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Some Homotopy Groups of Homogeneous
Spaces

Tomohisa Inoue

Abstract

The symplectic group is embedded in the rotation group and the quotient set equipped with
the identification topology is a homogeneous space. The purpose of this paper is to determine
some homotopy groups of the homogeneous space. Exact sequences induced from fibrations are
frequently used, and homotopy groups of Lie groups and other homogeneous spaces which are
obtained by several authors are referred heavily.
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SOME HOMOTOPY GROUPS OF HOMOGENEOUS
SPACES

Tomohisa INOUE

Abstract. The symplectic group is embedded in the rotation group
and the quotient set equipped with the identification topology is a ho-
mogeneous space. The purpose of this paper is to determine some homo-
topy groups of the homogeneous space. Exact sequences induced from
fibrations are frequently used, and homotopy groups of Lie groups and
other homogeneous spaces which are obtained by several authors are
referred heavily.

1. Introduction

Let SOn be the rotation group, Un the unitary group and Spn the sym-
plectic group. The unitary group Un is embedded in the rotation group SO2n

and so the homogeneous space SO2n/Un is defined. Let Γn = SO2n/Un.
Similarly, the symplectic group Spn can be considered as the subgroup of
U2n or SO4n. Denote by Xn and Yn homogeneous spaces U2n/Spn and
SO4n/Spn, respectively. Bott’s results of the stable homotopy group of Γn

and Xn are well known (see [1]) and some nonstable homotopy groups are
determined by several authors in [3, 6, 11, 15, 16]. Some homotopy groups
of Yn are studied together with Γn and Xn in [2].

The main purpose of this paper is to calculate homotopy groups π4n+k(Yn)
for k ≤ 5 and n ≥ 2. To state our result, we use the following notations.
Let Z be the group of integers and set Zn = Z/nZ for a positive integer n.
The direct sum Zn ⊕ · · · ⊕ Zn of m copies of Zn is denoted by (Zn)m. Let
(n,m) be the greatest common divisor of natural numbers n and m. Note
that, when n is even, the groups π4n(Yn) ∼= π4n+1(Yn) ∼= (Z2)3 are already
obtained in [2]. Our result is stated as follows.

Theorem 1.1. Let n ≥ 2. If −1 ≤ k ≤ 5, the homotopy group π4n+k(Yn)
is isomorphic to the group given by the following table except π13(Y3) and
π15(Y3). π13(Y3) is isomorphic to (Z2)3 or Z4 ⊕ Z2.

n\k −1 0 1 2 3 4 5
even Z ⊕ Z4 (Z2)3 (Z2)3 Z8(3,n+1) Z ⊕ Z2 Z2 (Z2)3

odd Z (Z2)2 (Z2)3 Z4(3,n+1) ⊕ Z2 Z ⊕ Z4 Z2 (Z2)2

Mathematics Subject Classification. Primary 55Q52; Secondary 57T20.
Key words and phrases. homogeneous space, homotopy group.
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104 T. INOUE

Our main method is to use exact sequences induced from fibrations. Cal-
culations need group structures of many homotopy groups of classical groups
SOn, Un, Spn and homogeneous spaces Γn, Xn. We rely heavily on results
of several authors [1, 3, 6, 8, 10, 11, 13, 15, 16].

The author wishes to thank Professor J. Mukai for helpful suggestions.

2. Fundamental facts

The unitary group Un and the symplectic group Spn are embedded in
the rotation group SO2n and the unitary group U2n, respectively. These
inclusions are denote by rn : Un → SO2n and cn : Spn → U2n. The subscript
n may be omitted if no confusion occurs.

The fibration Spn
rc−→ SO4n → Yn induces an exact sequence

π4n−1(Spn)
(rc)∗−−−→ π4n−1(SO4n) → π4n−1(Yn) → π4n−2(Spn).

Since π4n−2(Spn) = 0 (see [1]), the group π4n−1(Yn) is isomorphic to the
cokernel of (rc)∗. To determine the cokernel, we study maps r∗ and c∗ by
making use of exact sequences induced from fibrations Spn

c−→ U2n → Xn

and U2n
r−→ SO4n → Γ2n. Then we have the following.

Proposition 2.1. If n ≥ 2, then π4n−1(Yn) ∼= Z ⊕ Z4 when n is even and
π4n−1(Yn) ∼= Z when n is odd.

