provided by Okayama University Scientific Achievement Repository

Mathematical Journal of Okayama University

Volume 16, Issue 1

1973

Article 5

SEPTEMBER 1973

On primary decomposition theory for modules

Isao Mogami* Hisao Tominaga[†]

Copyright ©1973 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

[†]Okayama University

ON PRIMARY DECOMPOSITION THEORY FOR MODULES

ISAO MOGAMI and HISAO TOMINAGA

Recently, in his paper [2], J. W. Fisher introduced a new technique for constructing decomposition theories for left R-modules, and in [3] he used it to give necessary and sufficient conditions for the classical Lasker-Noether primary decomposition theory to exist on a left R-module M over an arbitrary commutative ring or on M which has the property that nil ideals are nilpotent in each factor ring of R/l(M). It should be brought to our attention that all the results in [2] and [3] are still valid for left R-modules with operator domain.

In what follows, combining Fisher's technique with Tominaga's [6], we shall study the left s-primary decomposition theory on R-R'-modules. In § 1, several definitions and preliminary results are given, and § 2 contains uniqueness theorems and a canonical decomposition theorem. Finally, in § 3, we shall present several equivalent conditions for the left s-primary decomposition theory to exist on a R-R'-module.

Throughout the present paper, R and R' will represent arbitrary rings (not necessarily with 1), and M an arbitrary non-zero R-R'-bimodule. The term "submodule" will mean an R-R'-submodule.

1. If α is an ideal of R, then the intersection of all prime ideals of R containing α is called the prime radical of α , and denoted by rad α . The left primary radical p(M) of M is defined as the prime radical of $l(M) = \{x \in R \mid xM = 0\}$. A proper submodule N of M is called a left primary submodule if $l(M'') \subseteq p(M/N)$ for every non-zero submodule M'' of M/N. A left primary submodule N of M is called left s-primary if p(M/N) is nilpotent modulo l(M/N). Occasionally, we regard M itself as a left s-primary submodule. To be easily seen, for the bimodule ${}_RR_R$ the notion "left s-primary submodule" coincides with that of "s-left primary ideal" in the sense of [5].

If p(M'') is nilpotent modulo l(M'') for every non-zero factor sub-module M'' of M then M is called a *left s-module*. Evidently, every left primary submodule of a left s-module is left s-primary, and if R is left Noetherian then M is a left s-module.

1

If p(N) = p(M) for every non-zero submodule N of M then M is said to be *left p-stable*. A left p-stable module M is said to be *left s-p-stable* if p(M) is nilpotent modulo l(M).

Proposition 1. Let N be a proper submodule of M. Then the following conditions are equivalent:

- (1) M/N is left s-p-stable.
- (2) N is a left s-primary submodule of M.
- (3) For every submodule M' of M with $M' \nsubseteq N$, $M' \cap N$ is a left s-primary submodule of M'.
- *Proof.* (2) implies (1): Let M'' be an arbitrary non-zero submodule of M/N. Then $l(M/N) \subseteq l(M'') \subseteq p(M/N)$. It follows therefore that p(M'') = p(M/N).
- (1) implies (3): Let M'' be an arbitrary non-zero submodule of $M'/(M'\cap N)$. Since M/N is left s-p-stable, our assertion is evident by $M'/(M'\cap N) \simeq (M'+N)/N$ and $l(M'') \supseteq l(M/N)$.

Finally, (3) implies (2) trivially.

Remark 1. In the same way as [3; Prop. 1.1] was shown, we can prove that the left primary radical of a left s-p-stable module is a prime ideal. A submodule N of M is called left-q-primary if p(M/N) is a prime ideal. Accordingly, every left s-primary submodule of M is left q-primary.

An ideal $\mathfrak p$ of R is called a *left associated ideal* of M if there exists a left p-stable submodule N such that $\mathfrak p=p(N)$. The set of all left associated ideals of M will be denoted by P(M). $(P(0)=\{R\})$ by definition.) If there exists an ideal $\mathfrak p$ in R such that $\{\mathfrak p\}=P(M'')$ for every non-zero submodule M'' of M/N then N is called a *left P-submodule* of M. Finally, M is said to be *left p-worthy* if P(M'') is finite and non-empty for every non-zero factor submodule M'' of M.

