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Abstract

The symplectic group is embedded in the rotation group and the quotient set equipped with
the identification topology is a homogeneous space. The purpose of this paper is to determine
some homotopy groups of the homogeneous space. Exact sequences induced from fibrations are
frequently used, and homotopy groups of Lie groups and other homogeneous spaces which are
obtained by several authors are referred heavily.
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SOME HOMOTOPY GROUPS OF HOMOGENEOUS
SPACES

TomoHnisA INOUE

ABSTRACT. The symplectic group is embedded in the rotation group
and the quotient set equipped with the identification topology is a ho-
mogeneous space. The purpose of this paper is to determine some homo-
topy groups of the homogeneous space. Exact sequences induced from
fibrations are frequently used, and homotopy groups of Lie groups and
other homogeneous spaces which are obtained by several authors are
referred heavily.

1. INTRODUCTION

Let SO, be the rotation group, U, the unitary group and Sp, the sym-
plectic group. The unitary group U, is embedded in the rotation group SOs),
and so the homogeneous space SOsy, /U, is defined. Let T'), = SO, /U,.
Similarly, the symplectic group Sp, can be considered as the subgroup of
Uy, or SOyy,. Denote by X, and Y, homogeneous spaces Us,/Sp, and
SOyp/Spn, respectively. Bott’s results of the stable homotopy group of T,
and X,, are well known (see [1]) and some nonstable homotopy groups are
determined by several authors in [3, 6, 11, 15, 16]. Some homotopy groups
of Y,, are studied together with I';, and X, in [2].

The main purpose of this paper is to calculate homotopy groups 7,11 (Yn)
for £ < 5 and n > 2. To state our result, we use the following notations.
Let Z be the group of integers and set Z,, = Z/nZ for a positive integer n.
The direct sum Z,, @ - - - @ Z,, of m copies of Z, is denoted by (Z,)™. Let
(n,m) be the greatest common divisor of natural numbers n and m. Note
that, when n is even, the groups T4, (Yyn) = Tani1(Yn) = (Z2)? are already
obtained in [2]. Our result is stated as follows.

Theorem 1.1. Letn > 2. If —1 < k < 5, the homotopy group Tan+k(Yn)
is isomorphic to the group given by the following table except m3(Ys) and
m15(Y3). m3(Y3) is isomorphic to (Zs2)® or Zy ® Zs.

k| —1 0 1 2 3 4] 5
even | Z @ Zy (Z2)3 <Z2)3 Z8(3,n+l) YASY RN <Z2)3
odd Z (Z2)2 (Zg)g Z4(3,n+1) © 2o | LD 7Ly | Zo (Z2)2
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Our main method is to use exact sequences induced from fibrations. Cal-
culations need group structures of many homotopy groups of classical groups
SOy, Uy, Spn, and homogeneous spaces I';,, X,,. We rely heavily on results
of several authors [1, 3, 6, 8, 10, 11, 13, 15, 16].

The author wishes to thank Professor J. Mukai for helpful suggestions.

2. FUNDAMENTAL FACTS

The unitary group U, and the symplectic group Sp, are embedded in
the rotation group SOs, and the unitary group Us,, respectively. These
inclusions are denote by r, : U, — SOs, and ¢, : Sp, — Us,. The subscript
n may be omitted if no confusion occurs.

The fibration Sp, X S0y, — Y, induces an exact sequence

Tan—1(Spn) {rds, Tan—1(S04pn) = Tan—1(Yn) — Tan—2(Spn).

Since map—2(Spn) = 0 (see [1]), the group m4,—1(Y;) is isomorphic to the
cokernel of (rc).. To determine the cokernel, we study maps 7, and ¢, by
making use of exact sequences induced from fibrations Sp, — Ua, — X,
and Usy, — SOu4, — I'app. Then we have the following.

Proposition 2.1. If n > 2, then w4n—1(Yn) = Z ® Zy when n is even and
Tan—1(Yyn) = Z when n is odd.

Similarly, the group structure of 7 (Y,) for 1 < k < 4n — 2 is obtained
easily by the Bott periodicity.

