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In [1], Armendariz proved that every semiprime finitely generated al-
gebra over a commutative von Neumann regular ring is an Azumaya algebra
over its center. In this paper, we shall first prove the converse, that is,
if every semiprime finitely generated algebra over a commutative semiprime
ring R is Azumaya (over its center), then R is von Neumann regular. Using
this, we shall characterize a commutative quasi-regular ring in terms of
Azumaya algebra. Finally, we shall describe the structure of a commutative
ring over which every semiprime finitely generated algebra is separable.

Throughout we will assume that rings have unit. Let R be a commu-
tative ring. We describe an R-algebra A as finitely generated or faithful
if A is finitely generated or faithful when considered as an R-module. The
Jacobson radical of a ring A will be denoted by J(A ), the prime radical
by P(A ), and the center by Z(A).

An element a of a ring R is called von Neumann regular if there ex-
ists an x € R such that a = axa. We start with the following

Lemma 1. Leit A be a semiprime ring with center R and let a be an

element of R. Then B= (aﬁ aﬁ) is Azumaya if and only if A is Azumaya

and a is von Neumann regular in R.

Proof. Suppose that B is Azumaya. It is easily checked that the center

: 0 ad
of Bis Z(B) = ‘(g y)‘:r. yER (x—yla= 0]' Clearly, I= (aA Zﬁ)

0x
aA aA) =( ad azA)
aA aA a’A aA /.
Hence there exists x € A such that a’x = a. If we set z = ax?, then we
can easily check that z € R and o’z = a. Therefore a is von Neumann

is an ideal of B. Since R is semiprime, we obtain I N Z(B) = [(I O) |

x € aR ] Hence, by [3, Corollary 2. 3. 7], we have (
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regular in R. Clearly, e = az is a central idempotent of A, and so we
have B= M;(eA) ® (1—e)A @ (1— e) A. Hence A is Azumaya (cf.[3,
Proposition 2. 1.13]).

Now the reverse implication is clear,

We come to our first theorem.

Theorem 1. Let R be a commutative semiprime ring. Then the follow-
ing staiements are equivalent :

(1) R is von Neumann regular.

(2) Every semiprime finitely generated R-algebra is Azumaya (over its
center ).

(3) For every finitely generated R-algebra A, J(A) is nilpotent and
A/J(A) is Azumaya.

Proof. (1) = (2). This follows from [1, Theorem 2].
(2) & (1). Take an arbirary a € R, and consider the R-algebra 4 =
R aR

(aR R
Azumaya, and hence a is von Neumann regular in R by Lemma 1.

(2) = (3). By the equivalence of (1) and (2), R is von Neumann reg-
ular. Hence this follows from [6, Proposition 2.2].

(3) =(2). Let A be a semiprime finitely generated R-algebra. Then,
since J(A) is nilpotent, the semiprimeness implies J(A) = 0. Hence
A(= A/J(A)) is Azumaya.

). Then A is a semiprime finitely generated R-algebra. Then 4 is

Let A and B be rings with the same identity such that A © B. Then
B is called a finite liberal extension of A if it contains a finite set of A-
centralizing elements, {a,, ..., a, | say, such that B = Aa,+---+ Aa,. Now
we deal with the noncommutative version of Theorem 1.

Theorem 2. Let A be a semiprime ring with cenier R. Then the
Sfollowing statements are equivalent :

(1) Every semiprime finite liberal extension of A is Azumaya.

(2) A is a finitely generated R-algebra and R is von Neumann regular.

Proof. (1) =>(2). Since A is a semiprime finite liberal extension of
itself, A is Azumaya. Hence A is finitely generated over its center R.

A adA

oA A ) It is easily

Take an arbitrary a € R, and consider the ring B = (
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checked that B is a semiprime finite liberal extension of A. Hence B is
Azumaya, and so @ is von Neumann regular in R by Lemma 1.

(2) = (1). If B is a semiprime finite liberal extension of A, then B
is a finitely generated R-algebra, and so B is Azumaya by Theorem 1.

Let R be a commutative ring and let S be the set of non-zero-divisors
of R. Then R is said to be quasi-regular provided its total quotient ring
S~'R is von Neumann regular ([4]). For example, p.p. rings are quasi-
regular (see e.g.[5]).

Theorem 3. Let R be a commuiative semiprime ring with total quotient
ring Q. Then the following statements are equivalent :

(1) R is quasi-regular.