Now, let N be a submodule of M, and α an ideal of R. We set $\alpha^{-1}N = \{u \in M \mid \alpha u \subseteq N\}$, which is evidently a submodule of M. Further, we set $\alpha^{-k}N = (\alpha^k)^{-1}N$ and $\alpha^{-\infty}N = \bigcup_{k=1}^{\infty} \alpha^{-k}N$, which is called the *limit module* of N by α in M. If $\alpha^{-\infty}N = \alpha^{-k}N$ with some k, then we say that $\alpha^{-\infty}N$ is accessible. Occasionally, we consider also $N_{\alpha} = \bigcup_{k=1}^{\infty} N$, where α is accessible. Occasionally, we contained in α . (If $\alpha = R$ then $N_{\alpha} = N$ by definition.)

If M satisfies one of the following equivalent conditions (1) and (2),

it is called a left Artin-Rees module:

- (1) For each submodule N of M and ideal α of R, there exists a positive integer h such that $\alpha^h M \cap M \subseteq \alpha N$.
- (2) For each submodule N of M and ideal α of R, there exists a positive integer h such that $N=(N+\alpha^h M)\cap \alpha^{-1}N$.

One may remark here that if M is a left Artin-Rees module, then so is every factor submodule of M.

The proof of the next is quite similar to that of [3; Lemma 2.1].

- Lemma 1. If a left Artin-Rees module M is a left s-module then every left P-submodule of M is left s-primary.
- 2. A finite set $\{N_i | i \in I\}$ of left s-primary (resp. left q-primary) submodules of M is called a left s-primary (resp. left q-primary) decomposition of N in M if $N = \bigcap_{i \in I} N_i$ is an irredundant representation and $p(M/N_i) \neq p(M/N_j)$ for every $i \neq j$. If every submodule of M has a left s-primary decomposition in M, then M is said to have the left s-primary decomposition theory. Similarly, a finite set $\{N_i | i \in I\}$ of left P-submodules of M is called a left P-decomposition of N in M if $N = \bigcap_{i \in I} N_i$ is an irredundant representation and $P(M/N_i) \neq P(M/N_j)$ for every $i \neq j$. In case every submodule of M has a left P-decomposition in M, M is said to have the left P-decomposition theory.

The first uniqueness theorem is given in the following:

Theorem 1. If $\{N_i | i \in I\}$ is a left s-primary decomposition of N in M then it is a left P-decomposition and $P(M/N) = \{p(M/N_i) | i \in I\}$.

Proof. Since M/N_i is left p-stable by Prop. 1, N_i is a left P-submodule with $P(M/N_i) = \{p(M/N_i)\}$. Now, our assertion is evident by [2; Prop. 4.5].

Proposition 2. Let N_1, \dots, N_s be left q-primary submodules of M, and $N = \bigcap_{s=1}^s N_s$.

- (a) If each $p(M/N_i)$ is nilpotent modulo $l(M/N_i)$ then p(M/N) equals $\bigcap_{i=1}^s p(M/N_i)$ and is nilpotent modulo l(M/N), and every minimal prime divisor of l(M/N) coincides with some $p(M/N_i)$.
- (b) If every N_i is left s-primary and $p(M/N_1) = \cdots = p(M/N_s)$ then N is left s-primary.
- (c) If every N_i is left s-primary then N has a left s-primary decomposition.

- *Proof.* (c) is only a combination of (a) and (b).
- (a) Let $p(M/N_i)^{n_i} \subseteq l(M/N_i)$, and $n = \sum_{i=1}^s n_i$. Then, we have $(\bigcap_{i=1}^s p(M/N_i))^n \subseteq \bigcap_{i=1}^s l(M/N_i) = l(M/N)$.
- (b) It is enough to consider the case s=2. If M'/N is a non-zero submodule of M/N then one of $(M'+N_i)/N_i$, say, $(M'+N_1)/N_1$, is a non-zero homomorphic image of M'/N. Hence, $l(M'/N) \subseteq l((M'+N_1)/N_1) \subseteq p(M/N_1) = p(M/N)$, and so N is left s-primary by (a).

Proposition 3. Let $\{N_i|i=1,\dots,s\}$ be a left s-primary decomposition of a proper submodule N in M, and $\mathfrak{p}_i=\mathfrak{p}(M/N_i)$ $(i=1,\dots,s)$.

