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Mogami and Tominaga: On primary decomposition theory for modules

ON PRIMARY DECOMPOSITION THEORY
FOR MODULES

IsaA0 MOGAMI and Hisa0O TOMINAGA

Recently, in his paper [2], J. W. Fisher introduced a new technique
for constructing decomposition theories for left R-modules, and in [3] he
used it to give necessary and sufficient conditions for the classical Lasker-
Noether primary decomposition theory to exist on a left R-module M over
an arbitray commutative ring or on M which has the property that nil
ideals are nilpctent in each factor ring of R/I(M). It should be brought
to our attention that all the results in [2] and [3] are still valid for left
R-modules with operator domain.

In what follows, combining Fisher’s technique with Tominaga’s [6],
we shall study the left s-primary decomposition theory on R-R’-modules.
In §1, several definitions and preliminary results are given, and §2
contains uniqueness theorems and a canonical decomposition theorem.
Finally, in § 3, we shall present several equivalent conditions for the left
s-primary decomposition theory to exist on a R-R'-module.

Throughout the present paper, R and R' will represent arbitrary
rings (not necessarily with 1), and M an arbitrary non-zero R-R'-bimodule.
The term “submodule” will mean an R-R’-submodule.

1. If a is anideal of R, then the intersection of all prime ideals of
R containing a is called the prime radical of a, and denoted by rad a.
The left primary radical p(M) of M is defined as the prime radical of
I(M)={x=R|xM=0}. A proper submodule N of M is called a left
primary submodule if I(M') S p(M/N) for every non-zero submodule M"
of M/N. A left primary submodule N of M is called left s-primary
if p(M/N) is nilpotent modulo /(M/N). Occasionally, we regard M
itself as a left s-primary submodule. To be easily seen, for the bimodule
rRr the notion “left s-primary submodule” coincides with that of “s-left
primary ideal” in the sense of [5].

If p(M'") is nilpotent modulo /(M') for every non-zero factor sub-
module M" of M then M is called a left s-module. Evidently, every
left primary submodule of a left s-module is left s-primary, and if R is
left Noetherian then M is a left s-module.
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If p(N)=p(M) for every non-zero submodule N of M then M is
said to be left p-stable. A left p-stable module M is said to be left s-p-
stable if p(M) is nilpotent modulo Z(M).

Proposition 1. Let N be a proper submodule of M. Then the follow-
ing conditions are equivalent :

(1) M/N isleft s-p-stable.

(2) N isaleft s-primary submodule of M.

(3) For every submodule M' of M with M'Z N, M'NN is aleft
s-primary submodule of M'.

Proof. (2)implies (1): Let M" be an arbitrary non-zero submodule
of M/N. Then I(M/N)SIM'")<p(M/N). It follows therefore that
p(M")=p(M/N).

(1) implies (3): Let M'" be an arbitrary non-zero submodule of
M'/(M'NN). Since M/N is left s-p-stable, our assertion is evident by
MIM'NN)=(M'+N)/N and !(M")2I(M/N).

Finally, (3) implies (2) trivially.

Remark 1. In the same way as [3; Prop. 1.1] was shown, we can
prove that the left primary radical of a left s-p-stable module is a prime
ideal. A submodule N of M is called left-g-primary if p(M/N) is a
prime ideal. Accordingly, every left s-primary submodule of M is left
g-primary.

An ideal p of R is called a left associated ideal of M if there
exists a left p-stable submodule N such that p=p(N). The set of all left
associated ideals of M will be denoted by P(M). (P(0)={R} by defini-
tion.) If there exists an ideal p in R such that {p}=P(M") for every
non-zero submodule M of M/N then N is called a left P-submodule
of M. Finally, M is said to be left p-worthy if P(M') is finite and non-
empty for every non-zero factor submodule M" of M.