Similarly, the group structure of πk(Yn) for 1 ≤ k ≤ 4n − 2 is obtained
easily by the Bott periodicity.

Proposition 2.2. If 1 ≤ k ≤ 4n − 2, the group structure of πk(Yn) is as
follows.

k = 8s 8s + 1 8s + 2 8s + 3 8s + 4 8s + 5 8s + 6 8s + 7
Z2 Z2 0 0 0 Z2 Z2 Z4

Let Vn,m be the real Stiefel manifold SOn/SOn−m for n > m. There exist
natural homeomorphisms SO2n+1/Un ≈ SO2n+2/Un+1 and U2n+1/Spn ≈
U2n+2/Spn+1 (see [3]). Then SO4n+3/Spn and SO4n+4/Spn+1 are homeo-
morphic, and so the fibration

SO4n/Spn → SO4n+3/Spn → SO4n+3/SO4n

is written as Yn → Yn+1 → V4n+3,3. In addition, we also use fibrations Xn →
Yn → Γ2n and Un → SO2n+1 → Γn+1. In almost all cases, the notation ∆
means the connecting homomorphism of the exact sequence induced from a
fibration.

Hereafter, we will not distinguish the maps and their homotopy classes.
Notations and results of [18] are used. Let ιn ∈ πn(Sn) for n ≥ 1 and
ηn ∈ πn+1(Sn) for n ≥ 2 be generators, and let ηk

n be the composition

2
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HOMOTOPY GROUPS OF HOMOGENEOUS SPACES 105

ηn · · · ηn+k−1. By abuse of notation, νn ∈ πn+3(Sn) ∼= Z24 for n ≥ 5 is used
to denote the generator of πn+3(Sn). For a cyclic group G, we denote by
G{α} the cyclic group isomorphic to G with the generator α.

Let F be the reals R, the complexes C or the quaternions H. Denote
by Gn(F) the rotation group SOn, the unitary group Un or the symplectic
group Spn. Let γn(F) : Sd(n+1)−2 → Gn(F) be the characteristic map for
the bundle Gn(F) → Gn+1(F) → Sd(n+1)−1, where d = dimR F.

Consider the exact sequence

π4n+3(S4n) ∆−→ π4n+2(SO4n) i∗−→ π4n+2(SO4n+1),

where i : SO4n → SO4n+1 is the inclusion. The image of ∆ is generated
by γ4n(R)ν4n−1. From the proof of [15, Theorem 4], the nontriviality of
i∗r∗γ2n(C)η2

4n ∈ π4n+2(SO4n+1) is given. Then

(2.1) r∗γ2n(C)η2
4n 6= 0 and r∗γ2n(C)η2

4n 6= γ4n(R)η3
4n−1 = 12γ4n(R)ν4n−1.

It is also obtained in the proof of [15, Theorem 4] that i∗ is epimorphic, and

(2.2) π4n+2(SO4n) ∼=


Z8 ⊕ Z24 n is even and n ≥ 2,

Z4 ⊕ Z24 n = 3,
Z4 ⊕ Z48 n is odd and n ≥ 5,

which is generated by two elements r∗c∗γn(H) and γ4n(R)ν4n−1. Since
π4n+2(SO4n+1) ∼= Z8 (see [8]), the image of ∆ is isomorphic to Z12 when
n = 3 and Z24 when n 6= 3, that is,

(2.3) 12γ12(R)ν11 = 0 and 12γ4n(R)ν4n−1 6= 0 when n 6= 3.

Furthermore, the relation of [15, Theorem 4] implies that the homomorphism
(rc)∗ : π4n+2(Spn) → π4n+2(SO4n) has the image

(2.4) Im(rc)∗ ∼=


Z24/(3,n+1) n is even and n ≥ 2,

Z24 n = 3,

Z48/(3,n+1) n is odd and n ≥ 5.

3. Proof of the theorem

The proof of the main theorem relies on the next lemma.

