Mathematical Journal of Okayama **University**

Volume 44, *Issue* 1 2002 *Article* 7

JANUARY 2002

On the Nilpotency Index of the Radical of a Group Algebra. XI

Kaoru Motose[∗]

[∗]Hirosaki University

Copyright ©2002 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. **44**(2002), 51–56

ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. XI

Kaoru MOTOSE

Let $t(G)$ be the nilpotency index of the radical $J(KG)$ of a group algebra *KG* of a finite *p*-solvable group *G* over a field *K* of characteristic $p > 0$. Then it is well known by D. A. R. Wallace [7] that

$$
p^e \ge t(G) \ge e(p-1) + 1,
$$

where p^e is the order of a Sylow p -subgroup of G .

H. Fukushima [1] characterized a group *G* of *p*-length 2 satisfying $t(G)$ = $e(p-1) + 1$, see also [4]. Unfortunately, his characterization holds under a condition such that the *p*'-part $V = O_{p',p}(G)/O_p(G)$ of *G* is abelian.

In this paper, using Dickson near fields, we shall give an explicit example (see Example 1) such that a group G of p -length 2 has the non abelian p' part *V* and satisfies $t(G) = e(p-1) + 1$. This example will be new and have a contributions in our research. Example 2 is also very interesting because quite different objects (see [3] and [5]) are unified on the ground of Dickson near fields.

Let *H* be a sharply 2-fold transitive group on $\Delta = \{0, 1, \alpha, \beta, \ldots, \gamma\}$ (see [8, p. 22]). Let $V = H_0$ be a stabilizer of 0, and let U be the set consisting of the identity ε and fixed point-free permutations in H . Then U is an elementary abelian *p*-subgroup of H with the order p^s (see Lemma 1). Let σ be a permutation of order *p* on Δ satisfying conditions

$$
\sigma H \sigma^{-1} \subseteq H
$$
, $\sigma^p = 1$, $\sigma(0) = 0$ and $\sigma(1) = 1$.

Then it is easy to see $\sigma U \sigma^{-1} \subseteq U$ and $\sigma V \sigma^{-1} \subseteq V$. We set $W = \langle \sigma \rangle$ and $C_V(\sigma) = \{v \in V \mid \sigma v = v\sigma\}$. Assume that there exists a normal subgroup *T* of *WV* contained in *V* such that *V* is a semi-direct product of *T* by $C_V(\sigma)$. We set $G = \langle W, T, U \rangle$.

Now, we present the well known results Lemmas 1 and 2 for completeness of this paper.

Lemma 1. *U is a normal and elementary abelian p-subgroup of H.*

Proof. First we shall prove, for $k \in \Delta^* = \Delta \setminus \{0\}$, there exists only one $u_k \in U$ with $u_k(0) = k$, equivalently, the following map *ν* from *U* to Δ is bijective:

$$
\nu\colon u\to u(0).
$$

This paper was financially supported by the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (Subject No. 1164003).

52 K. MOTOSE

For $\tau \in U \setminus {\varepsilon}$, there exists $\rho \in H_0$ with $\rho(\tau(0)) = k$ since $\tau(0) \neq 0$ and H_0 is transitive on Δ^* . We set $u_k = \rho \tau \rho^{-1}$. Then $u_k \in U$ and $u_k(0) = k$. Thus *ν* is surjective. It follows from definition of *H* and *U* that

$$
U = H \setminus \bigcup_{a \in \Delta} (H_a \setminus \{\varepsilon\}), \quad (H_a \setminus \{\varepsilon\}) \cap (H_b \setminus \{\varepsilon\}) = \emptyset \text{ for } a \neq b.
$$

Using $|H| = |H_a||a^H| = |H_a||\Delta|$, where a^H is an orbit of *a*, we can see $|U| = |\Delta|$. Hence ν is injective.

Assume $\eta \tau$ has a fixed point ℓ for $\eta, \tau \in U$. Then we may assume $\ell = 0$ since *H* is transitive on Δ and $\rho U \rho^{-1} = U$ for $\rho \in H$. Thus $\tau = \eta^{-1}$ follows from $\eta^{-1} \in U$, $\tau(0) = \eta^{-1}(0)$ and the above observation. This means $\eta \tau \in U$. Hence *U* is a normal subgroup of *H* because $\rho U \rho^{-1} = U$ for all $\rho \in H$.