Now, let N be a submodule of M, and a an ideal of R. We set
a"'N={u=M|au SN}, which is evidently a submodule of M. Further,
we set a”*N=(a*)"'N and a"N=Uj., a*N, which is called the limit
module of N by a in M. If a N=a*N with some k, then we say
that a~*N is accessible. Occasionally, we consider also N,= UDb™'N,
where b ranges over all the ideals of R not contained in a. (If a=R
then Ny=N by definition. )

If M satisfies one of the following equivalent conditions (1) and (2),
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it is called a left Artin-Rees module :

(1) For each submodule N of M and ideal a of R, there exists a
positive integer % such that a*MN M<aN. ,

(2) For each submodule N of M and ideal a of R, there exists a
positive integer % such that N=(N--a"M)Na"'N.

One may remark here that if M is a left Artin-Rees module, then so
is every factor submodule of M.

The proof of the next is quite similar to that of [3; Lemma 2. 1].

Lemma 1. If a left Artin-Rees module M is a left s-module then
every left P-submodule of M is left s-primary.

2. A finite set {N,|[{€ I} of left s-primary (resp. left g-primary)
submodules of M is called a left s-primary (resp. left q-primary) decom-
positionof N in M if N= N, N, is an irredundant representation and
P(M/N,)F~=p(M/N,) for every is=j. If every submodule of M has a left
s-primary decomposition in M, then M is said to have the left s-primary
decomposition theory. Similarly, a finite set {N;[iE I} of left P-submo-
dules of M is called a left P-decomposition of N in M if N=Ne; N, is
an irredundant representation and P(M/N,)s= P(M/N;) for every i=j.
In case every submodule of M has a left P-decomposition in M, M is
said to have the left P-decomposition theory.

The first uniqueness theorem is given in the following :

Theorem 1. If {N(|iS1I} is a left s-primary decomposition of N
in M then it is a left P-decomposition and P(M/N)= {p(M/N)|iEI}.

Proof. Since M/N, is left p-stable by Prop. 1, N, is a left P-sub-
module with P(M/N,) = {$(M/N,)}. Now, our assertion is evident by
[2; Prop. 4.5].

Proposition 2. Let N, ---, N, be left g-primary submodules of M,
and N=Ni., N.

(a) If each p(M/N,) is nilpotent modulo I(M/N,) then p(M/N)
equals N p(M/N,) and is nilpotent modulo I(M/N), and every minimal
prime divisor of I(M/N) coincides with some p(M/N,).

(b) Ifevery N, isleft s-primary and p(M]Ny)=---=p(M/N,) then
N is left s-primary.

(c) If every N, is left s-primary then N has a left s-primary
decomposttion.
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Proof. (c)is only a combination of (a) and (b).

(a) Let p(M/N)~ < I(M/N;), and n= >i., #. Then, we have
( Ni= P(M/Nt»"g Nis I(M/Ni) = I(M/N)

(b) It is enough to consider the case s=2. If M'/N is a non-zero
submodule of M/N then one of (M’'+N,)/N, say, (M'+N)/N, is a
non-zero homomorphic image of M’/N. Hence, I(M'/N)SI(M'+N,)/Ny)
Cp(M/N)=p(M/N), and so N is left s-primary by (a).

Proposition 3. Let {N,|i=1, -, s} be a left s-primary decomposi-
tion of a proper submodule N in M, and p=p(M/N,) (i=1, -, s).

(a) Anideal a of R is non-primeto N (i.e. a”*NDN) if and only
if a is contained in some b,.

(b) A prime divisor p of I(M/N) occurs in P(M/N) if and only if
p is non-prime to Np.

Proof. (a) Suppose a'NDN. Then, a'NZ N; and a(a”’N)EN
C N, for some j. It follows therefore a=p,;. Conversely, suppose aSp,
and choose a positive integer # such that p? S/(M/N,). Since Ni=N;N
NN, Z N, and p"N; SN, there exists the least positive integer &' such
that PN/ S N. Then, a'N2pl/'N;+NDN. ‘

(b) Suppose by, ***, P-1EPp=p, and p;Z p for all i=>r. Then, Np=
N;N-+NN, and p=p, is non-prime to Np by (a). Conversely, suppose
that p is non-prime to Nj. By Prop. 2, p contains one of p,’s. Accord-
ingly, without loss of generality, we may assume that p,, --+, p,Sp (»=>0)
and p;Zp (r+1<i<s). Then, Ny= N;N--NN, is evidently a proper
submodule of M. Hence, again by (a), (pSp; and so) p=p,; for some
i<r.

