Mathematical Journal of Okayama University

INFINITE MATRICES ASSOCIATED WITH POWER SERIES AND APPLICATION TO OPTIMIZATION AND MATRIX TRANSFORMATIONS

Bruno de Malafosse* Adnan Yassine ${ }^{\dagger}$

[^0]
INFINITE MATRICES ASSOCIATED WITH POWER SERIES AND APPLICATION TO OPTIMIZATION AND MATRIX TRANSFORMATIONS

Bruno de Malafosse and Adnan Yassine

Abstract

In this paper we first recall some properties of triangle Toeplitz matrices of the Banach algebra S_{r} aociated with power series. Then for boolean Toeplitz matrices M we explicitly calculate the product M^{N} that gives the number of ways with N arcs aociated with M . We compute the matrix $\mathrm{B}^{N}(\mathrm{i}, \mathrm{j})$, where $\mathrm{B}(\mathrm{i}, \mathrm{j})$ is an infinite matrix whose the nonzero entries are on the diagonals m \&\#x2212; $\mathrm{n}=\mathrm{i}$ or $\mathrm{m} \& \# \mathrm{x} 2212 ; \mathrm{n}=\mathrm{j}$. Next among other things we consider the infinite boolean matrix $\mathrm{B}^{+} \infty$ that have infinitely many diagonals with nonzero entries and we explicitly calculate $\left(\mathrm{B}^{+} \infty\right)^{N}$. Finally we give neceary and sufficient conditions for an infinite matrix M to map $\mathrm{c}\left(\mathrm{B}^{N}\right.$ (i, 0)) to c .

KEYWORDS: Matrix transformations, Banach algebra, boolean infinite matrix, optimization

Math. J. Okayama Univ. 52 (2010), 179-198

INFINITE MATRICES ASSOCIATED WITH POWER SERIES AND APPLICATION TO OPTIMIZATION AND MATRIX TRANSFORMATIONS

Bruno de Malafosse and Adnan Yassine

Abstract

In this paper we first recall some properties of triangle Toeplitz matrices of the Banach algebra S_{r} associated with power series. Then for boolean Toeplitz matrices \mathcal{M} we explicitly calculate the product \mathcal{M}^{N} that gives the number of ways with N arcs associated with \mathcal{M}. We compute the matrix $B^{N}(i, j)$, where $B(i, j)$ is an infinite matrix whose the nonzero entries are on the diagonals $m-n=i$ or $m-n=j$. Next among other things we consider the infinite boolean matrix B_{∞}^{+}that have infinitely many diagonals with nonzero entries and we explicitly calculate $\left(B_{\infty}^{+}\right)^{N}$. Finally we give necessary and sufficient conditions for an infinite matrix \mathcal{M} to map $c\left(B^{N}(i, 0)\right)$ to c.

1. Introduction

In this paper among other things our aim is to give the number of ways with N arcs associated with a boolean Toeplitz infinite matrix \mathcal{M}. For this we need to compute the infinite boolean matrix \mathcal{M}^{N}. It is well-known that this number is equal to the entry $\left[\mathcal{M}^{N}\right]_{n m}$ lying in the n-th row and the m-th column of \mathcal{M}^{N}. Since we are led to make computations with infinite matrices it is natural to focus on Toeplitz triangular matrices. We then consider \mathcal{M} as an operator from s_{r} to itself, where $s_{r}=(1 / \alpha)^{-1} * l_{\infty}$ with $\alpha_{n}=r^{n}$ for all n, (cf. $[16,18]$). Then the isomorphism φ allows us to associate with a power series a triangle Toeplitz matrix mapping s_{r} to itself. Since S_{r} can be considered as a Banach algebra of infinite matrices and is also the set of all matrices mapping s_{r} to itself, we will make computations in this space. We will consider the boolean matrix $B(i, j)$ whose the nonzero entries are on the diagonals defined by $m-n=i$ or $m-n=j$ and compute the matrix $B^{N}(i, j)$, to obtain the number of ways with N arcs associated with $B(i, j)$. We will see that in each of the cases $i<j \leq 0$ or $0 \leq i<j \leq 0$ the matrix $B^{N}(i, j)$ is of Toeplitz and the problem is more complicated in the case when $i<0<j$, since $B^{N}(i, j)$ is not a triangular Toeplitz matrix. In Subsection 4.1.3 we deal with the case $i=-1$ and $j=1$ that was used in the study of the stability and the convergence of numerical schemes for

[^1]finite difference method (cf. [1, 17]). Furthermore since an infinite boolean matrix can be considered as a matrix map between sequence spaces we focus on the characterization of the set $\left(c\left(B^{N}(i, 0)\right), c\right)$. This result extends in a certain sense some of those given in [14] such as the characterization of $\left(c\left(\Delta^{N}\right), c\right)$ where Δ is the well-known operator of first differences.

This paper is organized as follows. In Section 2 we recall some definitions and properties of matrix transformations. In Section 3 we give some properties of the map φ which associate with a power series an infinite Toeplitz matrix and give an application to the infinite linear system $\varphi\left(e^{a z}\right) x=b$. In Section 4 we consider the boolean matrix $B(i, j)$ whose the nonzero entries are on the diagonals $m-n=i$ or $m-n=j$ and compute the number of ways with N arcs associated with $B(i, j)$. Next we consider infinite matrices which have infinitely many diagonals with nonzero entries, such as B_{∞}^{+} which is usually denoted by Σ^{T} in the literature and we explicitly calculate $\left(B_{\infty}^{+}\right)^{N}$. Finally in Section 5 we study matrix transformations mapping $c\left(B^{N}(i, 0)\right)$ to c.

2. Matrices considered as operators in s_{r} OR s_{α}

We will denote by s, c_{0}, c, l_{∞} the sets of all sequences, the set of sequences that converge to zero, that are convergent and that are bounded respectively. By $c s$ we will denote the set of all the convergent series. Using Wilansky's notation we will write $s_{r}=(1 / \alpha)^{-1} * l_{\infty}$ with $\alpha_{n}=r^{n}$ for all n, (cf. [5, 18]), that is

$$
s_{r}=\left\{x=\left(x_{n}\right)_{n \geq 1}:\|x\|_{s_{r}}=\sup _{n}\left(\frac{\left|x_{n}\right|}{r^{n}}\right)<\infty\right\}
$$

where $r>0$. It is known that s_{r} with the norm $\|x\|_{s_{r}}$ is a Banach space. For a given infinite matrix $\mathcal{M}=\left(a_{n m}\right)_{n, m \geq 1}$ we define the operators \mathcal{M}_{n} for any integer $n \geq 1$, by $\mathcal{M}_{n}(x)=\sum_{m=1}^{\infty} a_{n m} x_{m}$ where $x=\left(x_{m}\right)_{m \geq 1}$, and the series are assumed convergent for all n. So we are led to the study of the operator \mathcal{M} defined by $\mathcal{M} x=\left(\mathcal{M}_{n}(x)\right)_{n \geq 1}$ mapping between sequence spaces.

The product $\mathcal{M} \mathcal{M}^{\prime}$ of two infinite matrices \mathcal{M} and $\mathcal{M}^{\prime}=\left(a_{n m}^{\prime}\right)_{n, m \geq 1}$ is well defined if the series $\sum_{k=1}^{\infty} a_{n k} a_{k m}^{\prime}$ are convergent for all n, m.

By (E, F) where $E, F \subset s$, we will denote the set of all matrices $\mathcal{M}=$ $\left(a_{n m}\right)_{n, m \geq 1}$ mapping from E to F.