Now, we shall show *U* is elementary abelian. Let *p* be a prime factor of $|U|$ and let τ be an element of order p in the center of a Sylow p-subgroup of *U*. We set $\eta \in U \setminus \{\varepsilon\}$. Then there exists $\rho \in H_0$ with $\rho(\tau(0)) = \eta(0)$. Thus $\rho \tau \rho^{-1} = \eta$ follows from $\rho \tau \rho^{-1} \in U$ and $\rho \tau \rho^{-1}(0) = \eta(0)$. Thus the order of every element in *U* is *p* or 1 and so *η* is in the center of a *p*-group *U*. Thus *U* is elementary abelian. \Box

The next shows Δ is a near field of characteristic p.

Lemma 2. ∆ *is a near field of characteristic p and σ is an automorphism of* ∆*.*

Proof. First, we shall prove that Δ is a near field. We can set a structure of a near field in a set Δ by the following method. It follows from Lemma 1 that there exists only one $u_a \in U$ with $u_a(0) = a$ for $a \in \Delta$. It is easy to see that for $a \in \Delta^* = \Delta \setminus \{0\}$, there exists only one $v_a \in V = H_0$ with $v_a(1) = a$. It is clear from definition that $u_0 = v_1 = \varepsilon$.

We define the sum and the product of elements a, b in Δ by using the above v_a and u_b :

$$
a + b := u_b(a)
$$
, $ab := v_a(b)$ for $a \neq 0$ and $0b := 0$.

First we shall prove the next equations:

$$
u_a u_b = u_{b+a}, \quad v_a v_b = v_{ab} \quad \text{and} \quad v_a u_b v_a^{-1} = u_{ab}.
$$

These follow from

$$
u_a u_b(0) = u_a(b) = b + a = u_{b+a}(0),
$$

\n
$$
v_a v_b(1) = v_a(b) = ab = v_{ab}(1),
$$

\n
$$
v_a u_b v_a^{-1}(0) = v_a u_b(0) = v_a(b) = ab = u_{ab}(0).
$$

http://escholarship.lib.okayama-u.ac.jp/mjou/vol44/iss1/7

ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. XI 53

Next we shall prove the next equations from the first equation and the commutativity of *U*:

$$
a + (b + c) = u_{b+c}(a) = u_c u_b(a) = u_c(a + b) = (a + b) + c,
$$

\n
$$
a + b = u_{a+b}(0) = u_b u_a(0) = u_a u_b(0) = u_a(b) = b + a,
$$

\n
$$
a + 0 = 0 + a = u_a(0) = a,
$$

\n
$$
a + u_a^{-1}(0) = u_a^{-1}(0) + a = u_a(u_a^{-1}(0)) = \varepsilon(0) = 0.
$$

We shall prove the next equations from the second equation for $a, b \in \Delta^*$. For $a = 0$ or $b = 0$, it is easy to prove our equations:

$$
a(bc) = v_a(bc) = v_a(v_b(c)) = v_a v_b(c) = v_{ab}(c) = (ab)c,
$$

\n
$$
a1 = v_a(1) = a = \varepsilon(a) = v_1(a) = 1a,
$$

\n
$$
av_a^{-1}(1) = v_a(v_a^{-1}(1)) = \varepsilon(1) = 1.
$$

For $a \in \Delta^*$, $v_a^{-1}(1) \neq 0$ follows from $v_a(0) = 0 \neq 1$ and we can see $v_{v_a^{-1}(1)} =$ v_a^{-1} by $v_{v_a^{-1}(1)}(1) = v_a^{-1}(1)$. Thus we have

$$
v_a^{-1}(1)a = v_{v_a^{-1}(1)}(a) = v_a^{-1}(a) = v_a^{-1}(v_a(1)) = 1.
$$

The next equation follows from the third equation:

$$
a(b + c) = v_a(b + c) = v_a(u_c(b)) = v_a u_c v_a^{-1}(v_a(b)) = u_{ac}(ab) = ab + ac.
$$

Thus Δ is a near field by our definition of the sum and the product. Moreover Δ is of characteristic *p* because $u_{p\cdot 1} = u_1^p = \varepsilon = u_0$.