Proposition 2.2. If 1 < k < 4n — 2, the group structure of m(Yy) is as
follows.

k=|8s|85+1|85+2 |8 +3|8+4|8+5|8+6|8+7
ZQ ZQ 0 0 0 ZQ Z2 Z4

Let V,m be the real Stiefel manifold SO,,/SO,,—p, for n > m. There exist
natural homeomorphisms SOz, +1/U, ~ SO2,42/Upt+1 and Uspy1/Spn =~
Uan+t2/Spn+1 (see [3]). Then SO4pn43/Spn and SOypi4/Sppt1 are homeo-
morphic, and so the fibration

SO4n/Spn - S04n+3/Spn — SO4n+3/SO4n

is written as Y,, — Y;,11 — Vip43.3. In addition, we also use fibrations X,, —
Y, — I'9p, and U,, — SO9,11 — I'yy1. In almost all cases, the notation A
means the connecting homomorphism of the exact sequence induced from a
fibration.

Hereafter, we will not distinguish the maps and their homotopy classes.
Notations and results of [18] are used. Let ¢, € m,(S™) for n > 1 and
Nn € Tpa1(S™) for n > 2 be generators, and let 1% be the composition

http://escholarship.lib.okayama-u.ac.jp/mjou/vol48/iss1/11
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M+ NMnik—1- By abuse of notation, v, € m,43(S™) = Zay for n > 5 is used
to denote the generator of m,4+3(S™). For a cyclic group G, we denote by
G{a} the cyclic group isomorphic to G with the generator «.

Let F be the reals R, the complexes C or the quaternions H. Denote
by G, (F) the rotation group SO, the unitary group U, or the symplectic
group Sp,. Let 4, (F) : S4"+D=2 _, @, (F) be the characteristic map for
the bundle G,,(F) — Gy 11(F) — S¥*+D=1 where d = dimg F.

Consider the exact sequence

Tans3(S") 2, Tan+2(SO0un) LN Tan+2(SO4n+1),

where i : SOy, — SOy is the inclusion. The image of A is generated
by Van(R)van—1. From the proof of [15, Theorem 4], the nontriviality of
ix7+Y2n (C)N3,, € Tany2(SOunt1) is given. Then

(2'1) T*’an(c)ﬁin # 0 and T*’}/Qn(c)nz%n # ’74n(R)772n—1 = 12’7471(R)V4n—1‘
It is also obtained in the proof of [15, Theorem 4] that i, is epimorphic, and
78 ® Zog mn is even and n > 2,

(2.2) Tunt2(S0un) = Ly ® Loy n =3,
Z4y ® Zyg mnis odd and n > 5,

which is generated by two elements r.c.y,(H) and vin(R)van—1. Since
Tan+2(SOun+1) = Zg (see [8]), the image of A is isomorphic to Zjo when
n = 3 and Zsy4 when n # 3, that is,

(2.3) 12912(R)r1; = 0 and 1274, (R)vgn—1 # 0 when n # 3.

Furthermore, the relation of [15, Theorem 4] implies that the homomorphism
(rc)s : Tan42(SPn) — Tan42(S04,) has the image

Zos)(3,n+1) miseven and n > 2,
(2.4) Im(rc)* = Z24 n = 3,

Z4g)3.n+1) nis odd and n > 5.

3. PROOF OF THE THEOREM
The proof of the main theorem relies on the next lemma.

Lemma 3.1. Let n be odd and n > 3. Then

(1) 7T4n(504n) = ZQ{T*'YQn(C)} ©® 22{74n(R)7]4n71}-
(2) Tan+1(SO0un) = Zo{r«yon(C)nan} ® Zo{yan(R)n3, 1 }-
(3) (Mn+1)* : Tan11(SO4n) — Tan12(SO04n) is monomorphic for n > 5,

and the kernel of (m3)* is Za{v12(R)n?;}.

Produced by The Berkeley Electronic Press, 2006
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Proof. Assume that n is odd and n > 3. Note that 74,(SO4,) = (Z2)? and
Tan11(SO4n) = (Z2)? are already obtained in [8]. In the exact sequence

* A
Tan(Uszn) —= T4n(SOun) = Tan(T2n) = Tan—1(Usn),
it is known that 74y, (I2n) = Zo (see [3]) and m4,—1(Usz,) = Z (see [1]). Then
A = 0 and, by the group structure m4,(Uz2n) = Z(2n)1{7120(C)} (see [1]),
there exists a direct summand Za{r.v2,(C)} in 74, (S0y4y). Next, consider
the exact sequence

Tant1(S*™) = T4 (SOun) = T4n(SOuani1) — man(S*™),
where i : SOy, — SO4ny1 is the inclusion. Similarly, since 74, 1(S*") =
Zo{Nan}, Tan(SOuni1) = Zso (see [8]) and 74, (S*") = Z, there exists a direct
summand Zo{v4n(R)n4n—1} in 74, (SO0y4y). By the exact sequence

7r4n(U2n) _(ﬁ"l*_) 7T4n(SO4n+1) - 7T4n(r2n+1)

and the group structure ma,(I'2n+1) = 0 (see [1]), we have i47.y2,(C) # 0.
Note that i.v4n (R)nan—1 = 0. Hence, 7,72, (C) is not equal to Y4, (R)n4n—1.
This leads us to (1).