- (a) An ideal α of R is non-prime to N (i. e. $\alpha^{-1}N \supset N$) if and only if α is contained in some \mathfrak{p}_i .
- (b) A prime divisor \mathfrak{p} of l(M/N) occurs in P(M/N) if and only if \mathfrak{p} is non-prime to $N_{\mathfrak{p}}$.
- **Proof.** (a) Suppose $\alpha^{-1}N \supset N$. Then, $\alpha^{-1}N \not\subseteq N_j$ and $\alpha(\alpha^{-1}N) \subseteq N$ $\subseteq N_j$ for some j. It follows therefore $\alpha \subseteq \mathfrak{p}_j$. Conversely, suppose $\alpha \subseteq \mathfrak{p}_i$, and choose a positive integer h such that $\mathfrak{p}_i^h \subseteq l(M/N_i)$. Since $N_1' = N_2 \cap \cdots \cap N_s \not\subseteq N_1$ and $\mathfrak{p}_i^h N_1' \subseteq N$, there exists the least positive integer h' such that $\mathfrak{p}_i^{h'} N_1' \subseteq N$. Then, $\alpha^{-1}N \supseteq \mathfrak{p}_i^{h'-1} N_1' + N \supset N$.
- (b) Suppose $\mathfrak{p}_1, \dots, \mathfrak{p}_{r-1} \subseteq \mathfrak{p} = \mathfrak{p}_r$ and $\mathfrak{p}_i \not\subseteq \mathfrak{p}$ for all i > r. Then, $N_{\mathfrak{p}} = N_1 \cap \dots \cap N_r$ and $\mathfrak{p} = \mathfrak{p}_r$ is non-prime to $N_{\mathfrak{p}}$ by (a). Conversely, suppose that \mathfrak{p} is non-prime to $N_{\mathfrak{p}}$. By Prop. 2, \mathfrak{p} contains one of \mathfrak{p}_i 's. Accordingly, without loss of generality, we may assume that $\mathfrak{p}_1, \dots, \mathfrak{p}_r \subseteq \mathfrak{p}$ (r > 0) and $\mathfrak{p}_i \not\subseteq \mathfrak{p}$ $(r+1 \leqslant i \leqslant s)$. Then, $N_{\mathfrak{p}} = N_1 \cap \dots \cap N_r$ is evidently a proper submodule of M. Hence, again by (a), $(\mathfrak{p} \subseteq \mathfrak{p}_j, \text{ and so}) \mathfrak{p} = \mathfrak{p}_j$ for some $j \leqslant r$.

Now, let $\{N_i|i=1, \dots, s\}$ be a left s-primary decomposition of a submodule N in M. A subset P of $P(M/N) = \{\mathfrak{p}_i = \mathfrak{p}(M/N_i) | i=1, \dots s\}$ is called an *isolated subset* of P(M/N) if every \mathfrak{p}_i contained in one of the members of P is a member of P. If P is an isolated subset of P(M/N) then we set $N_P = \bigcap_{\mathfrak{p}_i \in P} N_i$, which is called an *isolated component* of N. Since $N_P \subseteq N_{\mathfrak{p}_i} \subseteq N_i$ for every $\mathfrak{p}_i \in P$, it follows then $N_P = \bigcap_{\mathfrak{p}_i \in P} N_{\mathfrak{p}_i}$. Combining this with Th. 1, we readily obtain the following, which is the second uniqueness theorem:

Theorem 2. Suppose N has a left s-primary decomposition. Then the set of isolated components of N does not depend on the choice of left

s-primary decompositions of N.

Theorem 3. Let $\{N_i|i\in I\}$ be a left s-primary decomposition of N. If M' is a non-zero submodule of M then $\{M'\cap N_i|i\in I\}$ contains a left s-primary decomposition of $M'\cap N$ in M'.

Proof. We set $N_i = M' \cap N_i$. Then, Prop. 1 shows that every N_i' different from M' is a left s-primary submodule of M' with $p(M'/N_i') = p(M/N_i)$. Now, our assertion is obvious by Prop. 2.

Corollary 1. If M has the left s-primary decomposition theory, then so does every non-zero factor submodule of M.