Next we shall show σ is an automorphism of Δ . It is easy to see from the definitions of *U* and *V* that

$$
\sigma U \sigma^{-1} \subseteq U
$$
 and $\sigma V \sigma^{-1} \subseteq V$.

It follows from the definitions of u_a and v_a that

$$
\sigma u_a \sigma^{-1} = u_{\sigma(a)}
$$
 and $\sigma v_b \sigma^{-1} = v_{\sigma(b)}$

by equations

$$
\sigma u_a \sigma^{-1}(0) = \sigma u_a(0) = \sigma(a) = u_{\sigma(a)}(0)
$$

and

$$
\sigma v_b \sigma^{-1}(1) = \sigma v_b(1) = \sigma(b) = v_{\sigma(b)}(1).
$$

Since σ is a permutation on Δ , it follows from the next equations that σ is an automorphism of Δ :

$$
u_{\sigma(a+b)} = \sigma u_{a+b} \sigma^{-1} = \sigma u_a \sigma^{-1} \sigma u_b \sigma^{-1} = u_{\sigma(a)} u_{\sigma(b)} = u_{\sigma(a)+\sigma(b)}
$$

and

$$
v_{\sigma(ab)} = \sigma v_{ab}\sigma^{-1} = \sigma v_a \sigma^{-1} \sigma v_b \sigma^{-1} = v_{\sigma(a)}v_{\sigma(b)} = v_{\sigma(a)\sigma(b)}.
$$

54 K. MOTOSE

We can see from Lemma 2 and the classification of finite near fields (see [9]) that Δ is a Dickson near field because Δ has an automorphism of order *p* where *p* is the characteristic of Δ .

Lemma 3. WT *is a Frobenius group with kernel* T *and complement* W *.*

Proof. We note $W \cap V = \{\varepsilon\}$ since $\sigma(1) = 1$. Let $x = \sigma^k v$ be an element of $WT \setminus W$, where $v \in T$, and let $x^{-1}\sigma^s x = \sigma^t \neq \varepsilon$ be an element of $x^{-1}Wx \cap W$. Then we may assume $s = 1$ because the order of *σ* is *p*. Thus $x^{-1}Wx \cap W$ contains $v^{-1}\sigma v = \sigma^t$. The element $\sigma^{t-1} = v^{-1} \cdot \sigma v \sigma^{-1}$ is contained in $W \cap V = \{\varepsilon\}$. Hence $\sigma v = v\sigma$. Thus $v \in C_V(\sigma) \cap T = \{\varepsilon\}$ and $x = \sigma^k v = \sigma^k$ is contained in *W*. Therefore we have

$$
x^{-1}Wx \cap W = \{\varepsilon\} \text{ for } x \in WT \setminus W. \qquad \Box
$$

Lemma 4. $G = TC_G(\sigma)T$.

Proof. Clearly $TC_G(\sigma)T$ contains T and W. Let u_δ be an arbitrary element of $U \setminus \{\varepsilon\}$, where δ is an arbitrary element in $\Delta^* = \Delta \setminus \{0\}$. Then $v_{\delta} =$ $v_{\gamma}v_{\lambda} = v_{\gamma\lambda}$ where $v_{\gamma} \in T$ and $v_{\lambda} \in C_V(\sigma)$, namely, $\sigma(\lambda) = \lambda$. Thus $\delta = \gamma\lambda$ and so $u_{\delta} = v_{\gamma} u_{\lambda} v_{\gamma}^{-1} \in TC_G(\sigma)T$. It follows from $U \subset TC_G(\sigma)T$ that $G = TC_G(\sigma)T.$

Lemma 5. $(J(KW)\hat{T}KG)^n \subseteq J(KW)^n\hat{T}KG$, where $\hat{T} = \sum_{t \in T} t$.

