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Abstmcl- Reinforcement learning is an adaptive and 
flexible control method for autonomous system. In our 
previous works, we had proposed a reinforcement learning 
algorithm for redundant systems: "Q-learning with dynamic 
structuring of exploration space based on GA (QDSEGAY, 
and applied it to multi-agent systems. However previous 
works of the QDSEGA have been restricted to homogeneous 
agents. 

In this paper, we extend our previous works of multi- 
agent systems, and propose a hybrid autonomous control 
method for heterogeneous multi-agent systems. To demon- 
strate the effectiveness of the proposed method, simulations 
of transportation task by 10 heterogeneous mobile robots 
have been carried out. As a result effective behaviors haw 
been obtained. 

I. INTRODUCTION 

Reinforcement learning [ l ]  can be an adaptive and 
flexible control method for autonomous system. It does 
not need priori knowledge; behaviors to accomplish given 
tasks are obtained automatically by repeating trial and 
error. However, as increasing complexity of the system, 
the learning costs are increased exponentially. So appli- 
cation to the complex systems, like a many redundant 
degrees of freedom robot and multi-agent system, is very 
difficult. In the previous works in this field, applications 
were restricted to simple robots and small size multi- 
agent systems, and because of restricted functions of the 
simple systems that have less redundancy, effectiveness 
of reinforcement learning is restricted, and as a result 
the abilities (autonomy, adaptability, flexibility) of the 
previous autonomous system were also restricted. 

In our previous works, we bad taken these problems 
into consideration, and had proposed new reinforcement 
learning algorithm, "Q-learning with dynamic structuring 
of exploration space based on GA (QDSEGA)[2], [3l". 

The QDSEGA is designed for redundant systems and 
has two class layered structures with one upper agent and 
many lower agents. The upper agent is a centralized con- 
troller of the lower agents and lower agents are distributed 

controller of real hardware. The upper agent learns how 
to control the lower agents using reinforcement learning, 
and lower agents control real hardware to realize desired 
states that are given by upper agent. 

Effectiveness of QDSEGA for redundant systems had 
been demonstrated using a IZlegged robot[31, [41, a 
50-link manipulator[2] and 10 homogeneous mobile 
robots[5]. 

However previous works of QDSEGA are restricted to 
homogeneous agents, and the effectiveness for heteroge- 
neous agents has not been considered. 

In the real world, effective systems usually consist 
of many heterogeneous agents. So the controller should 
be applicable to various heterogeneous agents, and the 
controller should assign suitable role to each agent, based 
on the differences of the agents. 

In this paper, we extend our previous works of multi- 
agent system[5], and propose hybrid autonomous con- 
trol method for heterogeneous multi-agent system. To 
demonstrate the effectiveness of the proposed method, 
simulations of transportation task by 10 heterogeneous 
mobile robots are carried out. 

11. PROBLEM DOMAIN 

A. Abilities to realize adaptive autonomous system 

We consider an adaptive autonomous control method 
for heterogeneous multi-agent system based on reinforce- 
ment learning. We define key abilities for the adaptive 
autonomous control as follows. 
Autonomy: ability to realize given task without priori 
knowledge of task and environment. 
Flexibility: ability to realize various tasks. 
Adaptability: ability to adopt changes of environment and 
failure. 
Applieahility: ability that can be applied to heterogeneous 
large multi-agent system. 
Ability to assign: ability to assign suitable role to each 
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Fig. 1. Transponation Task 

Fig. 2. layered Structure of Learning architecture 

agent. 

E. Transportation Task 
We consider a transportation task as a typical example. 

Fig. 1 shows an example of the transportation task. The 
world consists of 5 x 6 grids. There are 2 loads and 10 
mobile robots. G of Fig. 1 means the goal position, and 
there is a door in front of the goal. SW means a switch 
to open the door. 

An aim of this task is to transport Load 1 to goal position 
G. The loads have each movable direction. Load 1 can 
move only vertical direction and Load 2 can move only 
horizontal direction. The loads are big enough, so only one 
load can enter into one grid, and any robot cannot enter 
the grid that is occupied by the load. However the robots 
are small enough so all robots can share the same grid. 
To move the load, more than one robots that have enough 
force must push it toward the same movable direction. 
Therefore, to realize the task, robots should move the 
obstacle (Load 2), open the door and move Load 1 to 
the goal in cooperation. 

