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QUOTIENT RINGS OF &-TRIVIAL EXTENSIONS

Yosniki KURATA and Kazurosur KOIKE

Let R be a ring with identity and M an (R, R)-bimodule. In his paper
[3]. Kitamura has shown that every right quotient ring of the trivial exten-
sion of R by M is a trivial extension of a right quotient ring of R by
a suitable bimodule if zM is flat and is finitely generated by elements each
of which commutes with every element of R.

The purpose of the present paper is to extend this result to the cor-
responding one for @-trivial extensions. Let A be the @-trivial extension
of R by an (R, R)-bimodule M with pairing ¢. For each R-module U;,
V= U® M* can be seen as a right A-module. where M* is the dual of M
relative to U. In Sectiuon 2 it is shown that Biend(V,) = Biend(Ux) X,
M** if M*; is U-reflexive (Theorem 2.1). Under certain assumptions, in
Section 3, we shall observe the injective hull of any right A-module (Theo-
rem 3.2) and then determine the right quotient ring of A, as Q(A,) = Q(Rxz)
X o» Q(Myz) (Theorem 3.3).

Throughout this paper, R will denote a ring with identity. All modules
are unitary and module homomorphisms are written on the side opposite to
the scalars. We shall refer to [1] for the notations and terminologies con-
cerning the ring theory.

1. Let M be an (R, R)-bimodule with pairing ®=[ , ]: M Q@M
- R, i.e. an (R, R)-bilinear map satisfying m[m’. m"] = [m, m']m" for all
m. m' and m” in M. The &-trivial extension A = R X, M of R by M is
a ring whose underlying set is the Cartesian product R X M with addition
componentwise and multiplication given by

(@, m)-(a', m') = (aa’'+[m, m’]. ma'+am’).

For an R-module Uk, Homy( A, U) is canonically Z-isomorphic to U @
M*, where M* = Homy(M, U) is the U-dual of M. Using this isomorphism
we can regard U © M* as a right A-module. The operation of A on U &
M* is given by
(u, f)-(a, m) = (wa+f(m). fa+¢(u ® m))

for (u, f) in U ® M* and (a, m) in A, where @: U@ M — M* is the right
R-homomorphism defined by @(u ® m)(m') = u[m, m'] for m, m" in M and u
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in U. We denote this right A-module by V.

Let S = End(Uz) and N = Homz(M*, U). Then End(V,) = Hom,(V,
Homz(A, U)) = Home(V, U) = S & N and the composite isomorphism
End(V,) > S @ N is given by o — (piai., praiz), where ix and p, denote
injections and projections associated with the direct sum decomposition of
V = U & M*, respectively. We denote this isomorphism by z.

We shall define a pairing N@s N —» S through which S & N becomes
a ring and 7 is a ring isomorphism. To this end, first we show the following

Lemma 1.1. For every « € End(V,), f € M* and h € N,

(1) Py = Hom(M, plaiz) o,
where @': U — Homg(M, M*) is the (S, R )-homomorphism given by @'(u)(m)
= @(u ® m).

(2) p2aiz = Hom(M, piaiy).

(3) h'pldil =h°pzaiz.

Proof. (1) Let ai{u) = (u', f) for some »' in U and f in M*. Then for
eachm in M ((psaii)(u))(m) = f(m). On the other hand, (piaizo @'(u))(m)
= (prai)(@(u ® m)) = piel(u, 0)-(0, m)) = p:((', £)-(0,m)) = f(m).

(2) Let ai(f) = (u, f') for some « in U and f' in M*. Then for each
min M ((Pzdlz)(f))(m) = f(m)v while (p:ain-f)(m) = pxﬂ'((o, f)(O, m))
= pi((u, f1)-(0.m)) = f'(m).

(3) For each f in M*, (h-piai)(f) = h(piair-f) = h((p2ai2)(f)) =
(hopaaiz)(f) by (2).

Now N is an (S, S)-bimodule and we define a mapping from N X N to
S via (piaiz, p1Biz) = piaizop:Bii, where o and B are in End(V,). This is
well-defined by Lemma 1.1(1) and induces a pairing = ( , ): NQsN
- S given by (piaiz, p1Biz) = praizop:pir, i.e. for each b, h'in N and u
in U, {h, h'}(u) = h(h'o @'(u)) again by Lemma 1.1(1). Therefore, S ® N
becomes the U-trivial extension '=S XyN of S by N and further by
Lemma 1.1(3) 7 is a ring isomorphism between End(V,) and I. Thus, we
obtain

- Theorem 1.2. End(V,) is isomorphic to I' as rings via .