Lemma 3.1. Let n be odd and n ≥ 3. Then
(1) π4n(SO4n) = Z2{r∗γ2n(C)} ⊕ Z2{γ4n(R)η4n−1}.
(2) π4n+1(SO4n) = Z2{r∗γ2n(C)η4n} ⊕ Z2{γ4n(R)η2

4n−1}.
(3) (η4n+1)∗ : π4n+1(SO4n) → π4n+2(SO4n) is monomorphic for n ≥ 5,

and the kernel of (η13)∗ is Z2{γ12(R)η2
11}.
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106 T. INOUE

Proof. Assume that n is odd and n ≥ 3. Note that π4n(SO4n) ∼= (Z2)2 and
π4n+1(SO4n) ∼= (Z2)2 are already obtained in [8]. In the exact sequence

π4n(U2n) r∗−→ π4n(SO4n) → π4n(Γ2n) ∆−→ π4n−1(U2n),

it is known that π4n(Γ2n) ∼= Z2 (see [3]) and π4n−1(U2n) ∼= Z (see [1]). Then
∆ = 0 and, by the group structure π4n(U2n) = Z(2n)!{γ2n(C)} (see [1]),
there exists a direct summand Z2{r∗γ2n(C)} in π4n(SO4n). Next, consider
the exact sequence

π4n+1(S4n) → π4n(SO4n) i∗−→ π4n(SO4n+1) → π4n(S4n),

where i : SO4n → SO4n+1 is the inclusion. Similarly, since π4n+1(S4n) =
Z2{η4n}, π4n(SO4n+1) ∼= Z2 (see [8]) and π4n(S4n) ∼= Z, there exists a direct
summand Z2{γ4n(R)η4n−1} in π4n(SO4n). By the exact sequence

π4n(U2n)
(ir)∗−−−→ π4n(SO4n+1) → π4n(Γ2n+1)

and the group structure π4n(Γ2n+1) = 0 (see [1]), we have i∗r∗γ2n(C) 6= 0.
Note that i∗γ4n(R)η4n−1 = 0. Hence, r∗γ2n(C) is not equal to γ4n(R)η4n−1.
This leads us to (1).

We have π4n+1(U2n) = Z2{γ2n(C)η4n} by making use of the fibration
U2n → U2n+1 → S4n+1. From this, and by the argument similar to that of
(1), the assertion of (2) is obtained. Properties (2.1) and (2.3) imply (3). ¤

Let θ ∈ π4n−1(Spn) ∼= Z (see [1]) be a generator. By [13, Theorem 2.1],
π4n(Spn) = Z2{θη4n−1} and π4n+1(Spn) = Z2{θη2

4n−1} when n is odd.

Proposition 3.2. Let n be odd. Then π4n(Yn) ∼= (Z2)2 for n ≥ 3 and
π4n+1(Yn) ∼= (Z2)3 for n ≥ 5.

Proof. In the calculation of Proposition 2.1, it is obtained that the map
(rc)∗ : π4n−1(Spn) → π4n−1(SO4n) is monomorphic. Then there exists an
exact sequence

π4n(Spn)
(rc)∗−−−→ π4n(SO4n) → π4n(Yn) → 0.

Since the generator θη4n−1 of π4n(Spn) is of order 2, the element c∗θη4n−1 ∈
π4n(U2n) = Z(2n)!{γ2n(C)} is in ((2n)!/2)π4n(U2n), where the integer (2n)!/2
is even. Hence, by Lemma 3.1(1), (rc)∗θη4n−1 = 0. This implies that
π4n(Yn) ∼= π4n(SO4n) ∼= (Z2)2 and (rc)∗ : π4n+1(Spn) → π4n+1(SO4n) is
trivial. Therefore, we obtain the exact sequence

0 → π4n+1(SO4n)
p∗−→ π4n+1(Yn) ∆−→ π4n(Spn) → 0,

where p : SO4n → Yn is the projection. Let β ∈ π4n+1(Yn) be an element
satisfying ∆β = θη4n−1. Consider the Toda bracket

{rc, θη4n−1, 2ι4n} ⊂ π4n+1(SO4n).

4
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If 0 ∈ {rc, θη4n−1, 2ι4n}, then 0 ∈ rc ◦ {θη4n−1, 2ι4n, η4n}, that is, there
exists δ ∈ {θη4n−1, 2ι4n, η4n} such that (rc)∗δ = 0. For this δ, by [11,
Lemma 2.1], there exists an element ε ∈ π4n+1(SO4n) such that p∗ε = 2β
and 0 = (rc)∗δ = εη4n+1. By Lemma 3.1(3), the relation εη4n+1 = 0 implies
that ε = 0 for n ≥ 5. Hence, 2β = 0, and the above exact sequence
splits for n ≥ 5. Therefore, we shall prove 0 ∈ {rc, θη4n−1, 2ι4n}. Since
π4n+2(Spn) ∼= Z2·(2n+1)! (see [3]) and