To realize the task, we employ heterogeneous agents. In 
this task, the term "heterogeneous" means that each agent 
has different ability. For example, the force to push the 
load of each agent is different, some agent can open the 
door and the other can not. 

Next we consider the case that conventional approaches 
are applied to the task. In case that we use conventional 
preprogrammed rule-based approaches, the designer must 

Fig. 3. Outline of Leming Algorithm 

assign each role (move obstacle, open door, move load, 
and so on) to each robot and must implement each rule 
for each role. So the system can not be autonomous 
system. In case that we use conventional learning-based 
approaches, the size of exploration space is expressed as 
the exponential function of the number of robots. And it 
is impossible to accomplish the learning because 10 of 
number of the robots are big enough. Therefore, it is very 
difficult to realize the task using conventional autonomous 
control method. So the task is valid to demonstrate the 
effectiveness and originality of our proposed algorithm. 

111. PROPOSED METHOD 

A. Outline 
To realize the adaptive autonomous system, we propose 

a hybrid control method by connecting preprogrammed 
rule-based control with the QDSEGA. 

At first we explain the outline of the architecture. The 
QDSEGA has a 2-class layered structure as shown in. 
Fig. 2. The upper agent, which is a centralized controller 
based on reinforcement learning, assigns suitable roles 
to each lower agent and integrates the whole behaviors 
of the systems. Orders of the upper agent are given to 
the lower agents as a desired state of the mobile robots. 
Every lower agent is connected to the mobile robots by 
a one-to-one correspondence. The lower agents control 
each mobile robot so that it accomplishes the desired state 
using preprogrammed rule-based distributed controls. In 
this paper, we consider the heterogeneous agents, so the 
lower agents have different rules and different abilities. 

Next we explain the flow of learning. At first a subset 
of the exploration space is extracted (Fig 3 STEPl), 
next a reinforcement leaming algorithm is applied to the 
subset in order to obtain some knowledge of the task and 
the environment (Fig 3 STEPZ), and then the subset is 
resmctured using the obtained knowledge (Fig 3 STEP3). 
By repeating the process, effective behaviors of the system 
are acquired. Details are written in subsections below. 

Finally, we confirm that the abilities in subsection II-A 
are realized in the proposed controller. In the proposed 
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control method, we have employed reinforcement learn- 
ing. So the knowledge is obtained by trial-and-error, it 
does not need priori knowledge and it is applicable to 
various tasks. Therefore the "autonomy" and "flexibility" 
is realized. 

In the reinforcement learning, a policy to accomplish 
the task is obtained by interacting to the environment, so 
the controller can adapt to changes of the environment. 
Therefore the "adaptability" is realized. 

In the proposed controller, the reinforcement leaming al- 
gorithm is applied to the small extracted subset instead of 
huge whole exploration space. So it is possible to avoid the 
state explosion problem. And by restructuring the subset, it 
is possible to search wide aria. Moreover, to restructure the 
subset, the controller utilizes obtained knowledge, so the 
search becomes more efficient than trial-and-error only. 
Therefore the "applicability" is realized. 

The roles of lower agents are assigned by the centralized 
reinforcement learning algorithm of the upper agent. So 
relations among the agents are taken into consideration 
and integrated behaviors of the system are obtained auto- 
matically. Therefore the "ability to assign" is realized. 

In summary, all abilities in subsection II-A are realized 
in the proposed controller. 

B. Extraction of closed subset 

At first, we define an interior state and an exterior state 
of the upper agent as follows. 

The interior state is the set of states that the lower 
agent can control directly. And the exterior state is the 
complementary set of the interior state. For example, a 
position of the mobile robot is an interior state and a 
position of the load is an exterior state. 

