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A COMMUTATIVITY THEOREM FOR
SEMIPRIME RINGS WITH CONSTRAINTS
INVOLVING A DERIVATION

Anprzes TRZEPIZUR

Throughout the present paper, R will represent a ring with center C,
d: x— x' a non-trivial derivation of R, and K = |x € R|x' = 0{. Let U
be a non-zero ideal of R, and V the differential ideal generated by U’. As
usual, we write [x,y] = xy—yx and (x,y) = xy+yx (x,y € R). Given
subsets A and B of R. we denote by [A, B] (resp. (A, B)) the additive
subgroup generated by {[a,b]|a € A, b € B/ (resp. {(a,b)|a € A, b €
B}).

We consider the following conditions :

a) R is commutative.

a)* R is a commutative ring of characteristic 2.

b) d is commuting on U, namely [u,u] = 0 for every u € U.

c) d is skew-commuting on U, namely (u,u') = 0 for every u € U.

d) d is centralizing on U, namely [u,u'] € C for every u € U.

e) d is skew-centralizing on U, namely (u,u’) € C for every u € U.

In case R is a prime ring, Posner [7] proved that if d is centralizing
on R then R is commutative. Recently, this theorem has been generalized
as follows: d) or e) implies a) (Mayne [5,6] and Hirano-Kaya-Tominaga
[1]). Furthermore, in case R is a semiprime ring, Hongan and the present
author [4] have proved the following: Let U be a differential ideal of R
whose left annihilator 2(U) is zero. If K, = {x € R|(RxR)' = 0} is com-
mutative, then d) implies a).

The purpose of this paper is to prove the following:

Theorem 1. Let R be a d-semiprime ring, and U a differential ideal
such that (V) = 0.

(1) a) and a*) are equivalent to b) and c), respectively, and e) im-
plies d).

(2) If R is 2-torsion free then a), b) and e) are equivalent.

As for definitions and fundamental results used in this paper without
mention, we refer to [2,3 and 4]. In advance of proving Theorem 1, we
state several lemmas. The proof of the first one is easy, and may be omitted.
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Lemma 1. Let R be a d-prime ring. Let a be a non-zero central
element of R, and b an element of R. If a®b € C for all k =0, then b
e C.

Lemma 2. Let R be a d-prime ring, and U a differential ideal of R.
(1) [U,U] =0 implies a).

(2) a) and b) are equivalent.

(3) If R is of characteristic not 2, then (U, U) C C implies a).

Proof. (1) is easy and (2) is clear by [2, Lemma 7].

(3) Let s be an arbitrary element of C N U. Then, for any u € U,
2s%y = (s, u) € C, namely s'"™u € C(k = 0). Thus, in case CN U #+
0, Lemma 1 shows that U C C, so that R is commutative by (1). On the
other hand, in case CN U =0, we have (U,U) C C N U = 0. Hence,
for any u,v € U and x € R, we have 2®[x, v] = (u®x,v)—(u®, v)x = 0.
Hence U C C, and therefore R is commutative.

Lemma 3. e) implies that (U, U) C C.

Proof. By linearization of the relation (u,2’) € C on U.

Lemma 4. Let R be a d-prime ring of characteristic not 2, and U a
differential ideal. Then a), b) and e) are equivalent.

Proof. Since a) and b) are equivalent by Lemma 2 (2), it suffices to
show that e) implies b). Let u, v be arbitrary element of U. First, suppose
that C € K, and choose ¢ € C with ¢’ 0. Then, by Lemma 3, c¢'(u, v)
={u,cv) —clu,v) €C, and so ¢™u,v) € C for all k = 1. Hence (U, U)
C C (Lemma 1), and therefore R is commutative by Lemma 2 (3). Next,
suppose that C N U = 0. Then, by Lemma 3, (U, U) CCNU=0. Since
[(u,v),x] = {u, [v.x])+, [u,x])} = 0 for every x € R, [3, Theorem
1] proves that (u,v) € C, namely (U,U) € C. Hence R is commutative
again by Lemma 2 (3). Finally, suppose that C C K and C N U # 0. Then,
for any non-zero s € C N U we have 2su’ = (s,u) € C (Lemma 3), and
therefore s*u' € C for all k =2 0. Hence U’ € C (Lemma 1). Obviously,
this implies b).

Corollary 1. Let R be a d-prime ring, and U a differential ideal.
(1) a) <>b) =>e) =>d).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 30/issl/7



Trzepizur: A commutativity theorem for semiprime rings with constraints

A COMMUTATIVITY THEOREM SEMIPRIME RINGS 43

(2) a)*<=ec).

Proof. (1) By Lemma 2 (2) and Lemma 4.

(2) In view of Lemma 2 (2), it suffices to show that if ¢) is satisfied
then R is of characteristic 2. If not, R is commutative by Lemma 4, and
so uu' = 0 for every u € U. Linearizing this identity, we get (U?)' = 0.
But this is impossible.

Proof of Theorem 1. (1) We can find a set | Px|xe4s of d-prime ideals
of R such that N e, P» =0 and U' & P, for every A € A. Applying Cor-
ollary 1 to Ry = R/P, and Uy = (U+P,)/Px, we get the assertions.

(2) By the proof of [3, Theorem 2], we can find a subset A, of A
such that N e4,Px = 0 and R, is of characteristic not 2 for every A €
A,. Now, Lemma 4 proves that a), b) and e) are equivalent.

Corollary 2. Let R be a semiprime ring, and U a differential ideal
such that (V) = 0. Then a), b), d) and e) are equivalent, and a)* and
c) are equivalent.

Proof. 1In view of Theorem 1, it suffices to show that d) implies b).
By [4, Lemma 2], we can easily see that [u,u']* = 0 for every u € U.
Since R is semiprime and [z,#'] € C by d), we get [u,u'] = 0.
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