Now let $r, u>0$ and denote by $S_{r, u}$ the set of infinite matrices \mathcal{M} such that

$$
\|\mathcal{M}\|_{S_{r, u}}=\sup _{n \geq 1}\left(\frac{1}{u^{n}} \sum_{m=1}^{\infty}\left|a_{n m}\right| r^{m}\right)<\infty .
$$

The set $S_{r, u}$ is a Banach space with the norm $\|\mathcal{M}\|_{S_{r, u}}$. Let E and F be any subsets of s. It was proved in [13] that $\mathcal{M} \in\left(s_{r}, s_{u}\right)$ if and only if $\mathcal{M} \in S_{r, u}$. So we can write that $\left(s_{r}, s_{u}\right)=S_{r, u}$.

When $r=u$ we obtain the Banach algebra with identity $S_{r, u}=S_{r}$, (see [5]) normed by $\|\mathcal{M}\|_{S_{r}}=\|\mathcal{M}\|_{S_{r, r}}$. We also have $\mathcal{M} \in\left(s_{r}, s_{u}\right)$ if and only if $\mathcal{M} \in S_{r}$.

When $r=1$, we obtain $s_{1}=l_{\infty}$. It is well known, see $[2,14]$ that $\left(s_{1}, s_{1}\right)=\left(c_{0}, s_{1}\right)=\left(c, s_{1}\right)=S_{1}$. We also have $\mathcal{M} \in\left(c_{0}, c_{0}\right)$ if and only if $\mathcal{M} \in S_{1}$ and $\lim _{n \rightarrow \infty} a_{n m}=0$ for all $m \geq 1$.

By U^{+}we denote the set of all sequences $\alpha=\left(\alpha_{n}\right)_{n \geq 1}$ with $\alpha_{n}>0$ for all n. We obtain similar results considering the set S_{α} of all matrices \mathcal{M} such that $\|\mathcal{M}\|_{S_{\alpha}}=\sup _{n \geq 1}\left(\alpha_{n}^{-1} \sum_{m=1}^{\infty}\left|a_{n m}\right| \alpha_{m}\right)<\infty$. The set S_{α} with the norm $\|\mathcal{M}\|_{S_{\alpha}}$ is a Banach space and we have $S_{\alpha}=\left(s_{\alpha}, s_{\alpha}\right)$, where $s_{\alpha}=(1 / \alpha)^{-1} * l_{\infty},(c f .[1,5,7,8,10,11,12,13])$.

For any subset E of s, we put

$$
\mathcal{M} E=\{Y \in s: \text { there is } X \in E \quad Y=\mathcal{M} X\}
$$

If F is a subset of s, we shall denote $F(\mathcal{M})=\{X \in s: Y=\mathcal{M} X \in F\}$.
To explicitly calculate \mathcal{M}^{N} where \mathcal{M} is an infinite Toeplitz boolean matrix, we need the following results.

3. Triangular Toeplitz matrices of S_{r} and power series

A Toeplitz matrix is an infinite matrix whose entries are of the form $[\mathcal{M}]_{n m}=a_{m-n}$ with $n, m \geq 1$. Here we focus on triangular Toeplitz matrices and consider \mathcal{M} as an operator mapping s_{r} into itself, with $r>0$. Let

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \tag{3.1}
\end{equation*}
$$

be a power series defined in the open disk $|z|<R$. We can associate with f the upper infinite triangular Toeplitz matrix $\mathcal{M}=\varphi(f) \in \bigcap_{0<r<R} S_{r}$ defined by

$$
\varphi(f)=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & . \\
& a_{0} & a_{1} & \cdot \\
\mathbf{0} & & a_{0} & \cdot \\
& & & \cdot
\end{array}\right)
$$

For pratical reasons, we will write $\varphi[f(z)]$ instead of $\varphi(f)$. So we can associate with 1 the matrix I and we can associate with z^{k} for k integer, the matrix whose the only nonzero entries are equal to 1 and are on the diagonal of equation $m=n+k$.

In the following we will use the notation $|f|^{\bullet}(z)=\sum_{k=0}^{\infty}\left|a_{k}\right| z^{k}$. It is obvious that $|f g|^{\bullet}(r)$ is not equal to $|f|^{\bullet}(r) \times|g|^{\bullet}(r)$ for $r<R$, when $f(z)$ and $g(z)$ are power series defined for $|z|<R$. On the other hand if we take $f(z)=1+z$ it can easily be seen that $1 /|f|^{\bullet}(r)$ is not equal to $|1 / f|^{\bullet}(r)=\sum_{k=0}^{\infty}\left|(-1)^{k}\right| r^{k}=1 /(1-r)$ for $r<1$. From [16] we get the next result.

Lemma 3.1. [16] The map $\varphi: f \mapsto \mathcal{M}$ is an isomorphism from the algebra of the power series defined in $|z|<R$ into the algebra $\overline{\mathcal{M}}$ of the corresponding matrices.

More precisely we can state the following where we have $\varphi\left(f^{N}\right)=[\varphi(f)]^{N}$.
Lemma 3.2. Let f be defined by (3.1) and let $0<r<R$. Then
(i) a) $\|\varphi(f)\|_{S_{r}}=\left\|[\varphi(f)]^{T}\right\|_{S_{1 / r}}=|f|^{\bullet}(r)$.
b) $\|\varphi(-f)\|_{S_{r}}=\|\varphi(f)\|_{S_{r}}$.
(ii) a) For any integer N we have

$$
\varphi\left(f^{N}\right) \in S_{r} \text { and }\left[\varphi\left(f^{N}\right)\right]^{T} \in S_{1 / r}
$$

b) $\left|\varphi\left(f^{N}\right)\right|_{S_{r}} \leq\left[|f|^{\bullet}(r)\right]^{N}$ and $\left|\left[\varphi\left(f^{N}\right)\right]^{T}\right|_{S_{1 / r}} \leq\left[|f|^{\bullet}(r)\right]^{N}$.
c) If $a_{n} \geq 0$ for all n then

$$
\left|[\varphi(f)]^{N}\right|_{S_{r}}=|\varphi(f)|_{S_{r}}^{N}=f^{N}(r)
$$

(iii) Assume that $a_{0} \neq 0$ and that the series

$$
\frac{1}{f(z)}=\sum_{k=0}^{\infty} a_{k}^{\prime} z^{k}
$$

has $R^{\prime}>0$ as its radius of convergence. Then for each $0<r<R^{\prime}$ we have

$$
\varphi\left(\frac{1}{f}\right)=[\varphi(f)]^{-1} \in S_{r}
$$

and

$$
\begin{equation*}
\left\|[\varphi(f)]^{-1}\right\|_{S_{r}} \geq \frac{1}{|f|^{\bullet}(r)} \tag{3.2}
\end{equation*}
$$

Proof. (i) a) Since the series (3.1) is convergent for $|z|<R$ we have

$$
\|\varphi(f)\|_{S_{r}}=\sup _{n}\left(\frac{1}{r^{n}} \sum_{m=n}^{\infty}\left|a_{m-n}\right| r^{m}\right)
$$

$$
=\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}=|f|^{\bullet}(r)<\infty \text { for all } r<R .
$$

Concerning the transpose of $\varphi(f)$ we have

$$
\left[[\varphi(f)]^{T}\right]_{n m}= \begin{cases}a_{n-m} & \text { for } m \leq n \\ 0 & \text { otherwise }\end{cases}
$$

We deduce that

$$
\begin{aligned}
\left\|\varphi(f)^{T}\right\|_{S_{1 / r}} & =\sup _{n}\left(r^{n} \sum_{m=1}^{n}\left|a_{n-m}\right| \frac{1}{r^{m}}\right) \\
& =\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}=|f|^{\bullet}(r)<\infty \text { for all } r<R .
\end{aligned}
$$

b) is a direct consequence of a).
(ii) a) Since S_{r} is a Banach algebra and $\varphi(f) \in S_{r}$ we have $\varphi\left(f^{N}\right) \in S_{r}$.