Now, let {N;|i=1, ---, s} be a left s-primary decomposition of a
submodule N in M. A subset P of P(M/N)={p,=p(M/N,)|i=1, s}
is called an isolated subset of P(M/N) if every p, contained in one of
the members of P is a member of P. If P is an isolated subset of
P(M/N) then we set Np= Ny rN;, which is called an isolated component

of N. Since N,SNy, SN, for every p,E P, it follows then Np= Np,erNyp,.

Combining this with Th. 1, we readily obtain the following, which is the
second uniqueness theorem :

Theorem 2. Suppose N has a left s-primary decomposition. Then
the set of isolated components of N does not depend on the choice of left
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s-primary decompositions of N.

Theorem 3. Let {N:;|iEI} be aleft s-primary decomposition of N.
If M' is a non-zero submodule of M then {M'N\N.|[iE I} contains a left
s-primary decomposition of M'NN in M.

Proof. Weset N;=M'NN;. Then, Prop. 1 shows that every N;
different from M’ is a left s-primary submodule of M' with p(M'/N))=
p(M/N,;). Now, our assertion is obvious by Prop. 2.

Corollary 1. If M has the left s-primary decomposition theory,
then so does every non-zero factor submodule of M.

Proposition 4. If M has the left s-primary decomposition theory
then there holds the following :

(a) For every submodule N of M and every ideal a of R, a™"N
is accessible, and if N=N,CN,C - CN, is an arbitrary chain of
submodules of M such that each N,; is a limit module of the preceding
one in M then n<s(N) with a positive integer s(N) depending solely
on N.

(b) Let M'/N be an arbitrary non-zero factor submodule of M. If
P is an arbitrary minimal prime divisor of I(M'/N) then p"'NNM'D N.

(¢c) Let N be a submodule of M, and p a prime divisor of {(M/N).
Then the following conditions are equivalent :

(1) P is a minimal prime divisor of I(M/N).

(2) Ny isleft s-primary and p(M/Np) =p.

(3) Npy=(N+p"M)y for some h.

If v is a minimal prime divisor of I(M/N) then Ny is a minimal left
s-primary submodule containg N.

Proof. (a) Let {N,|i=1, .-, s} be a left s-primary decomposition
of N. Without loss of generality, we may assume that aZ p(M/N;) for
i<k and aS p(M/N,) for i>k. There exists a positive integer % such
that a*SI(M/N;) for all i>k. Recalling that each p(M/N;) is a prime
ideal (Remark 1), we readily obtain

a”*N=a"*N=N;N+:+ NN

Now, our assertion is obvious by Th. 1.
(b) By the validity of Cor. 1, it suffices to prove that if p is a
minimal prime divisor of /(M) then p~'0540. If {N;|i I} is a left
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s-primary decomposition of 0, then p coincides with some p(M/N,) (Prop.
2), and our assertion is clear by the proof of (a).

(c) By Prop. 2, M is a left s-module.

(1) implies (2): In case p=R, there is nothing to prove. We may
assume henceforth ps~R. As an easy consequence of (a), we see that Ny
is the largest submodule among those of the form b™'N with some ideal
b not contained in p: Np=c'N, ¢ Zp. In order to see that Ny is left
s-primary, it suffices to prove that p(M/Np)=1p. Suppose here p(M/Np)
%P, and choose a minimal prime divisor P’ of /(M/N,) such that p'&Zp.
Then, p'"'Np DN, by (b). But, this is a contradiction. Hence, N, isa
left s-primary submodule with p(M/Np)=p. Now, let N be a left s-pri-
mary submodule of M such that NEN”SNy. Since c(NySNSN" and
cZ p(M/N"), it follows NpySN", i.e. Np=N".