A desired state from the upper agent to a lower agent 
can be regarded as an action of reinforcement learning of 
the upper agent. In case that the lower agents accomplish 
the action, which means that each interior state converges 
to the desired state, a set of actions is equivalent to 
a set of desired interior state. So by restricting usable 
actions, the upper agent can restrict necessary interior 
states, and it becomes possible to extract a closed subset 
from the exploration space. The term "closed" means that 
all interior states that can be transited by any actions in the 
subset are surely contained in the subset. By this nature, 
we can apply reinforcement learning to the small subset 
instead of the large exploration space. If the lower agents 
cannot accomplish an action, which means deadlock, a 
penalty is imposed to upper agent and new trial is started 
form the initial state. So the learning process is preceded 
in the restricted exploration space. 

C. Leanzing Process of Upper Agenl 

Learning process of upper agent has two dynamics. One 
is learning dynamics based on Q-learning and the other is 

Fig. 4. Flowchm 

structural dynamics based on Genetic Algorithm. Fig. 4 
shows the flowchart of the learning algorithm of the upper 
agent. Each individual of GA expresses an action of Q- 
learning. At first, an initial set of population is structured 
randomly, and a Q-table is created using the phenotypes 
of the individuals in the initial population. The Q-table 
is reinforced using learning dynamics and the finesses 
of genes are calculated based on the reinforced Q-table. 
Selection and reproduction are applied and new population 
is structured. Repeating this cycle, effective behaviors are 
acquired. Details are written in subsections below. 

I )  Encode: In this algorithm, each individual expresses 
the selectable action on the learning dynamics. The num- 
ber of individuals means the size of the subset of explo- 
ration space. 

2 )  Create Q-table: To reduce the redundancy of the 
actions, the individuals that have a same phenotype are 
regarded as one action and the Q-table consists of all 
different actions. The internal states consist of states that 
can be transited by the generated actions. By repeating the 
structural dynamics using GA, actions that have a same 
phenotype are increased, and then the size of the Q-table 
is decreased. 

3) Leaming Llynamics: In this paper, the conventional 
Q-learning [6] is employed as leaming dynamics. The 
dynamics of Q-learning are written as follows. 

Q(s,a)  + (1 - a)Q(s,  a)  + a{r(s,  a )  + Y T ~  Q(s', a')} (1) 

where s is the state, a is the action, T is the reward, a is 
the learning rate and y is the discount rate. 

4 )  Fitness of Q-fable: The fitness of individuals is 
calculated by two steps. The first step is regulation of the 
Q-table and the second step is calculation of the fitness 
based on the regulated Q-table. At first, we calculate the 
maximum and the minimum value of the state as follows. 

Then Q' of the regulated Q-table i s  given as follows 
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where p is a constant value which means the ratio of 
reward to penalty. Next, we fix the action a, and sort 
Q ‘ ( s , a z )  according to their value from high to low for 
all slates, and we define them as the Q ; ( s , a , )  and the 
operation is repeated for all actions. For example Q i ( 1 ,  a,) 
means the maximum value of Q ( s , a , )  and Q k ( N , , a , )  
means the minimum value of Q‘(s, a t ) ,  where N, is the 
size of state space. In the second step, we calculate the 
fitness. The fitness of the individual, whose phenotype is 
a,, is given as follows 

where wi is a weight coefficient which decides the ratio 
of special actions to general actions. 

The fitness’defined in (4) has the three important points. 
The first point is the regularization of the state value of 
the Q-table.:In the Q-learning, as a state becomes closer 
to the goal, the value of the state becomes higher. So if 
the fitness is calculated from unregulated Q-table, selected 
actions at the state that is close to the goal are evaluated as 
high value. And the actions that are selected near the start 
state are evaluated as low value, and they are extinguished. 
However, a series of actions is important to accomplish the 
task. So the regularization of state value of the Q-table is 
necessary. 

Second point is the handling of the penalty. At the Q- 
learning, the penalty that has negative value is employed. 
But the fitness of Genetic Algorithm should he positive, 
so the conversion of penalty to the fitness is necessary. 