Similarly $[\varphi(f)]^{T} \in S_{1 / r}$ implies $\left[\varphi\left(f^{N}\right)\right]^{T} \in S_{1 / r}$ for each $0<r<R$. (ii) b) comes from (i) a) and from the fact that in the Banach algebra S_{r} we have $\left\|\varphi\left(f^{N}\right)\right\|_{S_{r}} \leq\left(\|\varphi(f)\|_{S_{r}}\right)^{N}$.
(ii) c) Since the a_{k} are positive the power series $f^{N}(z)$ is of the form $\sum_{k=0}^{\infty} c_{k} z^{k}$ with $c_{k} \geq 0$ and by (i) a) we have

$$
\left\|\varphi\left(f^{N}\right)\right\|_{S_{r}}=\left|f^{N}\right|^{\bullet}(r)=f^{N}(r)=\|\varphi(f)\|_{S_{r}}^{N}
$$

(iii) comes from [16] and inequality (3.2) comes from (i) a) and from the fact that S_{r} is a Banach algebra, so we have

$$
\left\|\varphi\left(\frac{1}{f}\right)\right\|_{S_{r}}=\left\|[\varphi(f)]^{-1}\right\|_{S_{r}} \geq \frac{1}{\|\varphi(f)\|_{S_{r}}}=\frac{1}{|f|^{\bullet}(r)}
$$

Remark 1. From (ii) c) we deduce that the identity

$$
\sum_{m=n}^{\infty}\left[[\varphi(f)]^{N}\right]_{n m} r^{m}=r^{n} f^{N}(r)
$$

is satisfied for all integers n and for all r satisfying $0<r<R$.
We now give a direct application of this lemma to the solvability of infinite linear systems.

Example 1. Let $a \in \mathbb{C}$ and put

$$
\mathcal{M}=\varphi\left(e^{a z}\right)=\left(\begin{array}{ccccc}
1 & \frac{a}{1!} & \frac{a^{2}}{2!} & . & . \\
& 1 & \frac{a}{1!} & \frac{a^{2}}{2!} & \cdot \\
& & 1 & \frac{a}{1!} & \cdot \\
\mathbf{0} & & & \cdot & \cdot \\
& & & & .
\end{array}\right)
$$

Consider the infinite linear system represented by

$$
\begin{equation*}
\mathcal{M} x=b \tag{3.3}
\end{equation*}
$$

where $b \in s_{r}$. This system can be written as

$$
\sum_{m=n}^{\infty} \frac{a^{m-n}}{(m-n)!} x_{m}=b_{n} \quad n=1,2, \ldots
$$

Then $I-\mathcal{M}=\varphi(g)$ where

$$
g(z)=1-e^{a z}=-\sum_{k=1}^{\infty} \frac{a^{k}}{k!} z^{k}
$$

and by Lemma 2 (i) we have

$$
\|I-\mathcal{M}\|_{S_{r}}=|g|^{\bullet}(r)=\sum_{k=1}^{\infty} \frac{|a r|^{k}}{k!}=e^{|a| r}-1<1
$$

so $\|I-\mathcal{M}\|_{S_{r}}<1$ for $r<(\ln 2) /|a|$. Since S_{r} is a Banach algebra \mathcal{M} is invertible and $\mathcal{M}^{-1} \in S_{r}$. Then equation (3.3) is equivalent to $\mathcal{M}^{-1}(\mathcal{M} x)=$ $x=\mathcal{M}^{-1} b$ for all $x \in s_{r},($ cf. $[1,3,4])$. We conclude that for $r<(\ln 2) /|a|$ equation (3.3) where $b \in s_{r}$ has a unique solution in s_{r} given by

$$
x=\mathcal{M}^{-1} b=\varphi\left(e^{-a z}\right) b,
$$

that is

$$
\begin{equation*}
x_{n}=\sum_{m=n}^{\infty}(-1)^{m-n} \frac{a^{m-n}}{(m-n)!} b_{m} \quad n=1,2, \ldots \tag{3.4}
\end{equation*}
$$

4. Application to the boolean matrices $B(i, j), B(0,1,2), B_{\infty}^{+}$ AND $\left(B_{\infty}^{+}\right)^{T}$
In this section we say that an infinite matrix $\mathcal{M}=\left(a_{n m}\right)_{n, m \geq 1}$ is boolean if $a_{n m}$ is either equal to 0 or 1 . Let $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ be a sequence of points in the plane. For any $n, m \in \mathbb{N}^{*}$ we define the relation $A_{n} \mathcal{R} A_{m}$ if there is an arc going from A_{n} to A_{m}. In this case we put $a_{n m}=1$. If there is no arc going from A_{n} to A_{m} we then put $a_{n m}=0$.

It is well-known that the number of ways with N arcs going from A_{n} to A_{m}, where $n, m=1,2, \ldots$ associated with \mathcal{M} is equal to $\left[\mathcal{M}^{N}\right]_{n m}$. Note that for each integers n we have

$$
\sum_{m=1}^{\infty}\left[\mathcal{M}^{N}\right]_{n m} \alpha_{m} \leq\left\|\mathcal{M}^{N}\right\|_{S_{\alpha}} \alpha_{n} \text { for } \mathcal{M} \in S_{\alpha}
$$

and similarly we have

$$
\sum_{m=1}^{\infty}\left[\mathcal{M}^{N}\right]_{n m} r^{m} \leq\left\|\mathcal{M}^{N}\right\|_{S_{r}} r^{n} \text { for } \mathcal{M} \in S_{r}
$$

4.1. The boolean matrices $B(i, j)$. Let $i, j \in \mathbb{Z}$ with $i<j$ and put $d=j-i$. Here we define the boolean matrix $B(i, j)$ by

$$
[B(i, j)]_{n m}=\left\{\begin{array}{l}
1 \text { for } m-n=i, \text { or } m-n=j \\
0 \text { otherwise }
\end{array}\right.
$$

1. For instance for $i=-2$ and $j=-1$ we have

$$
B(-2,-1)=\left[\varphi\left(z+z^{2}\right)\right]^{T}=\begin{gathered}
A_{1} \\
A_{2} \\
\cdot \\
A_{n} \\
\cdot
\end{gathered}\left[\begin{array}{ccccc}
A_{1} & A_{2} & \cdot & A_{m} \\
0 & & & \\
1 & 0 & & & \mathbf{0} \\
1 & 1 & 0 & & \\
0 & 1 & 1 & 0 & \\
\mathbf{0} & & \cdot & \cdot & \cdot \\
& & & &
\end{array}\right]
$$

We easily see that if $j \leq 0$ the matrix $B(i, j)$ is lower triangular, especially the matrix $B(i, 0)$ is a triangle and so is invertible. For $i \geq 0$ the matrix $B(i, j)$ is upper triangular.