It follows from this theorem that V can be regarded naturally as a left
I'-module by making use of z. The operation of " on V is given by

(ss B)-(u, f) = 7' (s, B)((u, f))
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= (s(w)+hr(f), sf+hep'(u))

for (u, f) in V and (s, h) in T

Recall that S is a ring with identity, N is an (S, S )-bimodule with
pairing U= ( , Y: N®sN—> S and "= S X, N is the ¥-trivial exten-
sion of S by N. Replacing R, M and A with.S, N and I, respectively, we
have just the same situation as above. Therefore, for the left S-module U,
W = U ® N*, where N* = Homs(N, U). becomes a left -module with the
operation of " given by

(s, h)-(u, k) = (s(u)+(h)k, sk+¢(h ® u))

for (s, h) in " and (u, k) in W. Here the mapping ¢: N®s U - N* is
defined by (h')¢{h ® u) = (h',h)u for A" in N and is an (S, R)-homo-
morphism. Note that ¢ coincides with the composition map of N Qs U - M*
given by h ® u = h o @'(u) with the evaluation map gy-: M* —> N* of M*,.

Now let T = End(sU). Then U is a right T-module and N* is an
(S, T)-bimodule. Hence, L = Homs(N*. U) has a (T. T)-bimodule struc-
ture. Replacing S and N with T and L respectively, by the same way as
above, we can define a pairing Q=1 , |: L ®rL = T and the Q-trivial
extension A = T XoL of T by L. The pairing Q is (u)lk, k'l = (¢'(u)o
k)k' for k, k' in L and » in U, where ¢': U —» Homs(N, N*) is the (S, T)-
homomorphism defined by (h)¢'(u) = ¢(h ® u) for h in N. Using Theorem
1.2, we see that

End(rﬂ'r) = A.

2. In this section we shall assume that M} is U-reflexive. Then the
evaluation map ¢ = ow+ is an (S, R)-isomorphism and hence the mapping
U® ¢: V> W is a I-isomorphism and induces a ring isomorphism

End(;V) = End(-W ).

Using ¢ we may also regard M* as a right T-module, i.e. for t € T
and f € M* define ft to be ft = ((f)oot)o™'. Then M* is an (S, T)-
bimodule, ¢ is an (S, T)-isomorphism and M** = Homs(M*, U), the double
dual of Mz, is a (T, T)-bimodule. Hence the mapping Hom(g, U): L - M**
is a (T, T)-isomorphism and yields a pairing 8: M** @, M** - T such
that = @ o Hom(g, U) ® Hom(g, U) and a ring isomorphism 1 X Hom(e,
U): A > T XoM** Thus, we obtain
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Theorem 2.1. Assume that M*p is U-reflexive. Then
End(,V) = T X o M**
as rings, i.e.

Biend(V,) = Biend(Uz) X o M**.

The following corollary follows from [6, Theorem 1.4].

Corollary 2.2. Let U= E(Mz) and assume that M} is E(Mg)-reflex-
ive and M is faithful. Then

Qmax(A.n) = Biend(E(xMR)) X o M**,

As is easily seen, if R' is a ring with identity such that R =7 R’ as
rings, then for an (R, R)-bimodule M with pairing O: M ®: M — R, we
can regard M naturally as an (R’, R')-bimodule via f and find a pairing §':
M ®wr M - R such that R X eM = R’ X ¢ M as rings. Hence, by [6, The-

orem 1.3] we have

Corollary 2.3. Let U= E(Rx) and assume that M*y is E(Rg)-reflexive
and @ is right non-degenerate. Then

Qmax(A4) = Qmax(RR) X o M**,

It is easily verified that the isomorphism in Theorem 2.1 induces
a commutative diagram

A=R XM

P:/ \PR X ow

Biend(V,) = Biend(Ug) X ¢ M**
where p, and pi are right multiplications of elements of A and R, respec-

tively and oy is the evaluation map M — M**. Thus, we have

Corollary 2.4. Assume that MY is U-reflexive. Then V, is (faithful
and) balanced if and only if Uk is (faithful and) balanced and oy is (injective

and) surjective.