(2) implies (3) : There exists a positive integer % such that p*M S N;.
Then, NpS(N+P"M)p,<(Np)p =Np, which implies Np=(N+p"M)j.

(3) implies (1): Since p(M/Np)=p(M/(N+ p"M);) 2 p*, we obtain
P(M/Ny)2p. Asis well.lknown, p contains a minimal prime divisor p’!
of I(M/N). By (1)=>(2), Ny is a left s-primary submodule and p(M/Np)
=p'". Combining this with Np"2 Ny and p S p(M/Np), we readily obtain
p=p".

Next, we shall prove the following canonical decomposition theorem,
which contains [1; Th. 3.4].

Theorem 4. Suppose M has the left s-primary decomposition theory.
Let N be a submodule of M, and P(M/N)= {p;|¢=1, -+, #} where b, -+,
p, (r<s) are the minimal prime divisors of I(M/N) (cf. Prop. 2 (a)). Then,
there exists a positiae integer h such that {N+ptM)y|i=1, -+, s} is a
left s-primary decomposition of N and {(N+p!M|i=1, ---, 7} is a left
qg-primary decomposition of N.

Proof. Let {N.|i=1, --«, s} be a left s-primary decomposition of N
and p,=p(M/N,) (Th. 1). Choose a positive integer % such that p}<
I(M/N,) for all i. Then, NEN+p!MEN, and so NS(N—!—p{’M)piSN‘pI
=N, Evidently, p(M/(N+piM))=p(M/(N+piM)y)=b. I BM' S (N+
p;‘M)m for a submodule M' of M and an ideal bZ p, then M'S((N-+
PEM)p)o, = (N-+piM)p,. Hence, Th. 1 proves that {(N+piM)p,|i=1, -, s}
is a left s-primary decomposition of N. The rest of the proof will be
almost evident by Prop. 2 (a).
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3. In this section, we shall consider the following conditions:

(A) For every submodule N of M and every ideal a of R, a™°N
is accessible, and if N=N,C N,C:--CN, is an arbitrary chain of submo-
dules of M such that each N; is a limit module of the preceding one in
M then n<s(N) with a positive integer s(N) depending solely on N.

(B) For each non-zero factor submodule M'/N of M, there exists a
minimal prime divisor p of /(M'/N) such that p7’NNM'DN.

(C) M is left p-worthy.

(D) Every left P-submodule of M is left primary.

(D" Every left P-submodule of M is left s-primary.

(E) M is a left Artin-Rees module.

(F) M is a left s-module.

{G) M has the left s-primary decomposition theory.

Lemma 2. If M has the left s-primay decomposition theory then M
is a left Artin-Rees module.

Proof. Prop. 1 and Th. 1 enables us to apply the argument used in
the proof of [3; Th. 2.7] to see this.

Lemma 3. Suppose the condition (A) is satisfied. If M' is an
arbitrary non-zero submodule of M then (A) holds good for M.

Proof. We claim first that if N is a submodule of M’ and a, b are
ideals of R then b~ %a"'NNM'=b"'(a*NNM"NM'. This enables us to
see that every limit module in M’ is accessible. Now, -let N=N,CN,C
..«CN. be a chain of submodules of M' such that each N; is the limit
module of Ni_, by a, in M. If we set N;=a;"N,_,=a;*%N,_, then, again
by the above remark, we can easily see that N;=N;NM’, which implies

n<s(N).
Proposition 5. (A) together with (B) implies (C) and (F).

Proof. (F): By the validity of Lemma 3, it suffices to prove that if
N is a proper submodule of M then p(M/N) is nilpotent modulo /(M/N).
By (B), there exists a minimal prime divisor p of /(M/N) such that
NCp 'NSp(M/N)'N. If p(M/N) N+ M, then by the same reason we
have p(M/N)*NC p(M/p(M/N)"'N)"(p(M/N)*N)S p(M/N)*N. Conti-
nuing the same argument, we obtain p(M/N)~*N c p(M/N)~**N, pro-
vided p(M/N)*N==M. But, p(M/N) =N is accessible by (A). Hence,
there exists a positive integer % such that p{(M/N)*N= M, which means
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that p(M/N) is nilpotent modulo /(M/N).