First we deal with the matrix $B^{N}(i, j)$ considered as operator in s_{α} and we explicitly give its expression in either of the cases $i<j \leq 0,0 \leq i<j$, and $i=-1$ and $j=1$. We will see that the expression of $B^{N}(i, j)$ in the two previous cases is natural since this matrix is of Toeplitz. The problem is more complicated in the case $i<0<j$ as we will see in Subsection 4.1.3 where $i=-1$ and $j=1$.
4.1.1. The matrix $B^{N}(i, j)$ as operator in s_{α}. Here we consider $B^{N}(i, j)$ as an operator in $S_{\alpha}=\left(s_{\alpha}, s_{\alpha}\right)$. We let

$$
\begin{equation*}
\kappa_{i j}^{\prime}(\alpha)=\sup _{n \geq \max \{1,-i+1\}}\left(\frac{\alpha_{n+i}+\alpha_{n+j}}{\alpha_{n}}\right)<\infty \tag{4.1}
\end{equation*}
$$

Note that we obviously have

$$
\kappa_{i j}^{\prime}(\alpha)=\sup _{n \geq 1}\left(\frac{\alpha_{n+i}+\alpha_{n+j}}{\alpha_{n}}\right) \text { for } i \geq 0
$$

We can state the next result.
Proposition 1. Let $i, j \in \mathbb{Z}$ and $N \geq 1$ be an integer. Then
(i) for $0 \leq i<j$ we have $B^{N}(i, j) \in S_{\alpha}$ for α satisfying condition (4.1) and

$$
\begin{equation*}
\left\|B^{N}(i, j)\right\|_{S_{\alpha}} \leq\left(\kappa_{i j}^{\prime}(\alpha)\right)^{N} \tag{4.2}
\end{equation*}
$$

(ii) Let $i<j \leq 0$. Then $B^{N}(i, j) \in S_{\alpha}$ for α satisfying (4.1) and

$$
\begin{equation*}
\left\|B^{N}(i, j)\right\|_{S_{\alpha}} \leq\left[\max \left\{\kappa_{i j}^{\prime}(\alpha), \sup _{-j+1 \leq n \leq-i}\left(\frac{\alpha_{n+j}}{\alpha_{n}}\right)\right\}\right]^{N}<\infty \tag{4.3}
\end{equation*}
$$

(iii) Let $i<0<j$. Then $B^{N}(i, j) \in S_{\alpha}$ for α satisfying (4.1) and

$$
\begin{equation*}
\left\|B^{N}(i, j)\right\|_{S_{\alpha}} \leq\left[\max \left\{\kappa_{i j}^{\prime}(\alpha), \sup _{1 \leq n \leq-i}\left(\frac{\alpha_{n+j}}{\alpha_{n}}\right)\right\}\right]^{N}<\infty \tag{4.4}
\end{equation*}
$$

Proof. (i) For $0 \leq i<j$ we have $\|B(i, j)\|_{S_{\alpha}}=\kappa_{i j}^{\prime}(\alpha)$. By (4.1) and since S_{α} is a Banach algebra we deduce $B^{N}(i, j) \in S_{\alpha}$ and (4.2) holds.
(ii) We have

$$
\frac{1}{\alpha_{n}} \sum_{m=1}^{\infty}\left[B^{N}(i, j)\right]_{n m} \alpha_{m}=\left\{\begin{array}{cl}
\frac{\alpha_{n+i}+\alpha_{n+j}}{\alpha_{n}} & \text { for } n \geq-i+1 \\
\frac{\alpha_{n+j}}{\alpha_{n}} & \text { for }-j+1 \leq n \leq-i, \\
0 & \text { for } n \leq-j
\end{array}\right.
$$

Then

$$
\|B(i, j)\|_{S_{\alpha}}=\max \left\{\kappa_{i j}^{\prime}(\alpha), \sup _{-j+1 \leq n \leq-i}\left(\frac{\alpha_{n+j}}{\alpha_{n}}\right)\right\}
$$

and since in the Banach algebra S_{α} we have $\left\|B^{N}(i, j)\right\|_{S_{\alpha}} \leq\|B(i, j)\|_{S_{\alpha}}^{N}$ we conclude that (4.3) holds.
(iii) comes from the identity

$$
\|B(i, j)\|_{S_{\alpha}}=\max \left\{\kappa_{i j}^{\prime}(\alpha), \sup _{1 \leq n \leq-i}\left(\frac{\alpha_{n+j}}{\alpha_{n}}\right)\right\}
$$

and reasoning as above we deduce (4.4).
We immediately deduce the next result.
Proposition 2. Let $i, j \in \mathbb{Z}$ and let $N \geq 1$ be an integer. Then
(i) a) $B^{N}(i, j) \in S_{r}$ for all $r>0$,

$$
\left\|B^{N}(i, j)\right\|_{S_{r}} \leq\left(r^{i}+r^{j}\right)^{N} \text { and }\left[B^{N}(i, j)\right]_{n m} \leq \inf _{r>0}\left\{\frac{\left(r^{i}+r^{j}\right)^{N}}{r^{m-n}}\right\} \text { for all } n, m
$$

b) in the case when $i \geq 0$ we have $\left\|B^{N}(i, j)\right\|_{S_{r}}=\left(r^{i}+r^{j}\right)^{N}$.
(ii) Let ξ be a real with $0<\xi<i$. There is $r_{0}>0$ such that for each $r<r_{0}$ we have

$$
\begin{equation*}
\frac{\left\|B^{N}(i, j)\right\|_{S_{r}}}{r^{\xi N}} \rightarrow 0(N \rightarrow \infty) \tag{4.5}
\end{equation*}
$$

Proof. (i) a) It can easily be verified that

$$
\|B(i, j)\|_{S_{r}}=\kappa_{i j}^{\prime}(\alpha)=r^{i}+r^{j}
$$

since $\alpha_{n}=r^{n}$ for all n. We conclude that

$$
\left\|B^{N}(i, j)\right\|_{S_{r}} \leq\|B(i, j)\|_{S_{r}}^{N}=\left(r^{i}+r^{j}\right)^{N}
$$

Since

$$
\left[B^{N}(i, j)\right]_{n m} r^{m-n} \leq\left\|B^{N}(i, j)\right\|_{S_{r}} \leq\left(r^{i}+r^{j}\right)^{N} \text { for all } r>0
$$

we deduce

$$
\left[B^{N}(i, j)\right]_{n m} \leq \inf _{r>0}\left\{\left(r^{i}+r^{j}\right)^{N} r^{n-m}\right\} \text { for all } n, m \geq 1
$$

This concludes the proof of (i) a).
b) Again by Lemma 3.2 (ii) c) and since $i \geq 0$ we have

$$
\left\|B^{N}(i, j)\right\|_{S_{r}}=\|B(i, j)\|_{S_{r}}^{N}=\left(r^{i}+r^{j}\right)^{N}
$$

This concludes the proof of b).
(ii) Since $r^{i-\xi}+r^{j-\xi} \rightarrow 0$ as $r \rightarrow 0$, we deduce there is $r_{0}>0$ such that $r^{i-\xi}+r^{j-\xi}<1$ for all $r<r_{0}$ and (4.5) holds.