Third point is the method of calculation of the fitness. 
The first term of the equation (4) means the maximum 
value of the action. When w1 is chosen as a large value, the 
action that is effective in special state is evaluated as a high 
credit, and the special actions are generated by Genetic 
Algorithm. The last term of (4) implies the mean value 
of the actions. When WN, is chosen as a large value, the 
action that is effective in the various states is evaluated as 
a high credit, and general actions are generated. Selecting 
the weight coefficients ( ~ 1 , .  . ., w ~ ~ ) ,  we can set the ratio 
of the special actions to general actions. 
5) Fitness of Frequency of lJse: We introduce the 

fitness of frequency of use to save efficient series of 
actions. We define the fitness of frequency of use as 
follows 

where N, is a total number of actions at a generation 
and Nu(,*)  is the number of times which ai was used in 
the Q-learning at the generation. 

In the fitness of Q-table, the value of series of actions 

from start to goal is not considered. But to accomplish the 
task, the series of actions is important and preservation of 
series is needed. 

6) Fitness: Combining (4) and (5) we define the fitness 
as follows 

f i t ( a i )  = f i t Q ( a i )  + kf f i t u (a i )  (6) 

where k f (k ,  2 0) is a constant value to determine the 
rate of f i t Q  and f i t u .  

7) Selection and Reproduction: Various methods of 
selection and reproduction that have been studied can 
be applied to our proposed method. The suitable method 
of the selection and reproduction should he chosen for 
each given task. In this paper the method of the selection 
and reproduction is not main subject so the conventional 
simple GA is employed. 

D. Rule-bused Contml for Lower Agents 
In this paper, we employ four basic rules. 

R1: The rule to decide a path to a desired position. 
R2: The d e  to avoid a collision. 
R 3  The rule to move a load. 
R4: The rule to open a door: 

Using the rules, each lower agent can make a decision 
by itself using own local information, and the robots move 
to the desired positions with pushes the loads and open the 
door, except for deadlock cases. The deadlock is avoided 
by planning of upper agent. So the rules do not have to 
be designed to avoid deadlock. However, if the rules have 
enough ability to avoid deadlock, the learning of upper 
agent becomes easer. 

Details of implementation of the rules is written in 
section IV. 

IV. SIMULATION 
In this section, we demonstrate effectiveness of our 

proposed method hy applying it to the task described in 
subsection II-B 

A. Robots and envimnment 
We consider the grid world described in section U-B and 

employ 10 robots that have different abilities as written in 
Table 1. The 2nd column means the force of the robots. 
The robots have different forces. To move the loads, 2 
value of force is needed. So more than one robot must 
push it. The third column in Table 1 means the type of 
RI. If there are ”normal”, the robot employs the R1 written 
above. If there are ” exchange 2 for y”, the robot employs 
the revised RI in which z is exchanged for y. The fourth 
column in Table 1 means the type of R4. If there are 
”employ”, the robot can open the door, and if there are 
”not employ”, the robot does not have ability to open the 
door. 

The controIler must assign each role of robot in order 
to realize the task. 
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TABLE I 
ARILITIESOF ROBOTS 

B. Fomiation of Proposed Learning Architecture 

follows. 
1 )  Formation of Rules: We employ rules written as 

<R1: The rule to decide a path to a desired position> 
If z( i )  # xd then 

Else if y(i) # yd then 

Else 

s(i + 1) = z(i)  - sgn(s(i) - rd)Ar,  

y(i + 1) = y(i) - sgn(y(i) - yd)Ag, 

y(i + 1) = ~ ( i )  

s(i + 1) = r(i)  
s(i + 1) = z( i ) ,  y(i + I) = y ( i )  

Where zd, yd: desired position of a robot, x(z), y ( i )  : 
position of a robot in time i. Using the rule, positions of 
the robots are calculated step by step. 