Proposition 4. If M has the left s-primary decomposition theory then there holds the following:

- (a) For every submodule N of M and every ideal α of R, $\alpha^{-\infty}N$ is accessible, and if $N = N_0 \subset N_1 \subset \cdots \subset N_n$ is an arbitrary chain of submodules of M such that each N_i is a limit module of the preceding one in M then $n \leq s(N)$ with a positive integer s(N) depending solely on N.
- (b) Let M'/N be an arbitrary non-zero factor submodule of M. If \mathfrak{p} is an arbitrary minimal prime divisor of l(M'/N) then $\mathfrak{p}^{-1}N \cap M' \supset N$.
- (c) Let N be a submodule of M, and \mathfrak{p} a prime divisor of l(M/N). Then the following conditions are equivalent:
 - (1) p is a minimal prime divisor of l(M/N).
 - (2) $N_{\mathfrak{p}}$ is left s-primary and $\mathfrak{p}(M/N_{\mathfrak{p}}) = \mathfrak{p}$.
 - (3) $N_{\mathfrak{p}} = (N + \mathfrak{p}^h M)_{\mathfrak{p}}$ for some h.

If \mathfrak{p} is a minimal prime divisor of l(M/N) then $N_{\mathfrak{p}}$ is a minimal left s-primary submodule containg N.

Proof. (a) Let $\{N_i | i=1, \dots, s\}$ be a left s-primary decomposition of N. Without loss of generality, we may assume that $\alpha \subseteq p(M/N_i)$ for i < k and $\alpha \subseteq p(M/N_i)$ for i > k. There exists a positive integer k such that $\alpha^k \subseteq l(M/N_i)$ for all i > k. Recalling that each $p(M/N_i)$ is a prime ideal (Remark 1), we readily obtain

$$a^{-\infty}N=a^{-h}N=N_1\cap\cdots\cap N_k$$
.

Now, our assertion is obvious by Th. 1.

(b) By the validity of Cor. 1, it suffices to prove that if p is a minimal prime divisor of l(M) then $p^{-1}0 \neq 0$. If $\{N_i | i \in I\}$ is a left

s-primary decomposition of 0, then \mathfrak{p} coincides with some $p(M/N_i)$ (Prop. 2), and our assertion is clear by the proof of (a).

- (c) By Prop. 2, M is a left s-module.
- (1) implies (2): In case $\mathfrak{p}=R$, there is nothing to prove. We may assume henceforth $\mathfrak{p}\neq R$. As an easy consequence of (a), we see that $N_{\mathfrak{p}}$ is the largest submodule among those of the form $\mathfrak{b}^{-1}N$ with some ideal \mathfrak{b} not contained in $\mathfrak{p}: N_{\mathfrak{p}}=\mathfrak{c}^{-1}N$, $\mathfrak{c} \not\subseteq \mathfrak{p}$. In order to see that $N_{\mathfrak{p}}$ is left s-primary, it suffices to prove that $\mathfrak{p}(M/N_{\mathfrak{p}})=\mathfrak{p}$. Suppose here $\mathfrak{p}(M/N_{\mathfrak{p}})\neq \mathfrak{p}$, and choose a minimal prime divisor \mathfrak{p}' of $l(M/N_{\mathfrak{p}})$ such that $\mathfrak{p}'\not\subseteq \mathfrak{p}$. Then, $\mathfrak{p}'^{-1}N_{\mathfrak{p}} \supset N_{\mathfrak{p}}$ by (b). But, this is a contradiction. Hence, $N_{\mathfrak{p}}$ is a left s-primary submodule with $\mathfrak{p}(M/N_{\mathfrak{p}})=\mathfrak{p}$. Now, let N'' be a left s-primary submodule of M such that $N\subseteq N''\subseteq N_{\mathfrak{p}}$. Since $\mathfrak{c}N_{\mathfrak{p}}\subseteq N\subseteq N''$ and $\mathfrak{c}\not\subseteq \mathfrak{p}(M/N'')$, it follows $N_{\mathfrak{p}}\subseteq N''$, i. e. $N_{\mathfrak{p}}=N''$.
- (2) implies (3): There exists a positive integer h such that $\mathfrak{p}^h M \subseteq N_{\mathfrak{p}}$. Then, $N_{\mathfrak{p}} \subseteq (N+\mathfrak{p}^h M)_{\mathfrak{p}} \subseteq (N_{\mathfrak{p}})_{\mathfrak{p}} = N_{\mathfrak{p}}$, which implies $N_{\mathfrak{p}} = (N+\mathfrak{p}^h M)_{\mathfrak{p}}$.
- (3) implies (1): Since $p(M/N_{\mathfrak{p}}) = p(M/(N + \mathfrak{p}^{h}M)_{\mathfrak{p}}) \supseteq \mathfrak{p}^{h}$, we obtain $p(M/N_{\mathfrak{p}}) \supseteq \mathfrak{p}$. As is well-known, \mathfrak{p} contains a minimal prime divisor \mathfrak{p}'' of l(M/N). By (1) \Longrightarrow (2), $N_{\mathfrak{p}''}$ is a left s-primary submodule and $p(M/N_{\mathfrak{p}'}) = \mathfrak{p}''$. Combining this with $N_{\mathfrak{p}''} \supseteq N_{\mathfrak{p}}$ and $\mathfrak{p} \subseteq p(M/N_{\mathfrak{p}})$, we readily obtain $\mathfrak{p} = \mathfrak{p}''$.