(2) For every semiprime finitely generated faithful R-algebra A,
AR:rQ is Azumaya.

(3) For every semiprime finitely generated faithful R-algebra A, there
exists a non-zero-divisor d € R such that As = A ®zR[d™'] is Azumaya.

Proof. (1) =>(2). Let A be a semiprime finitely generated faithful
R-algebra. Then A @:Q is a semiprime finitely generated algebra over the
regular ring Q, and hence A ®:Q is Azumaya by Theorem 1.

(2) = (3). Let A be a semiprime finitely generated faithful R-algebra
and let S denote the set of non-zero-divisors of R. Then S7'A = A Q:Q
is Azumaya, and Z(S7'A) = §7'Z(A). Since S7'A Qzs-14 (S 14)°° =
(A ®24,A°") @24, S 'Z(A), a separability idempotent e for S~'A can be
written as fd~' where f € A ®24,4A°® and d € S. Then e = fd~' is in
As @244 Aa)®®, and so e is a separability idempotent for the Z(A4,)-algebra
Agz. This implies that A; is Azumaya.

(3) = (1). Let a be an arbitrary element of R. Then A = (aﬁ d}g )
is a semiprime finitely generated faithful R-algebra. By hypothesis, there

R[d™'] aR[d"]) .

exists a non-zero-divisor d € R such that A.i:( is

aR[d™'] R[d™]
Azumaya. By Lemma 1, a is von Neumann regular in R[d"'] and hence in
Q. Hence every element of R is von Neumann regular in Q. Let as™' be
an arbitrary element of Q, where a, s € R and s is a non-zero-divisor.
Then there exists x € Q such that a’x = a, and so we have (as™')%xs =

as™'. Therefore @ is von Neumann regular.

Finally, we describe the structure of a commutative semiprime ring R
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such that every semiprime finitely generated R-algebra is separable. To do
it, we introduce the following

Definition. A commutative ring R is called perfect von Neumann reg-
ular if R is von Neumann regular and every prime factor ring of R is a
perfect field.

Examples. (a) Every commutative von Neumann regular Q-algebra
R is perfect von Neumann regular.

(b) A ring R is called a J-ring if, for each x € R, there exists an
integer n = n(x) > 1 such that x = x". Clearly, J-rings are perfect von
Neumann regular.

We conclude this paper with the following

Theorem 4. Let R be a commutative semiprime ring. Then the follow-
ing statements are equivalent :

(1) R is perfect von Neumann regular.

(2) Every semiprime finitely generated R-algebra is separable over R.

(3) Every finitely generated R-algebra contains a separable subalgebra
S such that A= S ® P(A) as R-modules.

Proof. (1) = (2). Let A be a semiprime finitely generated R-algebra.
By [1, Theorem 2], A is Azumaya and von Neumann regular. Hence the
center Z(A) of A is also von Neumann regular. Since Z(A) is a Z(A)-
direct summand of A ([3, Lemma 2.3.1]), Z(A) is a finitely generated
R-algebra. Let M be a maximal ideal of R. Since Z(A)/MZ(A) is von
Neumann regular and finitely generated over R, Z(A)/MZ(A) is a finite
direct sum of fields each of which is a finite extension of R/M. By hy-
pothesis, R/M is a perfect field, and hence Z(A)/MZ(A) is a separable
R/M-algebra. Hence, by [3, Theorem 2.7.1], Z(A) is a separable R-
algebra. Therefore, by [3, Theorem 2.3.8], A is a separable R-algebra.

(2) =(3). By Theorem 1, R is von Neumann regular. Let A be a
finitely generated R-algebra. Then, by [6, Proposition 2.2] we have J(4) =
P(A). Now the assertion follows from [2, Theorem 1].

(3) = (2). This is trivial.

(2) = (1). By Theorem 1, R is von Neumann regular. Hence every
prime ideal of R is maximal. Let M be a prime ideal of R. Suppose that
the field R/M is not perfect. Then we can find a monic polynomial f(X) €
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R[X] such that the natural homomorphic image f(X) € (R/M)[X] is ir-
reducible and the field F = (R/M)[X]/f(X)(R/M)[X] is inseparable
over R/M. Let A denote the R-algebra R[X]/f(X)R[X]. Then B =
A/P(A) is a semiprime finitely generated (faithful) R-algebra. However,
since B/MB(= F) is not separable over R/M, B is not a separable R-
algebra by [3, Theorem 3.7.1].
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