If obstacle is on the cour,se that is given by RI Then 
cRZ: The rule to avoid a collision> 

If the obstacle is load Then Employ R3 
Else Don 'f move 

Else Move using RI 
The collision is divided into 2 types. One is collision 

between robots and the other is collision to obstacle. To 
avoid the collision of robots, Traffic Rules were proposed 
[7] and the effectiveness was demonstrated. So in this 
simulation, we consider that the grid is enough wide 
and collision can be avoided using Traffic Rules and we 
assume that each robot can move to desired direction 
avoiding other robots. 
<R3 The rule to move the load> 

If h a d  is on the course that is given by RI Then 
Push the Load to the way that the mbor has fo go 

Else Move using RI 
<R4: The rule to open the door> 

If Svirch is in a grid that the mbot stopped Then 
Turn on the switch to open the door 

Else Nothing is done 
2)  Formation 'of GA: The dynamics of Genetic Algo- 

rithm in the proposed algorithm is composed as follows. 
We define an action as desired positions of all robots 

at a step. We number the grid as shown in Fig. 5 ,  and the 
desired position of a robot is expressed as a grid number. 
The action is encoded as the genes as shown in Fig. 5.  
An individual expresses desired positions of all robots at 
a step. The number of individuals is 300. The roulette 

Grid World Chromosome 

Desired position ofeach robot 
is encoded 10 gene 

Robot Gridnumber 

Fig. 5. How to Encode 

selection is employed. The probability of the crossover is 
0.2 and uniform crossover is employed. The probability of 
mutation is 0.001, and 100 times reproduction is carried 
out. Other parameters are set as follows. 
U J ~  = 0.5, UJ,.,~~ = 0.5, UJ, = O ( i  = 2 , .  . ., N3 - l), 
kf = 200 

3) Fomation of Q-leaming: The action space consists 
of the phenotypes of generated individuals. The state space 
consists of interior state and exterior state. The interior 
state is composed of the initial state and the states that 
can be transited by generated actions. The exterior state 
consists of positions of the loads. Reward is given as 
follows. When Loadl reaches the goal, 100 is given as 
a reward, and when Loadl move up or Load2 is removed 
from the course of Loadl, 20 is given as a local reward. 
A penalty -20 is given when Loadl move down or Load2 
block the course of Loadl. If the lower agents cannot 
accomplish an action, a penalty -10 is given and then new 
trial is started form the initial state. 

To select an action, we employ €-greedy policies. With 
10% probability, an action is selected at random. The 
leaning rate is 0.5 and discount rate is 0.9. The number 
of trials of each learning dynamics is 20000. 

C. Simulation Results 
Fig. 6 show a typical result. We can find that the task 

has been completed. 
At first we discuss the assigned roles to move the 

loads, To move Loadl, Robot 6 and Robot 9 have been 
employed. In this simulation, force of Robot 6 is 1.3 and 
that of Robot 9 is 1.0. So the sum of forces is bigger than 
2 which is necessary value to move the load, and both 
robots have "normal Rl", so they can run on the Same 
vertical way. 

In case of Load2, Robot 4 and Robot 8 have been 
employed. The sum of forces is enough too. And both 
robots have "revised Rl", so they can run on the same 
horizontal way. 

We can conclude that necessary cooperative behaviors 
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Fig. 6. Simulation result 

to move the loads have been assigned automatically and 
the assignment is valid and effective. 

Next we discuss the assigned roles to open the door. The 
role has been assigned to the Robot 10. In this simulation, 
Robot 10 has ability to open the door. So we can conclude 
that the assignment is also valid. 

Finally, we consider whole behaviors of the system. In 
addition to the local assignment of each role, plan of 
behavior of whole system is necessary to complete the 
task. From Fig. 6, we can find that the roles of agents 
have been integrated, and the task has been completed 
autonomously. 

By summarizing the result, we can find that our pro- 
posed algorithm has "autonomy", "applicability", and 
"ability to assign". And in our previous works, "flexibility" 
and "adaptability" of QDSEGA had been demonstrated[Z], 
[3]. So we can conclude that our proposed algorithm has 
the abilities that are described in subsectionll-A. 

V. CONCLUSION 
We have considered adaptive autonomous control for 

heterogeneous multi-agent system. To realize the control 
method, we have extended the QDSEGA and proposed 
new hybrid control algorithm. 

To demonstrate the effectiveness of the proposed algo- 
rithm, transportation task has been imposed to the het- 
erogeneous multi-agent system. As a result, suitable roles 
have been assigned to each different agent, and effective 
cooperative behaviors have been obtained automatically. 

We can conclude that our proposed method is effective 
for adaptive heterogeneous autonomous multi-agent sys- 
tem. 
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