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Abstract

The prime ideal decomposition of 2 in a pure quartic field with field index 2 is determined
explicitly.
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THE PRIME IDEAL FACTORIZATION OF 2 IN PURE
QUARTIC FIELDS WITH INDEX 2

Blair K. SPEARMAN and Kenneth S. WILLIAMS

Abstract. The prime ideal decomposition of 2 in a pure quartic field
with field index 2 is determined explicitly.

1. Introduction

Let K be an algebraic number field and OK its ring of integers. When
determining generators of the ideals in the prime ideal factorization of a
(rational) prime p in OK , the most difficult case occurs when p divides the
field index i(K) of K. In this paper we examine the case when K is a pure
quartic field. Here i(K) = 1 or 2, and we determine explicit generators of
the prime ideals in the decomposition of 2 when i(K) = 2.

Let K be a pure quartic field. Then there exists a fourth power free
integer m such that K = Q(m1/4). It follows from the work of Funakura [1,
p. 36] that the field index i(K) of K is given by

i(K) =
{

2, if m ≡ 1 (mod 16),
1, if m 6≡ 1 (mod 16).

From now on we assume that i(K) = 2 so that m ≡ 1 (mod 16), say m =
16k + 1. In this case the prime ideal factorization of < 2 > in OK is

< 2 >= P 2
1 P2P3,

where P1, P2, P3 are distinct prime ideals, see [1, p. 36]. In this paper we
determine explicit generators of P1, P2 and P3.

Theorem. Let m be a fourth power free integer such that K = Q(m1/4)
is a pure quartic field with i(K) = 2. Then < 2 >= P 2

1 P2P3, where the
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distinct prime ideals P1, P2, P3 of OK are given by

P1 = < 2,
3
2

+ m1/4 +
1
2
m1/2 >,

P2 =


< 2,

5
4

+
1
4
m1/4 +

1
4
m1/2 +

1
4
m3/4 >, if m ≡ 1 (mod 32),

< 2,
3
4

+
5
4
m1/4 +

3
4
m1/2 +

1
4
m3/4 >, if m ≡ 17 (mod 32),

P3 =


< 2,

5
4
− 1

4
m1/4 +

1
4
m1/2 − 1

4
m3/4 >, if m ≡ 1 (mod 32),

< 2,
3
4
− 5

4
m1/4 +

3
4
m1/2 − 1

4
m3/4 >, if m ≡ 17 (mod 32).

2. Proof of Theorem

Let L = Q(m1/2) so that Q ⊂ L ⊂ K and [L : Q] = 2. Set

Q1 =< 2,
1 + m1/2

2
>, Q2 =< 2,

1 − m1/2

2
> .

Q1 and Q2 are distinct prime ideals of OL such that < 2 >= Q1Q2. Let
m2 be the largest integer such that m2

2 | m. Set m1 = m/m2
2 so that m1

is a squarefree integer having the same sign as m. Clearly m1/2 = m2m
1/2
1 .

Then

Q1 =


< 2,

1 + m
1/2
1

2
>, if m2 ≡ 1 (mod 4),

< 2,
1 − m

1/2
1

2
>, if m2 ≡ 3 (mod 4).

Next, by [2, Table D, cases D1, D2, p. 92], we see that

Q1 = P 2
1

for some prime ideal P1 of OK . We claim that

P1 =< 2,
3
2

+ m1/4 +
1
2
m1/2 > .

First we show that P1 is a prime ideal of OK . The minimal polynomial of

θ =
3
2

+ m1/4 +
1
2
m1/2 over Q is

g(x) = x4 − 6x3 + (13 − 8k)x2 + (−14 − 8k)x + (6 + 16k + 16k2).

Hence N(θ) = ±(6 + 16k + 16k2) ≡ 2 (mod 4). Let < θ >= S1S2 · · ·Sr

be the prime ideal factorization of < θ > in OK . Hence N(< θ >) =

2
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N(S1)N(S2) · · ·N(Sr). As 2 ‖ N(< θ >) there exists a unique S = Si such
that 2 ‖ N(S), that is N(S) = 2. Thus < θ > has exactly one prime ideal
to exponent 1 in its prime factorization lying above 2. As P1 =< 2, θ > we
deduce that P1 = S so that P1 is a prime ideal of OK . Next we show that

P1 | Q1. We set φ =
3
2
− m1/4 +

1
2
m1/2. An easy calculation shows that

1 + m1/2

2
= θφ − (2k + 1)2.

Hence, as 2 ∈ P1 and θ ∈ P1, we deduce that
1 + m1/2

2
∈ P1. Thus we have

Q1 =< 2,
1 + m1/2

2
>⊆ P1, and so P1 | Q1. As Q1 is the square of a prime

ideal in OK , we deduce that Q1 = P 2
1 as asserted.

Let

k =
{

2g, if m ≡ 1 (mod 32),
2g + 1, if m ≡ 17 (mod 32).

For ε = ±1, the minimal polynomial of

α(ε) =


5
4

+
ε

4
m1/4 +

1
4
m1/2 +

ε

4
m3/4, if m ≡ 1 (mod 32),

3
4

+
5ε

4
m1/4 +

3
4
m1/2 +

ε

4
m3/4, if m ≡ 17 (mod 32),

is

x4 − 5x3 + (9 − 12g)x2 + (−7 + 24g − 64g2)x + (2 − 12g + 64g2 − 128g3),

if m ≡ 1 (mod 32), and

x4 − 3x3 + (−37 − 76g)x2 + (−75 − 240g − 192g2)x

+(−38 − 172g − 256g2 − 128g3),

if m ≡ 17 (mod 32). Clearly N(α(ε)) ≡ 2 (mod 4) in both cases, and
similarly to the argument above, we deduce that I+ =< 2, α(1) > and
I− =< 2, α(−1) > are conjugate prime ideals of OK lying above 2. If m ≡ 1
(mod 32) we have

1 − m1/2

2
= 2(1 − g − gm1/2) − α(1)α(−1) ∈ I+ ∩ I−

and if m ≡ 17 (mod 32)

1 − m1/2

2
= 2(−g − (1 + g)m1/2) − α(1)α(−1) ∈ I+ ∩ I−.
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Hence
1 − m1/2

2
∈ I+ ∩ I−. Thus I+ and I− are conjugate prime ideals of

OK lying above the prime ideal Q2 of OL. As < 2 >= P 2
1 P2P3 = Q1Q2 and

Q1 = P 2
1 , we see that Q2 = P2P3 and that we can take

P2 = I+ =< 2, α(1) >

and
P3 = I− =< 2, α(−1) > .

This completes the proof.
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