Proof. Since *T* is normal in *WV* and $G = TC$ *G*(σ)*T* by Lemma 4, we can see $s\sigma = \sigma s$ for every $s \in \hat{T}KG\hat{T} = \hat{T}KC_G(\sigma)\hat{T}$. Clearly the result holds for $n = 1$. Assume that the result holds for *n*. Then using the last assertion, we conclude that

$$
(J(KW)\hat{T}KG)^{n+1} \subseteq J(KW)^n\hat{T}KGJ(KW)\hat{T}KG
$$

$$
= J(KW)^n\hat{T}KG\hat{T}J(KW)KG
$$

$$
\subseteq J(KW)^{n+1}\hat{T}KG.
$$

Theorem. Let S be a subgroup of V containing T and let p^{s+1} be the order *of a Sylow p-subgroup* WU *of* $M = \langle S, W, U \rangle$ *. Then* $t(M) = (s+1)(p-1)+1$ *.*

Proof. Let *v* be an arbitrary element of *S*. Then $v = tc$ where $t \in T$ and $c \in C_V(\sigma)$. Hence we have

$$
v\sigma v^{-1} = t c\sigma c^{-1} t^{-1} = t\sigma t^{-1} \in G = \langle T, W, U \rangle.
$$

Noting *T* is normal in *V* , we have that *G* is a normal in *M* and the index $|M : G|$ is relatively prime to *p*. Therefore we obtain $t(M) = t(G)$ and it is enough to prove in case $M = G$. Since the radical $J(KG)$ contains the kernel $J(KU)KG$ of the natural homomorphism ν of the group algebra KG onto $K(G/U)$, it follows that $\nu(J(KG)) = \nu(J(KW)\hat{T})$ by Lemma 3 and

ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. XI 55

[2, Theorem 4] and so $J(KG) = J(KW)\hat{T}KG + J(KU)KG$. Since *U* is a normal and elementary abelian subgroup of order *p s* , it is clear that the nilpotency index of $J(KU)KG$ is $s(p-1)+1$. On the other hand, Lemma 5 shows that $(J(KW)\hat{T}KG)^p = 0$. Since $J(KW)\hat{T}KG$ and $J(KU)KG$ are right ideals of *KG*, it follows that

$$
J(KG)^{(s+1)(p-1)+1} = (J(KW)\hat{T}KG + J(KU)KG)^{p+s(p-1)} = 0,
$$

and so $t(G) \leq (s+1)(p-1)+1$. On the other hand $(s+1)(p-1)+1 \leq t(G)$ by $[7,$ Theorem 3.3. This completes the proof.

Example 1. Let (q, n) be a Dickson pair where p is a prime and $q = p^r$ for a positive integer *r*. Then (q^p, n) is also a Dickson pair because $q^p \equiv -1 \mod 4$ if and only if $q \equiv -1 \mod 4$. Let $\mathbf{F} = \mathbf{F}_{q^{pn}}$ be a finite field of order q^{pn} and let $D = D_{q^{pn}}$ be a finite Dickson near field defined by the automorphism *τ*: *x* $\rightarrow x^{q^p}$ of *F*. Then an automorphism $\sigma: x \rightarrow x^{q^n}$ of *F* is also of *D* by [9, Satz 18] or [6, Theorem 5] because $p^{rn} = q^n \equiv 1 \mod n$ (see also [6, Theorem 1]).

Let ω be a generator of the multiplicative group \mathbf{F}^* and we set $a = \omega^n$, $b = \omega$ in \mathbf{F}^* . Then the multiplicative group \mathbf{D}^* of \mathbf{D} has the structure

$$
D^* = \langle a, b \mid a^m = 1, b^n = a^t, bab^{-1} = a^{q^p} \rangle,
$$

where $m = \frac{q^{pn} - 1}{n}$, $t = \frac{m}{q^p - 1}$ $\frac{m}{q^p-1}$. Here we use the usual symbol as the product in *D* for simplicity. Do not confuse with the product in *F*. We consider some permutations on *D*:

$$
u_c: x \to x + c
$$
 for $c \in \mathbf{D}$, $v_c: x \to cx$ for $c \in \mathbf{D}^*$.