Remark 2. In the case (ii) of Proposition 2 we easily see that for each n we successively obtain

$$
\sum_{m=n+N i}^{n+N j}\left[B^{N}(i, j)\right]_{n m} r^{m-n}=r^{\xi N} o(1) \quad(N \rightarrow \infty)
$$

and

$$
\left[B^{N}(i, j)\right]_{n m}=r^{\xi N+n-m} o(1) \quad(N \rightarrow \infty)
$$

for $m \in[n+N i, n+N j]$ and for r small enough.
4.1.2. Number of ways with N arcs starting from A_{n} to A_{m} associated with $B^{N}(i, j)$ in the cases $i<j \leq 0$, or $0 \leq i<j$. To obtain the number of ways with N arcs we use the well known formula

$$
C_{N}^{k}=N(N-1) \ldots(N-k+1) / k!
$$

for $0 \leq k \leq N$, which gives the number of combinations of N things k at a time. We have the next result.

Proposition 3. The number of ways with N arcs starting from A_{n} to A_{m} associated with $B^{N}(i, j)$ is given by the next formulas.
(i) Let $0 \leq i<j$.

$$
\left[B^{N}(i, j)\right]_{n m}=\left\{\begin{array}{cl}
C_{N}^{\frac{m-n-N i}{d}} & \text { for } m-n-N i=0, d, 2 d \ldots, N d \tag{4.6}\\
0 & \text { otherwise }
\end{array}\right.
$$

(ii) Let $i<j \leq 0$. Then we have

$$
\left[B^{N}(i, j)\right]_{n m}=\left\{\begin{array}{cl}
C_{N}^{\frac{n-m+N j}{d}} & \text { for } n-m+N j=0, d, 2 d \ldots, N d \tag{4.7}\\
0 & \text { otherwise }
\end{array}\right.
$$

Proof. (i) To obtain the matrix $B^{N}(i, j)$ we calculate

$$
B^{N}(i, j)=\varphi\left[\left(z^{i}+z^{j}\right)^{N}\right]=\varphi\left[z^{i N}\left(1+z^{d}\right)^{N}\right]=\varphi\left(\sum_{k=0}^{N} C_{N}^{k} z^{i N+d k}\right)
$$

Then if $m-n=i N+d k, k=0,1, . ., N$ we have $\left[B^{N}(i, j)\right]_{n m}=C_{N}^{k}$. This shows (4.6).
(ii) For i and j integers with $i<j \leq 0$ we have

$$
\begin{equation*}
B(i, j)=[B(-j,-i)]^{T} \tag{4.8}
\end{equation*}
$$

For $0 \leq-j<-i$ and from (i) we obtain

$$
\begin{aligned}
& {\left[\left(B^{N}(-j,-i)\right)\right]_{n m}} \\
& = \begin{cases}C_{N}^{k} & \text { for } m=n-N j+(-i+j) k, k=0,1, \ldots, N, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[B^{N}(i, j)\right]_{n m} } & =\left[\left(B^{N}(-j,-i)\right)^{T}\right]_{n m} \\
& = \begin{cases}C_{N}^{k} & \text { for } n=m-N j+d k, k=0,1, \ldots, N \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

with $d=j-i$. We deduce (4.7).
We immediately obtain the next corollary.
Corollary 1. (i) For $j>0$ we have

$$
\left[B^{N}(0, j)\right]_{n m}=\left\{\begin{array}{l}
C_{N}^{k} \quad \text { for } m=n+j k, k=0,1, \ldots, N \tag{4.9}\\
0 \text { otherwise. }
\end{array}\right.
$$

(ii) For $i<0$ we have

$$
\left[B^{N}(i, 0)\right]_{n m}=\left\{\begin{array}{l}
C_{N}^{k} \quad \text { for } n=m-i k, k=0,1, \ldots, N, \tag{4.10}\\
0 \quad \text { otherwise } .
\end{array}\right.
$$

4.1.3. The infinite boolean matrix $B(-1,1)$.. To compute $B^{N}(i, j)$ in the case when $i<0<j$ the previous formulas cannot be applied. We will see that $B^{N}(i, j)$ is not a Toeplitz matrix since the entries $\left[B^{N}(i, j)\right]_{n m}$ are not of the form a_{m-n}.

Here we consider the case when $i=-1$ and $j=1$, that is the infinite boolean matrix

$$
B(-1,1)=\begin{gathered}
\\
A_{1} \\
A_{2} \\
\cdot \\
A_{n} \\
\cdot \\
\cdot
\end{gathered}\left[\begin{array}{cccccc}
A_{1} & A_{2} & \cdot & A_{m} \\
0 & 1 & & & & \\
1 & 0 & 1 & & \mathbf{0} & \\
& \cdot & \cdot & \cdot & & \\
\mathbf{0} & & 1 & 0 & 1 & \\
& & & \cdot & \cdot & \cdot
\end{array}\right] .
$$

We easily see that there is no way from A_{n} to A_{m}, in the cases $n=m$, or $|n-m| \geq 2$, where $n, m=1,2, \ldots$ and there is a unique way starting from A_{n} to A_{m} for $n=m-1, m \geq 2$, or $n=m+1$ with $m=1,2,3, \ldots$.

The previous formulas cannot be applied here since $B(-1,1)$ is not triangular. From Proposition 1 and from [1, Lemma 1, pp. 166, 167] the matrix $B^{N}(-1,1)$ is defined as follows.

Lemma 4.1. Let $N \geq 1$ be an integer. Then
(i) a) $B^{N}(-1,1) \in S_{r}$ for all $r>0$,
b) $B^{N}(-1,1) \in S_{\alpha}$ with $\kappa_{2,1}^{\prime}(\alpha)<\infty$ and

$$
\left\|B^{N}(-1,1)\right\|_{S_{\alpha}} \leq\left(\max \left\{\kappa_{2,1}^{\prime}(\alpha), \frac{\alpha_{2}}{\alpha_{1}}\right\}\right)^{N}
$$

(ii) a) $\left[B^{N}(-1,1)\right]_{n m}=0$ in each of the next cases, N is even and $|m-n|$ is odd, N is odd and $|m-n|$ is even, or $|m-n| \geq N+1$ for all n, $m \geq 1$;
b) for $n \geq N-k+1$, with $k=0,1, \ldots, N$ we have

$$
\left[B^{N}(-1,1)\right]_{n, n-N+2 k}=C_{N}^{k}
$$

c) if N is odd and $n \leq N$, or N is even, $n \leq N-1$ and $k \geq 2 n-N$, then

$$
\left[B^{N}(-1,1)\right]_{n, n-k}=C_{N}^{\frac{N+k}{2}}-C_{N}^{\frac{N-2 n+k}{2}}
$$

As a direct consequence of Lemma 4.1 we immediately obtain the next reformulation of the previous result which gives the number $\left[B^{N}(-1,1)\right]_{n m}$ of ways with N arcs associated with the matrix $B(-1,1)$.

Theorem 4.2. The number $\left[B^{N}(-1,1)\right]_{n m}$ of ways with N arcs associated with the matrix $B(-1,1)$ is given by the next formulas.
(i) $\left[B^{N}(-1,1)\right]_{n m}=0$ for $|m-n| \geq N+1$ with n, $m \geq 1$.
(ii) Let N be even.
a) If $|m-n|$ is odd then $\left[B^{N}(-1,1)\right]_{n m}=0$;
b) if $|m-n|$ is even we have

$$
\begin{aligned}
& {\left[B^{N}(-1,1)\right]_{n m}} \\
& \quad=\left\{\begin{array}{l}
C_{N-n+m}^{\frac{N+n}{2}} \\
C_{N}^{\frac{N+n-m}{2}}-C_{N}^{\frac{N-n-m}{2}} \text { for } N-n+2 \leq m \leq n+N+1
\end{array} \text { for } n+m \leq N .\right.
\end{aligned}
$$

(iii) Let N be odd. Then
a) If $|m-n|$ is even then $\left[B^{(N)}(-1,1)\right]_{n m}=0$;
b) if $|m-n|$ is odd we have

$$
\begin{aligned}
& {\left[B^{N}(-1,1)\right]_{n m}} \\
& \quad=\left\{\begin{array}{cl}
C_{N}^{\frac{N-n+m}{2}} & \text { for } N-n-2 \leq m \leq n+N \\
C_{N}^{\frac{N+n-m}{2}}-C_{N}^{\frac{N-n-m}{2}} & \text { for } n+m \leq N
\end{array}\right.
\end{aligned}
$$

For example we have

An application.

