Mathematical Journal of Okayama University

Volume 23, Issue 2

1981

Article 5

DECEMBER 1981

Supplements to the previous paper "Some commutativity theorems for rings"

Yasuyuki Hirano* Motoshi Hongan[†] Hisao Tominaga[‡]

Copyright ©1981 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

[†]Tsuyama College of Technology

[‡]Okayama University

Math. J. Okayama Univ. 23 (1981), 137-139

SUPPLEMENTS TO THE PREVIOUS PAPER "SOME COMMUTATIVITY THEOREMS FOR RINGS"

YASUYUKI HIRANO, MOTOSHI HONGAN and HISAO TOMINAGA

In the previous paper [1], we considered the following properties of a ring R:

- 1)_n $[x^n, y^n] = 0$ for all $x, y \in R$.
- $(xy)^n = x^n y^n$ and $(xy)^{n+1} = x^{n+1} y^{n+1}$ for all $x, y \in R$.
- $(xy)^n = (yx)^n$ for all $x, y \in R$.
- 4)_n $[x, (xy)^n] = 0$ for all $x, y \in R$.
- $(5)_n [x^n, y] = 0$ for all $x, y \in R$.
- 6)_n $[x^n, y] = [x, y^n]$ for all $x, y \in R$.
- 9)_n For each pair of elements x, y in R, n[x, y] = 0 implies [x, y] = 0.

The purpose of the present note is to add two results to the previous paper [1]. As for notations and terminologies used here, we follow [1].

First, we prove the following that includes essentially Theorem 5 of [1].

Theorem 1. Let i, j be integers in the set $\{1, 2, 3, 4, 5, 6\}$, and m, n>1. Suppose an s-unital ring R has the properties $i)_m$ and $j)_n$. If (m, n) = 1, then R is commutative.

Proof. According to [1, Propositions 2 and 3], there exists a positive integer α such that R has the properties $1)_{m^{\alpha}}$ and $1)_{n^{\alpha}}$. Therefore, R is commutative by [2, Theorem 4].

Let n > 1. A ring-property P will be called a C(n)-property if every ring with identity having the properties P and $9)_n$ is commutative. In view of [1, Theorem 2], the properties $2)_n - 6)_n$ are C(n)-properties.

Theorem 2. Let i, j be integers in the set $\{2, 3, 4, 5, 6\}$, and m, n > 1. Suppose an s-unital ring R has the properties i)_m and j)_n. If R has the property 9)_(m, n), then R is commutative.

Proof. Let e be a pseudo-identity of $\{a, b\} \subseteq R$, and e' a pseudo-identity of $\{a, b, e\}$. Let $S = \langle a, b, e, e' \rangle$ be the subring of R generated by $\{a, b, e, e'\}$, and $A = l_s(e)$ ($= r_s(e)$). Then, e' + A is the identity of

S/A. Since $\langle a, b \rangle \cap A = 0$, we may regard $\langle a, b \rangle$ as a subring of S/A. Obviously, S/A has the properties $i)_m$ and $j)_n$. Moreover, we can easily see that S/A has the property $9)_{(m,n)}$. Now, the rest of the proof is immediate by the proposition below.

Proposition 1. Let P_i be a $C(n_i)$ -property which is inherited by every finitely generated subring $(i = 1, 2, \dots, t)$, and $d = (n_1, \dots, n_t)$. Suppose a ring R with identity has the properties P_1, \dots, P_t . If R has the property $9)_d$ then R is commutative.

Proof. It suffices to prove the case t=2. We show that R has the property $9)_{n_1}$ (and therefore R is commutative). Suppose $n_1[a, b] = 0$ for some $a, b \in R$, and let R' be the subring of R generated by $\{1, a, b\}$. Then, we can easily see that $n_1[x, y] = 0$ for all $x, y \in R'$. Since R' has the property $9)_d$, the above implies that R' has the property $9)_{n_2}$. Hence, R' is commutative, namely [a, b] = 0.

REFERENCES

- Y. HIRANO and H. TOMINAGA: Some commutativity theorems for rings, Hiroshima Math. J. 11 (1981), 457—464.
- [2] M. HONGAN and H. TOMINAGA: A commutativity theorem for s-unital rings, Math. J. Okayama Univ. 21 (1979), 11—14.

Okayama University Tsuyama College of Technology and Okayama University Okayama University

(Received June 8, 1981)

Added in proof. A ring-property P is called an H-property if P is inherited by every finitely generated subring and every canonical image modulo the annihilator of a central element, and is called an F-property, provided a ring has the property P if and only if all its finitely generated subrings have. Obviously, all the properties $1)_n$ — $9)_n$ considered in [1] are H-properties, and the commutativity is an F-property. By making use of the argument employed in the proof of Theorem 2, we can

SUPPLEMENTS TO "SOME COMMUTATIVITY THEOREMS FOR RINGS"

easily see the following.

Proposition 2. Let P be an H-property, and Q an F-property. Then the following are equivalent:

- i) Every ring with identity having the property P has the property Q.
- ii) Every s-unital ring having the property P has the property Q.

The authors would like to thank Prof. Y. Kobayashi for all the interest he has shown in the paper.

Produced by The Berkeley Electronic Press, 1981

3

139