[x,] =
20 ayxi = q, for all i € I, or equivalently, u{x;] = [q.]. Let f: F— Q be
the homomorphism corresponding to [x,]. Then we have f(x;) = g for all
i € I. This means that f is an extension of g, since G is generated by | 1|
i € Il and g(py) = q; for all i € I

(3)=>(1) : Let ¢ = [a;s] be a row-finite I X J-matrix over R and [q.] a
vector in Q' such that the equation u[x;] = [q.]. i.e., the system of linear
equations 2 aux; = q: for i € I, is finitely solvable in Q. Consider the free
left R-module F= R" and its submodule G generated by | u| i € I}, where
(i is the i-th row of u. Let (rs) be a vector in R" such that t}; ripn = (re)p =

0. There exists a finite subset I' of I such that r: = 0 whenever i & I' (since
(re) € R™). Then the last equality actually means that iZ: ripr = 0. There
=

exists however a vector [x;] € Q” such that w[x;] = q« for all { € I'. Then
we have 121 riq =i§ riqi = ;} riyu[x;] = 0. This fact implies that there
€ d ier

exists a unique homomorphism g: G = Q such that g(w:) = q: forall i € I.
Let I, be any finite subset of I, and let G, be the finitely generated submodule
of G generated by { :| i € I]. Then there exists a vector [x}] € Q" such that
wlxf] = qi for all i € I,. Let f, : F— Q be the homomorphism correspond-
ing to [xf]. Then we have fo(x:) = ¢: for all { € I,. This shows that f, is
an extension of the restriction of g to G,. If we notice that every finitely
generated submodule of G is contained in G, for a suitable (finite subset) I,,
we know that the restriction of g to any finitely generated submodule of G is
extendable to a homomorphism F = Q. Now assume (3). Then g can be ex-
tended to a homomorphism f: F = Q. Let [x;] € Q" be the vector corres-
ponding to f. Then it satisfies w:[x;] = q: for all ; € I. Thus Q is algebrai-
cally compact.

Proposition 2. Let S be a ring and let Q be an algebraically compact
left S-module. Let M be a two-sided S-R-module. Then Homs(M, Q) is an
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algebraically compact left R-module.

Proof. Let A be a left R-module. Then there is a well-known natural
isomorphism (A ) : Homg( A, Homs(M, Q)) = Homs(M®x A, Q) such that if
f € Homs(A, Homs(M, Q)) and ¢ = o(A)f € Homs(M &= A, Q) then they
satisfy (f(a))(x) = p(x ® a) for all a € A and x € M([2, Theorem 2.8]).
Let Bbe a submodule of A. Let x be the inclusion map B— A and let 7 =
M® x: M@z B—» MQr A. Then we have the following commutative dia-

gram:
Homg( A, Homs(M, Q))—ﬂ‘*HOms(M @R A, Q)
Hom(x, Homs(M, Q)) lHOIn(U, Q)
a(B)

Homg( B, Homs(M, Q )) ——— Homs(M ®: B, Q),

where Hom(x, Homs(M, Q)) is nothing but the restriction map. Let 2 € Homg
(B, Homs(M, Q)) be such that its restriction to any finitely generated sub-
module of B is extendable to a homomorphism A = Homs(M, Q) (i. e., to an
element of Homs(A Homs(M, Q)). Let ¢ = o(B)h € Homs(M @ B, Q). Let
E be a finitely generated submodule of the left S-module M & B generated by,
say, ei,es,..., en. If we choose a suitable finite number of elements x,, x2, ...,

m
xm of M,each e; (j = 1,2,...,1n) is expressed as e, = iZ:l x @ b with by €

B, where @' means the tensor product in M @z B. Let B, be the submodule
of B generated by mn elements {bi;|]1 < i < m, 1 < j <nl|. Then the re-
striction of A to B, is extended to a homomorphism f, € Homg(A, Homs(M,
Q)). Let

$o= O'(A)fo S HomS(M®R A,Q)-
Then we have

o) = 2 9 ® bu) = 35 (h(be)) (@) = 3 Yalbe) ) =

30y ® bu) = 252 ® bu) = 2, R m® bu) = p,(n(e)

i=1

for j = 1,2, n.