We can apply this corollary to Corollaries 2.2 and 2.3 and obtain that,
for example, if M¥ is E(R;)-reflexive and @ is right non-degenerate, then A
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is isomorphic to Qmax(A4) via p4 if and only if R is isomorphic to Qmax(Rx)
via p, and Mz is E(Rg)-reflexive.

As an application of Theorem 1.2 we can give a criterion for Quax(A.)
being right self-injective. For example, if zM is faithful, then Quax(A.)
is right self-injective if and only if (1) Hom(M, E(M;:)) is a free left
S-module with a basis v, the inclusion map M — E(M;). and (2) sN is iso-
morphic to sE(Mz) via (v)oy-. This result can be seen as a generalization
of [3, Proposition 6] and is easily obtained using [4, Section 4.3. Propo-
sition 3].

3. Let A= R X+M be the ¢-trivial extension of R by M as above
and V, any right A-module. Then since Im® X M is an ideal of A, the left
annihilator g(Im® X M) of In® XM in V is a A-submodule of V. We
may regard V and 4.(Im® X M) naturally as right R-modules. Let U=
E(4(Im® X M)z) and put E(Vz) = U® U’ for some R-submodule U' of
E(Vz). Using the projection map p: E(Vi) - U, define a right A-homo-
morphism £: V — U @ M* as £(v) = (p(v), m - p(»(0, m))) for v in V
and m in M.

It is to be noted that £v(0 X M) and #£,(Im @) are both A-submodules of
V and

since ([m, m']. 0) = (0, m)-(0, m') for m, m' € M. Furthermore, 4(0 X
M), is essential in 4(Im @), and £.(Im )y is also essential in Ux. Using
these facts we shall prove

Lemma 3.1. The following conditions are equivalent :
(1) € is a monomorphism.

(2) &(Imd X M), is essential in V,.

(3) 2(Im®), is essential in V,.

If this is the case, £ becomes an essential monomorphism.

Proof. (2) = (1). Assume (2). Let &(v) = 0. Then p(v) = 0 and so
Ker(g) < U'. Since £ is a A-homomorphism, it follows that vA < Ker(§¢)
and hence vA NA{Imd X M) < U N&{Imd X M) = 0. By assumption
vA = 0 and hence v = 0.

Now we shall show that £(V), is essential in (U & M*),. To this end
take (u, f) (% 0) in U ® M*. If f= 0, then u # 0 and hence there exists
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an ¢ in R such that 0 # ua € 4(Im @ X M). In this case, (u, f)-(a, 0) =
(ua, 0) = &(ua). If u = 0, then there is an m in M such that f(m) ¥ 0.
Hence we can find an @ in R such that 0 #+ f(m)-a € &(Im @ X M). In this
case, (u, f)+(0, ma) = (f(ma), 0) = £(f(ma)).

Next suppose that u = 0 and f #+ 0. Then there exists an a in R such
that 0 # ua € (Im® X M) and (u. f)-(a, 0) = (ua, fa). In case fa = 0,
we have (u, f)-(a, 0) = (ua, 0) = &ua). If fa # 0, there exists an m in
M for which f(am) = (fa)(m) #= 0. We can find an a' in R such that 0
flam)-a' € 8{Im® X M). We then have (u, f)-(0, ama') = (ua. fa)-(O0,
ma’) = (flama’), 0) = &(f(ama’)).

(1) > (2). Using the fact that £{Im @), is essential in Uy, it is easy
to see that £,(Im® X M), is essential in V, by a similar way as above.

The equivalence of (2) and (3) is trivial.

The following theorem characterizes injective modules over A and can
be seen as a generalization of [6, Theorem 2.4].

Theorem 3.2. For any right A-module V there is an injective right
R-module U such that

E(Vi) ~Uae M*

as right A-modules, whenever £ is a monomorphism.

Proof. This follows from Lemma 3.1 and the fact that for any injective
right R-module X, X & Homz(M, X) is isomorphic to Homz(A, X) over A
and hence is injective over A [1, Exercise (19.14)].

As is well-known, every hereditary torsion theory for mod-R is co-
generated by a certain injective R-module E;. We shall call it simply the
E-torsion theory.

Assuming that ¢ is a monomorphism, we now discuss the problem of
how to determine the quotient ring of the @-trivial extension A of R by M.
Following Morita [5], every right quotient ring of A is isomorphic to the
biendomorphism ring of a finitely cogenerating, injective right A-module.

So let V, be a finitely cogenerating, injective right A-module. This
means that V is injective over A and is finitely generated over End(V,).
Theorem 3.2 then implies that V = U @& M* as right A-modules, for some
injective right R-module U.