Then we have some relations

 $u_c u_d = u_{d+c}, \ v_c v_d = v_{cd}, \ v_c u_d v_c^{-1} = u_{cd}, \ \sigma u_c \sigma^{-1} = u_{\sigma(c)}, \ \sigma v_c \sigma^{-1} = v_{\sigma(c)}$ on u_c, v_c, σ . We set

$$
U = \{u_c \mid c \in \mathbf{D}\}, \ V = \{v_c \mid c \in \mathbf{D}^*\}, \ W = \langle \sigma \rangle
$$

and

$$
T = \{v_c \in V \mid c \in \langle a^{\frac{q^n-1}{n}} \rangle\}.
$$

It is easy to see that *UV* is sharply 2-fold transitive on *D*, *T* is normal in *WV* and the order of *T* is $\frac{q^{pn}-1}{q^n-1}$ q^{n-1} because products of *a* and *x* in *D* are the same in F. On the other hand, the set $C_V(\sigma)$ is equal to $\mathbf{F}_{q^n}^*$ as a set and the order of $C_V(\sigma)$ is $q^n - 1$. Since $\frac{q^{pn} - 1}{q^n - 1}$ $q^{p n}-1$ and q^n-1 are relatively prime, we have $V = C_V(\sigma)T$, $C_V(\sigma) \cap T = {\epsilon}$. Let *S* be a subgroup of *V* containing *T* and $M = \langle S, W, U \rangle$. Then $t(M) = (rpn+1)(p-1)+1$ by Theorem, where p^{rpn+1} is the order of a Sylow *p*-subgroup WU of M .

56 K. MOTOSE

If we put $D = F$ for the extreme case $n = 1$, we have the same example as in [3]. \Box

Example 2. If $(q, n) \neq (3, 2)$ and p is not a divisor of r, then D_{q^n} has no automorphisms of order *p*, and so we consider $D_{q^{pn}}$. But D_{3^2} has an automorphism σ of order 3 and we can consider the affine group $G = \langle \sigma, V, U \rangle$ over D_{3^2} where D_{3^2} is a Dickson near fields defined by an automorphism $x \to x^3$ of $\mathbf{F}_{3^2} = \mathbf{F}_3[x]/(x^2 + 1) = \{s + ti \mid i^2 = -1, s, t \in \mathbf{F}_3\}, \sigma$ is defined by $\sigma(s+ti) = s+t+ti$, and the permutation group *U*, *V* are defined as in Example 1. This group *G* is isomorphic to *Qd*(3), namely, a group defined by semi-direct product of $\mathbf{F}_3^{(2)}$ $S₃⁽²⁾$ by $SL(2,3)$ using the natural action, where $\bm{F}_3^{(2)}$ $\binom{1}{3}$ is 2-dimensional vector space over \mathbf{F}_3 and $SL(2,3)$ is the special linear group over $\pmb{F}^{(2)}_3$ $3⁽²⁾$. In this case $3³$ is the order of a Sylow 3-subgroup of *G* and it is known form [5] that $t(G) = 9 > 7 = 3(3 - 1) + 1$.

This observation is very interesting because quite different objects (see [3] and $[5]$ are unified on the ground of Dickson near fields.

REFERENCES

- [1] H. Fukushima, *On groups G of p-length* 2 *whose nilpotency indices of J*(*KG*) *are a*(*p −* 1) + 1, Hokkaido Math. J. **20**(1991), 523–530.
- [2] K. Motose, *On radicals of group rings of Frobenius groups*, Hokkaido Math. J. **3**(1974), 23–34.
- [3] K. Motose, *On the nilpotency index of the radical of a group algebra. III*, J. London Math. Soc. (2) **25**(1982), 39–42.
- [4] K. Motose, *On the nilpotency index of the radical of a group algebra. IV*, Math. J. Okayama Univ. **25**(1983), 35–42.
- [5] K. Motose, *On the nilpotency index of the radical of a group algebra. V*, J. Algebra **90**(1984), 251–258.
- [6] K. Motose, *On finite Dickson near fields*, Bull. Fac. Sci. Technol. Hirosaki Univ. **3**(2001), 69–78.
- [7] D. A. R. Wallace, *Lower bounds for the radical of the group algebra of a finite p-soluble group*, Proc. Edinburgh Math. Soc. (2) **16**(1968/69), 127–134.
- [8] H. WIELANDT, *Finite permutation groups*, Academic Press, 1964.
- [9] H. ZASSENHAUS, *Über endliche Fastkörper*, Abh. Math. Semin. Univ. Hamburg **11**(1935/36), 187–220.

KAORU MOTOSE Department of Mathematical System Science FACULTY OF SCIENCE AND TECHNOLOGY Hirosaki University Hirosaki 036-8561, Japan *e-mail address*: skm@cc.hirosaki-u.ac.jp

(*Received April 25, 2002*)