4{θη4n−1, 2ι4n, η4n} = −(θη4n−1 ◦ {2ι4n, η4n, 4ι4n+1})
⊂ −(θη4n−1 ◦ {2ι4n, 0, 2ι4n+1}) 3 0 mod 0,

the Toda bracket {θη4n−1, 2ι4n, η4n} is the subset of ((2n+1)!/2)π4n+2(Spn).
Note that (2n + 1)!/2 ≡ 0 mod 24 for n ≥ 3 and (2n + 1)!/2 ≡ 0 mod 48 for
n ≥ 5. Then, by (2.2),

(η4n+1)∗{rc, θη4n−1, 2ι4n} = −((rc)∗{θη4n−1, 2ι4n, η4n}) = 0.

By Lemma 3.1(3), this implies that 0 ∈ {rc, θη4n−1, 2ι4n} for n ≥ 5. ¤
Proposition 3.3. If n ≥ 2, then π4n+2(Yn) ∼= Z8(3,n+1) when n is even and
π4n+2(Yn) ∼= Z4(3,n+1) ⊕ Z2 when n is odd.

Proof. If n is even, then π4n+1(Spn) = 0 (see [1]). Hence, there exists an
exact sequence

π4n+2(Spn)
(rc)∗−−−→ π4n+2(SO4n) → π4n+2(Yn) → 0.

By (2.2) and (2.4), the group π4n+2(Y4n) is isomorphic to Z8(3,n+1) when n
is even.

If n is odd, then the homomorphism (rc)∗ : π4n+1(Spn) → π4n+1(SO4n)
is trivial by the proof of Proposition 3.2. So, there is an exact sequence

π4n+2(Spn)
(rc)∗−−−→ π4n+2(SO4n) → π4n+2(Yn) ∆−→ π4n+1(Spn) → 0.

Similarly, by (2.2) and (2.4), the cokernel of (rc)∗ is isomorphic to Z4(3,n+1)

for n ≥ 3. By the proof of Proposition 3.2, ∆(βη4n+1) = θη2
4n−1. Since

2(βη4n+1) = 0, this leads us to the assertion and completes the proof. ¤
We note that the diagram

(3.1)

πk+1(Γ2n) πk(Xn)

πk(U2n)

-∆

Q
Q

QQs∆′ ´
´

´́3

p′∗

is commutative, where p′ : U2n → Xn is the projection. We show

Proposition 3.4. If n is even and n ≥ 2, then π4n+3(Yn) ∼= Z ⊕ Z2.
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108 T. INOUE

Proof. Consider the exact sequence

π4n+4(Γ2n) ∆−→ π4n+3(Xn) → π4n+3(Yn) → π4n+3(Γ2n) ∆−→ π4n+2(Xn).

In the diagram (3.1) for k = 4n + 2, we know

π4n+2(U2n) = Z(2n+1)!{c∗γn(H)} ⊕ Z2{γ2n(C)η2
4n}

(see [15, Theorem 4]). By (2.1), the image of ∆′ is in Z(2n+1)!{c∗γn(H)} and
p′∗∆′ = ∆ : π4n+3(Γ2n) → π4n+2(Xn) is trivial.

Next, consider the diagram (3.1) for k = 4n + 3. Since π4n+4(SO4n) = 0
(see [8]), π4n+4(Γ2n) ∼= Z(12,n) (see [6]) and π4n+3(U2n) ∼= Z2(12,n) (see [10]),
∆′ is monomorphic and the image is 2π4n+3(U2n). From the group structure
of π4n+2(U2n) as above, π4n+2(Spn) = Z(2n+1)!{γn(H)} (see [3]) is naturally
embedded in π4n+2(U2n) and so p′∗ is epimorphic. Then the cokernel of ∆ :
π4n+4(Γ2n) → π4n+3(Xn) is isomorphic to Z2 because π4n+3(Xn) ∼= Z(24,n)

(see [11]) and n is even. Since π4n+3(Γ2n) ∼= Z (see [3]), the assertion is
obtained. ¤

We show the following to complete the proof of the main theorem.

Lemma 3.5. If n ≥ 2, then
(1) π4n+3(SO4n) ∼= Z ⊕ Z2 has a direct summand Z2{r∗γ2n(C)ν4n}.
(2) r∗c∗γn(H)η4n+2 = n(r∗γ2n(C)ν4n).