First assume that M} is U-reflexive. Then by Theorem 2.1 Biend(V,)
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= Biend(Uz) X ¢ M** as rings. Now let S = End(Uz) and N = Homz(M*
U). If we assume further that N is finitely generated, then Uy is finitely
cogenerating, since V, is finitely cogenerating. Hence, there is a ring iso-
morphism Biend(Uz) — Q(Rr) over R, where Q(R:) denotes the right quotient
ring of R with respect to the Us-torsion theory. As we have remarked in
Section 2, we can ragard M** naturally a (Q(Rx), Q(Rz))-bimodule and find
a pairing @': M** Qqrn M** » Q(Ry) such that Biend(Ui) X ¢ M** =
Q(Rx) X o M** as rings. Thus, we have

Theorem 3.3. Let Q(A,) be any right quotient ring of A, V an associat-
ed finitely cogenerating, injective right A-module and U = E(4(Im ® X M ).).
Assume that £ is a monomorphism and that MY is U-reflexive. Then we
have

(1) Q(A4) = Biend(Ux) X o M**

(2) If sN is finitely generated, then as rings
Q(A4) = Q(Rg) X o M**

(3) If, in addition, sM* is finitely generated, then
Q(A4) = Q(Rx) X o Q(Ms)

as rings, where Q(Mz) denotes the module of quotients of My with respect to
the Ug-torsion theory.

Proof. We may prove only (3). Suppose in addition that sM* is finitely
generated. Then by [2, Theorem 1.2] there exists an R-isomorphism k:
M** — Q(Mz) over M. Using this isomorphism, we can regard Q(My) as
a (Q(Rk), Q(Rx))-bimodule and define a pairing 8": Q(Mz) Rair,:)Q(Mz) -
Q(R»z) such that ® = @"ck ® k. Then we have a ring isomorphism 1 X k:
Q(RR) X g M** — Q(RR) X g Q(-MR) and thus Q(AA) = Q(RR) X 9"Q(1MR)-

As is easily seen, in case U is injective the condition that sM* is
finitely generated is equivalent to that U cogenerates M, finitely and is
always true if @ = 0 and V, is finitely cogenerating as was pointed out by
[3, Proposition 1].

Example 3.4. Let M be an (R, R)-bimodule and U an R-module.

Assume that there exists a split exact sequence of right R-modules 0 —
M* > U" for some n > 0. Then M¥ is U-reflexive, since Uy itself is U-
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reflexive and the class of U-reflexive modules is closed under direct sum-
mands and finite direct sums, and further S™ - N — 0 is exact. Hence sN
is finitely generated. Moreover, if A is the trivial extension of R by M and
V. is finitely cogenerating, then sM* is finitely generated, as we have re-
marked above. In this case ¢ is a monomorphism by Lemma 3.1 and all of
the pairings are zero. Thus we have

Q(A4) = Q(Rz) X Q(Mg),
by Theorem 3.3. This is a detailed form of [3, Theorem 4].

Example 3.5. Let :Mz = zRz. Then, for every finitely cogenerating
injective R-module Uz, M¥ = Ui, sN = sS and sM* = sU. Hence, for
every @-trivial extension A of R by Rz, we have by Theorem 3.3

Q(A4) = Q(R#) X o Q(R:)

as rings, whenever £ is a monomorphism.

Example 3.6. Let Uy = E(Rz) and let £: A » U @& M* be the A-
homomorphism defined by &(a, m) = (a, m’ = [m, m']). Then £ is a mono-
morphism if and only if @ is right non-degenerate. Hence, assuming that ¢
is right non-degenerate and My is U-reflexive, we have by Corollary 2.3

Qmax(A.-i) = Qmax(RR) XG' M**.

If we assume further that sM* is finitelv generated, then by a similar way
as in Theorem 3.3 we have

Qmax(A4) = Qmax(Rr) X o Q(Mg).

If, in particular, we assume that M = zRy and @ is given by the multi-
plication in R, then we have

Qmax(AA) = Qmax(RR) XG" Qmax(RR)
without any restriction,

After completed this paper, we have found that there are some overlaps,
for example, Theorems 1.2 and 3.2, with Eduardo Garcia-Herreros Mantilla:
Semitriviale Erweiterungen und generalisierte Matrizenringe, Miinchen,
1986 (Algebra Berichte 54).
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