The number of ways with 5 arcs going from A_{7} to A_{4} is equal to

$$
\left[B^{5}(-1,1)\right]_{7,4}=C_{5}^{1}=5
$$

The number of ways with 5 arcs going from A_{3} to A_{2} is equal to

$$
\left[B^{5}(-1,1)\right]_{3,2}=C_{5}^{3}-1=9
$$

The number of ways with 20 arcs going from A_{11} to A_{9} is given by

$$
\left[B^{20}(-1,1)\right]_{11,9}=C_{20}^{11}-1
$$

Remark 3. We can extend the definition of $\varphi\left(z^{k}\right)$ to the case when $k \in \mathbb{Z}$ and define $\bar{\varphi}\left(z^{k}\right)$ as the matrix whose nonzero entries are equal to 1 and are on the diagonal $m-n=k$. We then have

$$
\left(z^{i}+z^{j}\right)^{N}=C_{N}^{0} z^{i N}+C_{N}^{1} z^{i N+d}+\ldots+C_{N}^{k} z^{i N+k d}+\ldots+C_{N}^{N} z^{j N}
$$

Putting $\chi=\max (|i|,|j|)$ we can do the following conjecture, for each n, m satisfying $m-n=i N+k d k=0,1, \ldots, N$ and $n+m>\chi N$ we have

$$
\left[\bar{\varphi}\left(\left(z^{i}+z^{j}\right)^{N}\right)\right]_{n m}=\left[B^{N}(i, j)\right]_{n m}=C_{N}^{k}
$$

For instance we obtain

$$
\left[B^{5}(-1,1)\right]_{7,6}=\left[B^{5}(-1,1)\right]_{7,8}=C_{5}^{3}=10
$$

Indeed we have $m-n=1=-5+3.2$ and $n+m=13>5$. In the same way we easily see that $\left[B^{100}(-1,1)\right]_{300,260}=C_{100}^{30}$, since $m-n=-40=-100+2 k$ with $k=30$.
4.1.4. Case of the tridiagonal boolean matrix $B(0,1,2)$.. We can explicitly calculate the number of ways with N arcs from A_{n} to A_{m} associated with the matrix $B(0,1,2)$ defined by

$$
B(0,1,2)=\begin{gathered}
\\
A_{1} \\
A_{2} \\
\cdot \\
A_{n} \\
\cdot \\
\cdot
\end{gathered}\left[\begin{array}{cccccc}
A_{1} & A_{2} & \cdot & A_{m} \\
1 & 1 & 1 & & & \mathbf{0} \\
& 1 & 1 & 1 & & \\
& & \cdot & \cdot & & \\
\mathbf{0} & & & 1 & 1 & 1 \\
& & & & \cdot & \cdot \\
& & & & & \cdot
\end{array}\right] .
$$

State the next result.
Proposition 4. (i) The number of ways with N arcs from A_{n} to A_{m} associated with the matrix $B(0,1,2)$ is given by the next formula where $z_{0}=(-1-\mathbf{i} \sqrt{3}) / 2$ and $\mathbf{i}=\sqrt{-1}$,

$$
\begin{aligned}
& {\left[B^{N}(0,1,2)\right]_{n m}} \\
& \quad=\left\{\begin{array}{cc}
(-1)^{k} \sum_{\substack{i+j=k, 0 \leq i, j \leq N}} C_{N}^{i} C_{N}^{j} z_{0}^{j-i} \text { for } m=n+k, k=0,1, \ldots, 2 N, \\
0 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

(ii) We have

$$
\left\|B^{N}(0,1,2)\right\|_{S_{r}}=\left(1+r+r^{2}\right)^{N}
$$

and

$$
\left[B^{N}(0,1,2)\right]_{n m} \leq \inf _{r>0}\left\{r^{n-m}\left(1+r+r^{2}\right)^{N}\right\} \text { for } n+2 N \geq m \geq n
$$

Proof. (i) We have $B(0,1,2)=\varphi\left(1+z+z^{2}\right)$, and since $1+z+z^{2}=$ $\left(z-z_{0}\right)\left(z-\overline{z_{0}}\right)$ we deduce that

$$
\begin{aligned}
\left(1+z+z^{2}\right)^{N} & =\sum_{j=0}^{N} \sum_{i=0}^{N} C_{N}^{i} C_{N}^{j} z_{0}^{-i} \overline{z_{0}^{-j}}(-z)^{i+j} \\
& =\sum_{k=0}^{2 N}\left((-1)^{k} \sum_{\substack{i+j=k, 0 \leq i, j \leq N}} C_{N}^{i} C_{N}^{j} z_{0}^{j-i}\right) z^{k} .
\end{aligned}
$$

This concludes the proof of (i).
(ii) is a direct consequence of Lemma 2.
4.2. Case of the matrices B_{∞}^{+}and $\left(B_{\infty}^{+}\right)^{T}$.. In this part we consider infinite matrices which have infinitely many diagonals with nonzero entries. So we consider the matrix B_{∞}^{+}which is denoted by Σ^{T} in the literature and we explicitly calculate B_{∞}^{+N}. Then we deal with its transpose.
4.2.1. The matrix B_{∞}^{+}. Define the infinite matrix B_{∞}^{+}by

$$
B_{\infty}^{+}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & . & . \\
& 1 & 1 & 1 & . & . \\
& & 1 & 1 & . & . \\
& & & 1 & . & . \\
0 & & & & . & . \\
0 & & & & & .
\end{array}\right]
$$

We have

$$
\begin{equation*}
B_{\infty}^{+}=\varphi\left(\sum_{k=0}^{\infty} z^{k}\right)=\varphi\left(\frac{1}{1-z}\right) \text { for }|z|<1 \tag{4.11}
\end{equation*}
$$

Put

$$
\widehat{C_{1}^{+}}=\left\{\alpha \in U^{+} \bigcap c s: \quad r_{n}(\alpha)=O(1) \quad(n \rightarrow \infty)\right\}
$$

where $r_{n}(\alpha)=\left(\sum_{m=n}^{\infty} \alpha_{m}\right) / \alpha_{n}$, (cf. [9]). We can state the following result.