Next, we shall prove the following canonical decomposition theorem, which contains [1; Th. 3.4].

Theorem 4. Suppose M has the left s-primary decomposition theory. Let N be a submodule of M, and $P(M/N) = \{ \mathfrak{p}_i | i=1, \dots, r \}$ where $\mathfrak{p}_i, \dots, \mathfrak{p}_r$ (r < s) are the minimal prime divisors of l(M/N) (cf. Prop. 2 (a)). Then, there exists a positiae integer h such that $\{N+\mathfrak{p}_i^h M)_{\mathfrak{p}_i} | i=1, \dots, s\}$ is a left s-primary decomposition of N and $\{N+\mathfrak{p}_i^h M | i=1, \dots, r\}$ is a left q-primary decomposition of N.

Proof. Let $\{N_i | i=1, \dots, s\}$ be a left s-primary decomposition of N and $\mathfrak{p}_i = p(M/N_i)$ (Th. 1). Choose a positive integer h such that $\mathfrak{p}_i^h \subseteq l(M/N_i)$ for all i. Then, $N \subseteq N + \mathfrak{p}_i^h M \subseteq N_i$, and so $N \subseteq (N + \mathfrak{p}_i^h M)_{\mathfrak{p}_i} \subseteq N_{i\mathfrak{p}_i} = N_i$. Evidently, $\mathfrak{p}(M/(N + \mathfrak{p}_i^h M)) = \mathfrak{p}(M/(N + \mathfrak{p}_i^h M)_{\mathfrak{p}_i}) = \mathfrak{p}_i$. If $\mathfrak{b}M' \subseteq (N + p_i^h M)_{\mathfrak{p}_i}$ for a submodule M' of M and an ideal $\mathfrak{b} \not\subseteq \mathfrak{p}_i$ then $M' \subseteq ((N + p_i^h M)_{\mathfrak{p}_i})_{\mathfrak{p}_i} = (N + \mathfrak{p}_i^h M)_{\mathfrak{p}_i}$. Hence, Th. 1 proves that $\{(N + \mathfrak{p}_i^h M)_{\mathfrak{p}_i} | i=1, \dots, s\}$ is a left s-primary decomposition of N. The rest of the proof will be almost evident by Prop. 2 (a).

- 3. In this section, we shall consider the following conditions:
- (A) For every submodule N of M and every ideal a of R, $a^{-\infty}N$ is accessible, and if $N=N_0 \subset N_1 \subset \cdots \subset N_n$ is an arbitrary chain of submodules of M such that each N_i is a limit module of the preceding one in M then $n \leq s(N)$ with a positive integer s(N) depending solely on N.
- (B) For each non-zero factor submodule M'/N of M, there exists a minimal prime divisor \mathfrak{p} of l(M'/N) such that $\mathfrak{p}^{-1}N \cap M' \supset N$.
 - (C) M is left p-worthy.
 - (D) Every left P-submodule of M is left primary.
 - (D') Every left P-submodule of M is left s-primary.
 - (E) M is a left Artin-Rees module.
 - (F) M is a left s-module.
 - (G) M has the left s-primary decomposition theory.

Lemma 2. If M has the left s-primay decomposition theory then M is a left Artin-Rees module.

Proof. Prop. 1 and Th. 1 enables us to apply the argument used in the proof of [3; Th. 2.7] to see this.