(C): We have seen just above that M is a left s-module. Again,
taking the validity of Lemma 3 into mind, it is enough to prove that P(M)
is non-empty and finite.

First, we shall show that P(M) is non-empty. Suppose, on the
contrary, that P(M) is empty. Then, we can find a descending chain
of non-zero submodules of M: M, D M,_, D -« DM, (>s(0)) such that
1,CY,.,C---C1, where ;= p(M,). We set M;=0, M;=17"M;., (i=1, 2,
-+, ), and choose a positive integer f such that YM,;=0 and M;=17"M;_,
for all 7. Evidenty, M,S(¢f---x{)'M;=M,. On the other hand, M;,.Z M.
In fact, if not, t{--¥{M,,,=0 implies tf' S 1{---v/SI(M,,,), which forces a
contradiction 1;=v,.,. We obtain therefore M,CM;C..-CM.. But, this
is impossible.

Next, we shall prove the finiteness of P(M). Let P= {p\|2A= 4} be an
arbitrary non-empty subset of P(M): p,=p(N,) iwith a left p-stable sub-
module N, of M. We consider a finite subset {p, ---, b} of P such that
p; Zp; for every 1<j. To be easily seen, we have then N;2N; for every
{<<j. We set here No=0, N;=p;°N;., i=1, 2, ---, k), and choose a
positive integer % such that p!N;=0 and N;=p; "N ;-1 for all i. Then,
N, S(pt---p)"*Ny=N;. On the other hand, we have N;.,.&ZN;. In fact, if
not, pl---pN;.,=0 implies pj---pSPp,.;. Recalling that p;., is a prime
ideal (Remark 1), we obtain p; Sp;,, for some j<<i+1, which is a
contradiction. It follows therefore N,CN;C---CN;, and so k2<s(0) by
(A). From what we have proved just now, we see that the set of all max-
imal members of P is non-empty and finite. Now, let P; be the set of
all maximal members of P,=P(M), and P,=P,\P.. If P, is non-empty,
we consider P; the set of all maximal members of P, and set P;= P,\P..
Repeating this procedure, we obtain the descending chain P,D P,D P;D---
Suppose Pygp+: is nonempty. Then, we can chocse p; € P; such that
P1OPa D DPscys1, Which contradicts the remark stated above. We have
proved thus P(M) is finite.

Now, we can state the following theorem (cf. [3; Ths. 1.7 and 2. 7],
[5; Th. 11] and [6; Th. 8]):

Theorem 5. The following conditions are equivalent : (i) (A)+(B)+
(D), (i) (A)+®B)+(E), (iii) (C)+(D)+(F), {iv) (C)+ (D), (v) (O)+ E)+
(F), and (vi) (G).

Proof. (vi) implies (i) — (v): (A), (B), (C), (E) and (F) are evident
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by Lemma 2, Th. 1 and Props. 4 and 5. Especially, if {N;|i=1, -, s} is
a left s-primary decomposition of a left P-submodule N then s must equal
1 (Th. 1), and so N=N, is left primary, proving (D).

(iii) implies (iv) : This is trivial.

(iv) implies (vi) : This is a direct consequence of [2; Th. 4.10].

(v) implies (iii) : This is contained in Lemma 1.

(i) Implies (iii) and (ii) implies (v) : These are obvious by Prop. 5.

As is easily seen, [3; Lemma 2. 4 and Prop. 2.5] are still valid for a
left s-module. Combining this remark with Th. 5, we readily obtain the
following, which contains [3; Th. 2.6]:

Theorem 6. If a left Artin-Rees module M is a left s-module whose
each factor module is finite-dimensional (in the sense of Goldie [4]), then
M has the left s-primary decomposition theory.

Finally, the proof of the next proceeds in the same way as that of [3;
Th. 2.9] did.

Theorem 7. Suppose M has the left s-primary decomposition theory.
If a isanideal of R and N=N;.,a"M, then aN=N.
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