Proposition 5. Let $N \geq 1$ be an integer.
(i) a) $\left(B_{\infty}^{+}\right)^{N} \in S_{\alpha}$ for $\alpha \in \widehat{C_{1}^{+}}$,
and

$$
\begin{equation*}
\left\|\left(B_{\infty}^{+}\right)^{N}\right\|_{S_{\alpha}} \leq\left(\sup _{n} r_{n}(\alpha)\right)^{N} \tag{4.12}
\end{equation*}
$$

b) $\left(B_{\infty}^{+}\right)^{N} \in S_{r}$ for $r<1$
and

$$
\begin{equation*}
\left\|\left(B_{\infty}^{+}\right)^{N}\right\|_{S_{r}}=\left\|B_{\infty}^{+}\right\|_{S_{r}}^{N}=\frac{1}{(1-r)^{N}} \tag{4.13}
\end{equation*}
$$

(ii) The number $\left[\left(B_{\infty}^{+}\right)^{N}\right]_{n m}$ of ways with N arcs going from A_{n} to A_{m} is given by

$$
\left[\left(B_{\infty}^{+}\right)^{N}\right]_{n m}= \begin{cases}C_{N+m-n-1}^{m-n} & \text { for } m \geq n \tag{4.14}\\ 0 & \text { for } m<n\end{cases}
$$

Proof. (i) a) It is immediate that $B_{\infty}^{+} \in S_{\alpha}$ means that $\alpha \in \widehat{C_{1}^{+}}$. Since S_{α} is a Banach algebra we conclude that $\left(B_{\infty}^{+}\right)^{N} \in S_{\alpha}$. Inequality (4.12) is a direct consequence of the identity $\left\|B_{\infty}^{+}\right\|_{S_{\alpha}}=\sup _{n} r_{n}(\alpha)$. We can show (i)
b) and (ii) together. By (4.11) and Lemma 4.1 (ii) we successively have $\left(B_{\infty}^{+}\right)^{N} \in S_{r}$ for $r<1$ and

$$
\begin{equation*}
\left(B_{\infty}^{+}\right)^{N}=\varphi\left[\left(\frac{1}{1-z}\right)^{N}\right]=\varphi\left(\sum_{m=0}^{\infty} C_{N+m-1}^{m} z^{m}\right) \tag{4.15}
\end{equation*}
$$

which gives (4.14). Then by Lemma 3.2 (ii) c) we conclude that

$$
\begin{aligned}
\left\|\left(B_{\infty}^{+}\right)^{N}\right\|_{S_{r}} & =\sum_{m=0}^{\infty} C_{N+m-1}^{m} r^{m} \\
& =\frac{1}{(1-r)^{N}}=\left\|B_{\infty}^{+}\right\|_{S_{r}}^{N}
\end{aligned}
$$

which shows equalities given in (4.13). (ii) comes from identity (4.15).
Remark 4. Note that we have

$$
\left[\left(B_{\infty}^{+}\right)^{N}\right]_{n m}=C_{N+m-n-1}^{m-n} \leq \inf _{r<1}\left\{r^{n-m} \frac{1}{(1-r)^{N}}\right\} \text { for } m \geq n
$$

For the next result define the set

$$
\widehat{C_{1}}=\left\{\alpha \in U^{+}: \quad s_{n}(\alpha)=O(1) \quad(n \rightarrow \infty)\right\}
$$

where $s_{n}(\alpha)=\left(\sum_{m=1}^{n} \alpha_{m}\right) / \alpha_{n}$, (cf. [6, 9]). We deduce from the preceding the following corollary where we put $B_{\infty}=\left(B_{\infty}^{+}\right)^{T}$.

Corollary 2. Let $N \geq 1$ be an integer.
(i) a) $B_{\infty}^{N} \in S_{\alpha}$ for $\alpha \in \widehat{C_{1}}$,
b) $B_{\infty}^{N} \in S_{r}$ for $r>1$
and

$$
\begin{equation*}
\left\|B_{\infty}^{N}\right\|_{S_{r}}=\left(\frac{r}{r-1}\right)^{N} \tag{4.16}
\end{equation*}
$$

(ii) The number $\left[B_{\infty}^{N}\right]_{n m}$ of ways with N arcs going from A_{n} to A_{m} is given by

$$
\left[B_{\infty}^{N}\right]_{n m}= \begin{cases}C_{N+n-m-1}^{n-m} & \text { for } m \leq n \tag{4.17}\\ 0 & \text { for } m>n\end{cases}
$$

Proof. (i) a) The condition $B_{\infty} \in S_{\alpha}$ means that $\sup _{n} s_{n}(\alpha)<\infty$, that is $\alpha \in \widehat{C_{1}}$. Since S_{α} is a Banach algebra we deduce that $B_{\infty}^{N} \in S_{\alpha}$.
b) By Lemma 3.2 and Proposition 5 for each r with $0<1 / r<1$ we have

$$
\left\|B_{\infty}\right\|_{S_{r}}=\left\|\left(B_{\infty}^{+}\right)^{T}\right\|_{S_{1 / r}}=\frac{1}{1-\frac{1}{r}}=\frac{r}{r-1} .
$$

From (4.13) we easily deduce that

$$
\left\|B_{\infty}^{N}\right\|_{S_{r}}=\left\|\left(\left(B_{\infty}^{+}\right)^{T}\right)^{N}\right\|_{S_{1 / r}}=\left(\frac{r}{r-1}\right)^{N}
$$

(ii) is a direct consequence of Proposition 5 (ii).

In the next section we will use the matrix $B^{N}(i, 0)$ to study another problem on matrix transformations.
5. Matrix transformations between $c\left(B^{N}(i, 0)\right)$ and c Where

$$
N \geq 1 \text { IS AN INTEGER }
$$

In this part we focus on matrix transformations between $c\left(B^{N}(i, 0)\right)$ and c. This means that we give necessary and sufficient conditions for an infinite matrix to satisfy the property

$$
B^{N}(i, 0) x_{n}=\sum_{k=0}^{N} C_{N}^{k} x_{n+i k} \rightarrow l \text { implies } \mathcal{M}_{n}(x) \rightarrow l^{\prime}(n \rightarrow \infty)
$$

for some scalars l, l^{\prime} and for all sequences x. We need to know the inverse of $B^{N}(i, 0)$. So from (4.8) we have $B^{N}(i, 0)=\left[B^{N}(0,-i)\right]^{T}=$ $\left[\varphi\left(1+z^{-i}\right)^{N}\right]^{T}$. From Lemma 3.2 (iii) we have

$$
\left[B^{N}(i, 0)\right]^{-1}=\left[\varphi\left(\frac{1}{1+z^{-i}}\right)^{N}\right]^{T}
$$

5.1. Characterization of $\left(c\left(B^{N}(i, 0)\right), c\right)$. First recall the Silverman -Toeplitz condition for the class (c, c), [18, Th. 1.3.6, p. 6].
Lemma 5.1. $\mathcal{M}=\left(a_{n m}\right)_{n, m \geq 1} \in(c, c)$ if and only if
i) $\sup _{n \geq 1} \sum_{m=1}^{\infty}\left|a_{n m}\right|<\infty$,
ii) $\lim _{n \rightarrow \infty} \sum_{m=1}^{\infty} a_{n m}=l$ for some $l \in \mathbb{C}$
iii) $\lim _{n \rightarrow \infty} a_{n m}=l_{m}$ for some $l_{m} \in \mathbb{C}$ and for all $m \geq 1$.