Proof. By making use of the fibration U2n → U2n+1 → S4n+1, we have
π4n+3(U2n) = Z2(12,n){γ2n(C)ν4n}. In the proof of Proposition 3.4, it is
shown that the connecting homomorphism π4n+4(Γ2n) → π4n+3(U2n) has
the image 2π4n+3(U2n) when n is even. Then (1) is proved when n is even.

Assume that n is odd. Consider the commutative diagram

π4n+1(V4n+6,6) π4n(SO4n)

π4n+4(V4n+6,6) π4n+3(SO4n).

-∆1

?
ν4n+1

∗

?
ν4n

∗

-
∆2

Here, ∆1 is isomorphic and ∆2 is monomorphic (see [8]). We use the group
structure of π4n+l(V4n+k,k) (cf. [17]). Let α ∈ π4n+1(V4n+2,2) ∼= Z ⊕ Z2

be a generator of the direct summand Z. The exact sequence induced
from the fibration V4n+2,2 → V4n+3,3 → S4n+2 leads to the group structure
π4n+4(V4n+2,2) = Z24{αν4n+1}. Similarly, by use of the fibration V4n+k,k →
V4n+k+1,k+1 → S4n+k for 2 ≤ k ≤ 5, we see that π4n+1(V4n+6,6) ∼= (Z2)2

has the direct summand Z2{j∗α}, where j : V4n+2,2 → V4n+6,6 is the map

6
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induced from the inclusion SO4n+2 → SO4n+6. By the exact sequence

π4n+4(V4n+2,2)
j∗−→ π4n+4(V4n+6,6) → π4n+4(V4n+6,4)

and π4n+4(V4n+6,4) = 0, we have π4n+4(V4n+6,6) = Z2{j∗αν4n+1}. Hence, in
the above diagram, Im ν4n

∗ = Im(ν4n
∗∆1) = Im(∆2ν4n+1

∗) ∼= Im ν4n+1
∗ ∼=

Z2. By Lemma 3.1(1) and the relation η4n−1ν4n = 0, we have (1).
In [14, Lemma 2.1], the relation c∗γn(H)η4n+2 = n(γ2n(C)ν4n) is obtained.

This leads to (2) and completes the proof. ¤
Proposition 3.6. If n is odd and n ≥ 5, then π4n+3(Yn) ∼= Z ⊕ Z4.

Proof. By the same argument in the proof of Proposition 3.4, the connecting
homomorphism π4n+3(Γ2n) → π4n+2(Xn) is trivial. Next, we examine the
cokernel of π4n+4(Γ2n) → π4n+3(Xn) by use of the diagram (3.1). Consider
the exact sequence

π4n+3(Spn) c∗−→ π4n+3(U2n)
p′∗−→ π4n+3(Xn)

and groups π4n+3(Spn) = Z2{γn(H)η4n+2} (see [13]), π4n+3(U2n) ∼= Z2(12,n).
Since n is odd, π4n+3(U2n) ∼= Z2⊕Z(3,n) and, by Lemma 3.5, c∗γn(H)η4n+2 6=
0. Then the image of p′∗ is isomorphic to Z(3,n). In the exact sequence

π4n+4(SO4n) → π4n+4(Γ2n) ∆′
−→ π4n+3(U2n),

π4n+4(SO4n) ∼= Z2 (see [8]) and π4n+4(Γ2n) ∼= Z2(12,n)
∼= Z2⊕Z(3,n) (see [6]).

So, ∆′ maps the odd component isomorphically. Hence, by the diagram
(3.1) and the group π4n+3(Xn) ∼= Z2 ⊕ Z(3,n) (see [11]), the cokernel of
∆ : π4n+4(Γ2n) → π4n+3(Xn) is isomorphic to Z2. Therefore, there exists
an exact sequence

0 → Z2 → π4n+3(Yn) → π4n+3(Γ2n) → 0.

By (2.2), π4n+3(Γ2n) ∼= Z ⊕ Z2 for n ≥ 5 (see [6]) and so π4n+3(Yn) is
isomorphic to Z ⊕ (Z2)2 or Z ⊕ Z4. In the exact sequence

π4n+3(Spn)
(rc)∗−−−→ π4n+3(SO4n) → π4n+3(Yn) → π4n+2(Spn),

the cokernel of (rc)∗ is isomorphic to Z by Lemma 3.5, and π4n+2(Spn) is a
cyclic group. Therefore, π4n+3(Yn) ∼= Z ⊕ Z4. ¤
Proposition 3.7. π4n+4(Yn) ∼= Z2 for n ≥ 2.