Lemma 3. Suppose the condition (A) is satisfied. If M' is an arbitrary non-zero submodule of M then (A) holds good for M'.

Proof. We claim first that if N is a submodule of M' and \mathfrak{a} , \mathfrak{b} are ideals of R then $\mathfrak{b}^{-1}\mathfrak{a}^{-1}N\cap M'=\mathfrak{b}^{-1}(\mathfrak{a}^{-1}N\cap M')\cap M'$. This enables us to see that every limit module in M' is accessible. Now, let $N=N_0'\subset N_1'\subset\cdots\subset N_n'$ be a chain of submodules of M' such that each N_i' is the limit module of N_{i-1}' by \mathfrak{a}_i in M'. If we set $N_i=\mathfrak{a}_i^{-\infty}N_{i-1}=\mathfrak{a}_i^{-k_i}N_{i-1}$ then, again by the above remark, we can easily see that $N_i'=N_i\cap M'$, which implies $n\leqslant s(N)$.

Proposition 5. (A) together with (B) implies (C) and (F).

Proof. (F): By the validity of Lemma 3, it suffices to prove that if N is a proper submodule of M then p(M/N) is nilpotent modulo l(M/N). By (B), there exists a minimal prime divisor $\mathfrak p$ of l(M/N) such that $N \subset \mathfrak p^{-1}N \subseteq p(M/N)^{-1}N$. If $p(M/N)^{-1}N \neq M$, then by the same reason we have $p(M/N)^{-1}N \subset p(M/p(M/N)^{-1}N)^{-1}(p(M/N)^{-1}N) \subseteq p(M/N)^{-2}N$. Continuing the same argument, we obtain $p(M/N)^{-k}N \subset p(M/N)^{-(k+1)}N$, provided $p(M/N)^{-k}N \neq M$. But, $p(M/N)^{-\infty}N$ is accessible by (A). Hence, there exists a positive integer h such that $p(M/N)^{-h}N = M$, which means

I. MOGAMI and H. TOMINAGA

that p(M/N) is nilpotent modulo l(M/N).

44

(C): We have seen just above that M is a left s-module. Again, taking the validity of Lemma 3 into mind, it is enough to prove that P(M) is non-empty and finite.

First, we shall show that P(M) is non-empty. Suppose, on the contrary, that P(M) is empty. Then, we can find a descending chain of non-zero submodules of $M: M_t \supset M_{t-1} \supset \cdots \supset M_1$ (t > s(0)) such that $r_t \subset r_{t-1} \subset \cdots \subset r_1$ where $r_i = p(M_i)$. We set $M_0' = 0$, $M_i' = r_i^{-\infty} M_{i-1}'$ $(i = 1, 2, \cdots, t)$, and choose a positive integer f such that $r_i' M_i = 0$ and $M_i' = r_i^{-1} M_{i-1}'$ for all i. Evidenty, $M_i \subseteq (r_1' \cdots r_i')^{-1} M_0' = M_i'$. On the other hand, $M_{i+1} \not\subseteq M_i'$. In fact, if not, $r_1' \cdots r_i' M_{i+1} = 0$ implies $r_i'^i \subseteq r_1' \cdots r_i' \subseteq l(M_{i+1})$, which forces a contradiction $r_i \subseteq r_{i+1}$. We obtain therefore $M_0' \subset M_1' \subset \cdots \subset M_i'$. But, this is impossible.