This means that the restrictions of both ¢ and @, 07 to E coincide. Since Q
is an algebraically compact left S-module, there exists a ¢ € Homs(M &; A,
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Q) such that po7n = ¢ by Proposition 1. Let f € Homg(A, Homs(M, Q)) be
the homomorphism corresponding to ¢, i.e., 6(A) f = @. Then we have (f(b))(x)
=px®b) = Hx® b) = (h(b))(x) for all b€ B and x € M. This
implies that f is an extension of A. Thus xHoms(M, Q) is algebraically com-
pact again by Proposition 1.

Let U be the factor group of the additive group @ of rational numbers
modulo its subgroup Z of integers. For any (additive) Abelian group A, we
define A* =Hom(A, U) and call it the dual of A. If ¢: A » Bis a homo-
morphism then we define p* = Hom(p, U) : B* = A* and call it the dual of
@. Since U is an injective cogenerator as a Z-module, ¢ is a monomorphism
or an epimorphism if and only if * is an epimorphism or a monomorphism
respectively ([2, Lemma 3.34]). Also, that U is a cogenerator implies that
by associating each @ € A with the mapping ¥ = x(a), ¥ € A*, we have a
monomorphism A4 : A = A**, so that we may regard A as a subgroup of A**
by identifying each a € A with A«(a). If A is a left or right R-module then
A* becomes a right or left R-module respectively. If ¢: A > B is an R-
module homomorphism then ¢* : B* —» A* is also an R-module homomorphism.
Moreover, if A is an R-module then the canonical embedding A,: A = A**
is also an R-module monomorphism.

The following proposition is more or less known, but we shall give a
proof for completeness :

Proposition 3. Let A be a left R-module and B a submodule of A, and
let x : B— A be the inclusion map. Then the following conditions are equiva-
lent :

(1) BispureinA;

(2) The epimorphism x* : A* > B* splits;

(3) B* ® x: B* @z B~ B* Qx A is a monomorphism ;

(4) Hom(x, M*) : Homs(A, M*) = Homg(B, M*) is an epimorphism for
all right R-modules M ;

(5) There exists a homomorphism A = B** which fixes B element-wise,
when B is regarded as a submodule of B** canonically.

Proof. Let M be a right R-module. Then we have a natural isomorphism
o(A) : Homgz(A, Hom(M, U)) = (M Qx A)* = Hom(M @: A, U) as was con-
sidered in the proof of Proposition 2 (by replacing the situation (A4, sMx, sQ)
by (rA, zMz, zU)). This isomorphism makes the following diagram commuta-
tive :
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Homa(4, M%) —2 4 (v @, 2 )*

l Hom(x, M*) (M ® x)*
HomR(B, M*) U(B) (M ®R B)*-

Similarly, by considering the situation (Mz, Az, Uz), we have another natu-
ral isomorphism 7(A ) : Hom(M, A*) = (M @z A)*, which makes the follow-

ing diagram commutative :

Home(M, A%)—=A)__ (v @, 4)*
l Hom(M, »*) ' (M® x)*
Homa(M, B¥)— L (3 @ B)*.

Now M ® x: M Qr B— M@ Ais a monomorphism if and only if (M ®
x)* is an epimorphism. But the commutativty of the first and the second dia-
grams implies that the conditions that (M ® x)* is an epimorphism, that Hom
(x, M*) is an epimorphism and that Hom(M, x*) is an epimorphism are equiv-
alent. In particular, the condition (3) and the condition that Hom(B*, x*):
Homgz(B*, A*) - Homz(B*, B*) is an epimorphism are equivalent. But the
last condition is the same as the condition (2). On the other hand, the condi-
tion (2) is also equivalent to the condition that Hom(M, x*) is an epimorphism
for all right R-modules M, and therefore (2) is equivalent to the condition (1)
as well as to the condition (4).

Finally, combining the above two diagrams, we consider the following
commutative diagram for M = B* :

A)' o(A
Hom;(A, B**) T(4)7 o(4) Homg(B*, A*)
| Hom(x, B**) Hom(B*, x*)
Y 7(B)™" ¢(B)
Homg(B, B**) >»Homg(B*, B*).