Proof. Consider the exact sequence

π4n+4(Spn) → π4n+4(SO4n) → π4n+4(Yn) → π4n+3(Spn) → π4n+3(SO4n).

By Lemma 3.5 and π4n+3(Spn) = Z2{γn(H)η4n+2}, the kernel of (rc)∗ :
π4n+3(Spn) → π4n+3(SO4n) is π4n+3(Spn) when n is even and 0 when n is
odd. If n is even, π4n+4(SO4n) = 0 leads to π4n+4(Yn) ∼= Z2. If n is odd,

7
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110 T. INOUE

π4n+4(Spn) = Z2{γn(H)η2
4n+2} (see [13]). By Lemma 3.5 and the relation

ν4nη4n+3 = 0, the image of (rc)∗ : π4n+4(Spn) → π4n+4(SO4n) is generated
by r∗γ2n(C)ν4nη4n+3 = 0. Then π4n+4(Yn) ∼= π4n+4(SO4n) ∼= Z2. ¤

Proposition 3.8. If n ≥ 2, then π4n+5(Yn) ∼= (Z2)3 when n is even and
π4n+5(Yn) ∼= (Z2)2 when n is odd.

Proof. In the exact sequence

π4n+6(V4n+3,3) → π4n+5(Yn) → π4n+5(Yn+1) → π4n+5(V4n+3,3),

π4n+5(V4n+3,3) ∼= Z2 (see [17]). Let Pn be the n-dimensional real projective
space and set Pn

m = Pn/Pm−1 for n ≥ m. Since the pair (Vn,m, Pn−1
n−m) is

(2n − 2m)-connected (see [5]) and P4n+2
4n is of the same homotopy type as

P4n+2
4n+1 ∨ S4n, we have π4n+6(V4n+3,3) ∼= Z2. Then the above sequence is

Z2 → π4n+5(Yn) → (Z2)3 → Z2.

Hence, π4n+5(Yn) is isomorphic to (Z2)2, (Z2)3, (Z2)4, Z4 ⊕ Z2 or Z4 ⊕
(Z2)2. Furthermore, when n is even, by the continuation of the above exact
sequence and the group structure π4n+4(V4n+3,3) ∼= (Z2)2 (see [17]), there is
an exact sequence

Z2 → π4n+5(Yn) → (Z2)3 → Z2 → Z2 → (Z2)3 → (Z2)2.

This implies that the image of π4n+5(Yn) → π4n+5(Yn+1) is isomorphic to
(Z2)2 and so π4n+5(Yn) is isomorphic to (Z2)2, (Z2)3 or Z4 ⊕ Z2 when n is
even.

On the other hand, consider the exact sequence

π4n+5(SO4n)
p∗−→ π4n+5(Yn) → π4n+4(Spn) → π4n+4(SO4n),

where p : SO4n → Yn is the projection. By making use of the isomorphism
πn+k(SOn) ∼= πn+k(SOn+m) ⊕ πn+k+1(Vn+m,m) for m > k + 2, n > 13,
k < n − 2 (see [9]), and by [1, 4],

π4n+5(SO4n) ∼= π4n+5(SO4n+8) ⊕ π4n+6(V4n+8,8)

∼=

{
(Z2)2 n is even and n ≥ 4
Z2 n is odd and n ≥ 5.

By [12], π13(SO8) ∼= (Z2)2 and, by [7], the free part and the 2-primary
component of π17(SO12) is isomorphic to Z2. Since π4n+4(Spn) is isomorphic
to (Z2)2 when n is even and Z2 when n is odd (see [13]), the assertion of
this proposition is clearly obtained when n is odd.

Assume that n is even. Since π4n+4(SO4n) = 0, the above sequence is

(Z2)2
p∗−→ π4n+5(Yn) → (Z2)2 → 0.
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By the proof of [15, Theorem 2i)], the element p∗γ4n(R)ν2
4n−1 is nontrivial

and not divisible by two. Then π4n+5(Yn) is isomorphic to (Z2)3, (Z2)4 or
Z4 ⊕ (Z2)2. Therefore, π4n+5(Yn) ∼= (Z2)3 when n is even. ¤
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