As a direct consequence of a Theorem due to Malkowsky and Rakočević [15] it can easily be deduced the following lemma where $D_{\left(a_{s n}\right)_{n}}$ for given s is the diagonal matrix with $\left[D_{\left(a_{s n}\right)_{n}}\right]_{n n}=a_{s n}$ for all n and

$$
B_{\infty} D_{\left(a_{s n}\right)_{n}}=\left(\begin{array}{ccccc}
a_{s 1} & & & & \\
a_{s 1} & a_{s 2} & & \mathbf{0} \\
\cdot & \cdot & \cdot & & \\
a_{s 1} & a_{s 2} & \cdot & a_{s n} & \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)
$$

We have
Lemma 5.2. Let T be a triangle. We have

$$
\mathcal{M} \in(c(T), c)
$$

if and only if the series intervening in the product $\mathcal{M} T^{-1}$ are convergent and

$$
\mathcal{M} T^{-1} \in(c, c)
$$

and

$$
B_{\infty} D_{\left(a_{s n}\right)_{n}} T^{-1} \in(c, c) \text { for all } s=1,2, \ldots
$$

In the following we will use the notation $[N, k]$ for each $k \geq 0$

$$
\begin{aligned}
{[N, k] } & =C_{N+k-1}^{k} \\
& =\frac{(N+k-1)(N+k-2) \ldots(N+k-1-k+1)}{k!} \\
& =\frac{N(N+1) \ldots(N+k-1)}{k!}
\end{aligned}
$$

and consider the conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{m=1}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} a_{n, m-i k}[N, k]\right)=l \text { for some scalar } l \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n}(-1)^{k} a_{n, m-i k}[N, k]=l_{m} \text { for } m=1,2, \ldots \tag{5.3}
\end{equation*}
$$

$$
\begin{gather*}
\sup _{n}\left(\sum_{m=1}^{n}\left|\sum_{k=0}^{E\left(-\frac{n-m}{i}\right)}(-1)^{k} a_{s, m-i k}[N, k]\right|\right)<\infty \text { for all } s, \tag{5.4}\\
\lim _{n \rightarrow \infty} \sum_{m=1}^{n}\left(\sum_{k=0}^{E\left(-\frac{n-m}{i}\right)}(-1)^{k} a_{s, m-i k}[N, k]\right)=l
\end{gather*}
$$

for some scalar l and for all s,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{E\left(-\frac{n-m}{i}\right)}(-1)^{k} a_{s, m-i k}[N, k]=l_{m} \tag{5.6}
\end{equation*}
$$

for some scalar $l_{m}, m=1,2, \ldots$ and for all s.
We have
Theorem 5.3. $\mathcal{M} \in\left(c\left(B^{N}(i, 0)\right), c\right)$ if and only if (5.1), (5.2), (5.3), (5.4), (5.5) and (5.6) hold.

Proof. The matrix $\left(B^{N}(i, 0)\right)^{-1}=B^{-N}(i, 0)$ can be explicitly calculated since

$$
\begin{aligned}
& \left(1+z^{-i}\right)^{-N} \\
= & 1-N z^{-i}+\frac{N(N+1)}{2!} z^{-2 i}-\ldots+(-1)^{k} \frac{N(N+1) \ldots(N+k-1)}{k!} z^{-k i}+\ldots \\
= & 1+\sum_{k=1}^{\infty}(-1)^{k}[N, k] z^{-i k} \text { for }|z|<1 .
\end{aligned}
$$

We immediately get

$$
\begin{aligned}
& {\left[\left(B^{-N}(i, 0)\right)^{T}\right]_{n m}=\varphi\left(\frac{1}{\left(1+z^{-i}\right)^{N}}\right)^{T}} \\
& =\left\{\begin{array}{cc}
(-1)^{k}[N, k] & \text { for } n-m=-i k, k=0,1, \ldots \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Then

$$
\mathcal{M} B^{-N}(i, 0)=\left(\sum_{k=0}^{\infty} a_{n, m-i k}(-1)^{k}[N, k]\right)_{n, m \geq 1}
$$

and $\mathcal{M} B^{-N}(i, 0) \in(c, c)$ is equivalent to (5.1), (5.2) and (5.3). Then we easily obtain for each s

$$
B_{\infty} D_{\left(a_{s n}\right)_{n}} B^{-N}(i, 0)=\left(\sum_{k=0}^{E\left(-\frac{n-m}{i}\right)}(-1)^{k-m} a_{s, m-i k}[N, k]\right)_{n, m \geq 1}
$$

So $B_{\infty} D_{\left(a_{s n}\right)_{n}} B^{-N}(i, 0) \in(c, c)$ if and only if (5.4), (5.5) and (5.6) hold.

References

[1] Labbas, R., de Malafosse, B., On some Banach algebra of infinite matrices and applications, Demonstr. Math. 31 (1998), 153-168.
[2] Maddox, I.J., Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
[3] de Malafosse, B., Résolution des systèmes linéaires infinis et variation d'un élément dans une matrice infinie, Atti dell'Accademia di Scienze Lettere e Arti di Palermo, Série IV, 40 Parte I, (1982), 227-230.
[4] de Malafosse, B., Systèmes linéaires infinis admettant une infinité de solutions, Accademia Peloritana dei Pericolanti di Messina, Classe I di Scienze Fis. Mat. e Nat. 65 (1988), 49-59.
[5] de Malafosse, B., Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31 (2002), 283-299.
[6] de Malafosse, B., On some BK space, Int. J. Math. Math. Sci. 28 (2003), 1783-1801.
[7] de Malafosse, B., Linear operators mapping in new sequence spaces, Soochow J. Math. $31 \mathrm{~N}^{\circ} 2(2005), 403-427$.
[8] de Malafosse, B., An application of the infinite matrix theory to Mathieu equation, Comput. Math. Appl. 52 (2006) 1439-1452.
[9] de Malafosse, B., Calculations in new sequence spaces, Arch. Math., Brno 43 (2007), 1-18.
[10] de Malafosse, B., Rakočević, V., Applications of measure of noncompactness in operators on the spaces $s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}$ and l_{α}^{p}, J. Math. Anal. Appl. 323 (2006), 131-145.
[11] de Malafosse, B., Rakočević,V., Matrix Transformations and Statistical convergence, Linear Algebra Appl. 420 (2007) 377-387.
[12] de Malafosse, B., Rakočević V., A generalization of a Hardy theorem, Linear Algebra Appl. 421 (2007) 306-314.
[13] de Malafosse, B., Malkowsky, E., Sequence spaces and inverse of an infinite matrix, Rend. Circ. Mat. Palermo, II. Ser. 51 (2002), 277-294.
[14] Malkowsky, E., Rakočević, V., An introduction into the theory of sequence spaces and measure of noncompactness, Zb. Rad., Beogr. 9 (17) (2000), 143-243.
[15] Malkowsky, E., Rakočević, V., On matrix domains of triangles. Under review. To appear in Appl. Math. Comput. (2007).
[16] Mascart, H., de Malafosse, B., Systèmes linéaires infinis associés à des séries entières, Accademia Peloritana dei Pericolanti di Messina, Classe I di Scienze Fis. Mat. e Nat. 64 (1988), 25-29.
[17] Medeghri, A., de Malafosse, B., Numerical scheme for a complete abstract second order differential equation of elliptic type, Commun. Fac. Sci. Univ. Ank., Sér. A A_{1}, Math. Stat. 50 (2001), 43-54.
[18] Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.

Bruno de Malafosse
I.U.T Le Havre BP 400676610

Le Havre. France.
e-mail address: bdemalaf@wanadoo.fr
Adnan Yassine
LMAH Université du Havre
ISEL Le Havre BP 113776063
Le Havre. France.
e-mail address: adnan.yassine@univ-lehavre.fr.
(Received April 8, 2008)

[^0]: *

 ${ }^{\dagger}$ LMAH Université du Havre

 Copyright (C)2010 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

[^1]: Mathematics Subject Classification. 40H05; 46A45; 46B03.
 Key words and phrases. Matrix transformations, Banach algebra, boolean infinite matrix, optimization.