Let As be the canonical embedding B— B**. Let ¢ = o(B)As € (B* Qx
B)* and let ¢ = 7' (B) ¢ € Homx(B*, B*), i.e., ¢ = 7(B)p. Then we
have (As(b))(w) = Hw ® b) = (p(w))(b) for every w € B* and b € B.
But clearly (As(b))(w) = w(b) and so we have w (b)) = (@(w))(b), which
implies that w = ¢(w ) for all @ € B*, i.e., ¢ = 1, the identity map of B*.
Thus we know in the lower row of the above diagram there corresponds to
As € Homg(B, B**) the identity map 1 € Homg(B*, B*), and therefore A
is in the image of Hom(x, B**) if and only if 1 is in the image of Hom(B?*,
x*), which means nothing but that (5) and (2) are equivalent.
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Corollary 4. For every right R-module M, its dual module M* is a
pure-injective left R-module.

This is an immediate consequence of the implication (1) =>(4) in Propo-
sition 3.

Corollary 5. For every left R-module B, B is pure in its double dual
B**,

This follows from the implication (6) =>(1) in Proposition 3 applied to
A = B**,

Remark 1. The equivalence (1) and (2) in Proposition 3 is a theorem
of Stenstrém. Indeed, this theorem and above Corollaries 4 and 5 are given
in [3] as Exercises 40, 42, 41 (p.48) respectively with hinted proofs.

Remark 2. Proposition 3 and its Corollaries 4, 5 remains true even if
Uis, as a Z-module, assumed to be any injective cogenerator, i.e., U is a
divisible Abelian group containing Q/Z, as can easily be seen.

We now prove the following theorem of Warfield :

Theorem 6. Let Q be a left R-module. Then the following conditions
are equivalent :

(1) Q is pure-injective :

(2) Q is algebraically compact ;

(3) Qis adirect summand of the dual M * of some right R-module M ;

(4) Q is a direct summand of Q**.

Proof. (4)=>(3) is clear.

(1)=>(4) : Assume (1). Since Q is pure in Q** by Corollary 5, @ must be
a direct summand of Q**.

(3)=>(1) : Assume (3). Since M* is pure-injective by Corollary 4, its
direct summand @ is also pure-injective.

(3) =>(2) : Since U is an injective Z-module, U is an algebraically com-
pact Z-module by (the implication (2) =>(1) in) Proposition 1. Therefore,
for any right R-module M, the left R-module M * = Hom(M, U) is algebrai-
cally compact by Proposition 2. It is easy to see that every direct summand
of an algebraically compact module is algebraically compact too. Thus Q is
algebraically compact.
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(2)=>(4) : Assume (2). Let 2 = [a:;] be a row-finite I X J-matrix over
R and [q]] € Q' a vector such that the system of linear equations Z ax; =
g: (i € I) has a solution [x;] in (Q**)”. Let I, be any finite subset of I
Since u is row-finite and @ is pure in Q**, there exists a vector [y}] € Q”
such that 2 a:sy7 = q: for i € I,. Therefore, by the algebraic compactness

of Q, there exists [y;] € Q” such that Z,: aiyy; = q¢ for { € I. Thus we know
that Q is u-pure in @** for all row-finite matrix x over R. By [1, Propo-
sition 1], this implies that the natural epimorphism Q** = Q**/Q is M-pure

for all left R-modules M, which means that the epimorphism splits, i.e., Qis
a direct summand of Q**. This completes the proof of our theorem.

Acknowledgement. The author gratefully acknowledges the support from
Forschungsinstitut fiir Mathematik, ETH, Ziirich, Switzerland.

REFERENCES

1] G. Azumava : Finite splitness and finite projectivity, to appear in J. Algebra.
] J. J. RoTMAN : Notes on Homological Algebra, van Nostrand Reinhold, New York-London,
1970.

[3] B. STENSTROM : Rings of Quotients, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
[4] R. B. WARFIELD, JR.: Purity and algebraic compactness for modules, Pacific J. Math. 28
(1969), 699—1719.

ForscHUNGSINSTITUT FUR MATHEMATIK, ETH-ZENTRUM
CH-8092, ZURICH, SWITZERLAND
AND
DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSDITY
BroomingToN, INDIANA 47405, U. S. A.

(Received February 10, 1986)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 28/iss1/8