Next, we shall prove the finiteness of P(M). Let $P = \{ \mathfrak{p}_{\lambda} | \lambda \in A \}$ be an arbitrary non-empty subset of P(M): $\mathfrak{p}_{\lambda} = p(N_{\lambda})$ [with a left p-stable submodule N_{λ} of M. We consider a finite subset $\{p_1, \dots, p_k\}$ of P such that $\mathfrak{p}_i \not\subseteq \mathfrak{p}_j$ for every i < j. To be easily seen, we have then $N_i \not\supseteq N_j$ for every i < j. We set here $N_0' = 0$, $N_i' = \mathfrak{p}_i^{-\infty} N_{i-1}'$ $(i = 1, 2, \dots, k)$, and choose a positive integer h such that $\mathfrak{p}_i^h N_i = 0$ and $N_i' = \mathfrak{p}_i^{-h} N_{i-1}'$ for all i. Then, $N_i \subseteq (\mathfrak{p}_1^h \cdots \mathfrak{p}_i^h)^{-1} N_0' = N_i'$. On the other hand, we have $N_{i+1} \not\subseteq N_i'$. In fact, if not, $\mathfrak{p}_{i}^{h}\cdots\mathfrak{p}_{i}^{h}N_{i+1}=0$ implies $\mathfrak{p}_{i}^{h}\cdots\mathfrak{p}_{i}^{h}\subseteq\mathfrak{p}_{i+1}$. Recalling that \mathfrak{p}_{i+1} is a prime ideal (Remark 1), we obtain $\mathfrak{p}_j \subseteq \mathfrak{p}_{i+1}$ for some j < i+1, which is a contradiction. It follows therefore $N'_0 \subset N'_1 \subset \cdots \subset N'_k$, and so $k \leq s(0)$ by (A). From what we have proved just now, we see that the set of all maximal members of P is non-empty and finite. Now, let P'_1 be the set of all maximal members of $P_1 = P(M)$, and $P_2 = P_1 \setminus P'_1$. If P_2 is non-empty, we consider P_2 the set of all maximal members of P_2 and set $P_3 = P_2 \setminus P_2$. Repeating this procedure, we obtain the descending chain $P_1 \supset P_2 \supset P_3 \supset \cdots$. Suppose $P_{s(0)+1}$ is non-empty. Then, we can choose $\mathfrak{p}_i \subseteq P_i$ such that $\mathfrak{p}_1 \supset \mathfrak{p}_2 \supset \cdots \supset \mathfrak{p}_{\mathfrak{s}(0)+1}$, which contradicts the remark stated above. We have proved thus P(M) is finite.

Now, we can state the following theorem (cf. [3; Ths. 1.7 and 2.7], [5; Th. 11] and [6; Th. 8]):

Theorem 5. The following conditions are equivalent: (i) (A)+(B)+(D), (ii) (A)+(B)+(E), (iii) (C)+(D)+(F), (iv) (C)+(D'), (v) (C)+(E)+(F), and (vi) (G).

Proof. (vi) implies (i) - (v): (A), (B), (C), (E) and (F) are evident

http://escholarship.lib.okayama-u.ac.jp/mjou/vol16/iss1/5

8

by Lemma 2, Th. 1 and Props. 4 and 5. Especially, if $\{N_i | i=1, \dots, s\}$ is a left s-primary decomposition of a left P-submodule N then s must equal 1 (Th. 1), and so $N=N_1$ is left primary, proving (D).

- (iii) implies (iv): This is trivial.
- (iv) implies (vi): This is a direct consequence of [2; Th. 4. 10].
- (v) implies (iii): This is contained in Lemma 1.
- (i) Implies (iii) and (ii) implies (v): These are obvious by Prop. 5.

As is easily seen, [3; Lemma 2.4 and Prop. 2.5] are still valid for a left s-module. Combining this remark with Th. 5, we readily obtain the following, which contains [3; Th. 2.6]:

Theorem 6. If a left Artin-Rees module M is a left s-module whose each factor module is finite-dimensional (in the sense of Goldie [4]), then M has the left s-primary decomposition theory.

Finally, the proof of the next proceeds in the same way as that of [3; Th. 2.9] did.

Theorem 7. Suppose M has the left s-primary decomposition theory. If a is an ideal of R and $N = \bigcap_{n=1}^{\infty} a^n M$, then aN = N.

REFERENCES

- [1] K.L. Chew: On a conjecture of D. C. Murdoch concerning primary decompositions of an ideal, Proc. Amer. Math. Soc. 19 (1968), 925—932.
- [2] J. W. FISHER: Decomposition theories for modules, Trans. Amer. Math. Soc. 145 (1969), 241—269.
- [3] J.W. FISHER: The primary decomposition theory for modules, Pacific J. Math. 35 (1970), 359-367.
- [4] A.W. GOLDIE: Rings with maximum condition, Yale Univ., 1964.
- [5] H. MARUBAYASHI: Primary ideal decompositions in non-commutative rings, Math. J. Okayama Univ. 13(1967), 1—7.
- [6] H. TOMINAGA: On primary ideal decompositions in non-commutative rings, Math. J. Okayama Univ. 3 (1953), 39—46.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received July 31, 1972)