We have m4n+1(Usn) = Zo{y2n(C)nan} by making use of the fibration
Usp — Uspny1 — S4n+1 - From this, and by the argument similar to that of
(1), the assertion of (2) is obtained. Properties (2.1) and (2.3) imply (3). O

Let 6 € m4,—1(Spn) = Z (see [1]) be a generator. By [13, Theorem 2.1],
Tan(Spn) = Zo{0nan—1} and 74,11(Spn) = Z2{0n3,_,} when n is odd.

Proposition 3.2. Let n be odd. Then 74, (Yn) = (Z2)? for n > 3 and
Tan+1(Yn) = (Z2)® for n > 5.

Proof. In the calculation of Proposition 2.1, it is obtained that the map
(re)s @ man—1(Spn) — Man—1(SO04y,) is monomorphic. Then there exists an
exact sequence

7T4n(Spn) (_Tcl*_} 7T4n(SO4n) - 7T4n(Yn) — 0.

Since the generator 014,—1 of 74, (Spy) is of order 2, the element c,0n4,—1 €
T4n(U2n) = Z2n){72n(C)} is in ((2n)!/2)74,(Uap ), where the integer (2n)!/2
is even. Hence, by Lemma 3.1(1), (r¢)«0nap—1 = 0. This implies that
7T4n(Yn) = 7T4n(SO4n) = (ZQ)2 and (TC)* : 7T4n+1(Spn) - 7T4n+1(504n) is
trivial. Therefore, we obtain the exact sequence

* A

0— 7T4n+1(804n) P_} 7r4n+1(Yn) - 7T4n(Spn) - 07

where p : SOy, — Y, is the projection. Let 5 € myn4+1(Y;,) be an element
satisfying A3 = 0n4,—1. Consider the Toda bracket

{T‘C, 9774n717 2L4n} C 7r4n+1(SO4n)-

http://escholarship.lib.okayama-u.ac.jp/mjou/vol48/iss1/11
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If 0 € {rc,0num—1,2t4n}, then 0 € rco {Ongn—1,2t4n, Nan}, that is, there
exists 0 € {0nyn—1,2t4n, Nan} such that (rc).d6 = 0. For this §, by [11,
Lemma 2.1], there exists an element ¢ € 7m4y,+1(5S0y4,) such that p.e = 20
and 0 = (r¢)x0 = eNany1. By Lemma 3.1(3), the relation eng,4+1 = 0 implies
that ¢ = 0 for n > 5. Hence, 26 = 0, and the above exact sequence
splits for n > 5. Therefore, we shall prove 0 € {rc,0n4n—1,2t4}. Since

Tan+2(SPn) = Zo.(2n41) (see [3]) and
4{ONan—1, 2tan, Nan} = —(ONan—1 © {2t4n, Man, 4tany1})
C —(0M4n—1 0 {2t4n,0,2t4n,41}) > 0 mod 0,
the Toda bracket {0041, 2t4n, Nan } is the subset of ((2n+1)!/2)m4n+2(SpPn).-
Note that (2n +1)!/2 = 0 mod 24 for n > 3 and (2n + 1)!/2 = 0 mod 48 for
n > 5. Then, by (2.2),
(174n+1)*{’l“6, OnNan—1, 2L4n} = —((’I“C)*{H’I’];ln,l, 2L4n, 77471}) =0.

By Lemma 3.1(3), this implies that 0 € {rc, 0n4n—1, 2t4,} for n > 5. O

Proposition 3.3. Ifn > 2, then mani2(Yn) = Zg(3 nt1) when n is even and
Tan+2(Yy) = Z4(3m41) © Lo when n is odd.

Proof. If n is even, then m4n+1(Spn) = 0 (see [1]). Hence, there exists an
exact sequence

7T4n+2(spn) (_7"2*_) 7r4n+2(SO4n) - 7T4n+2(Yn) — 0.

By (2.2) and (2.4), the group 74ny2(Ys,) is isomorphic to Zg(s ;1) when n
is even.

If n is odd, then the homomorphism (r¢)s : T4n4+1(SPr) — Tan+1(SO04n)
is trivial by the proof of Proposition 3.2. So, there is an exact sequence

Tan+2(SPn) AG2LN Tan+2(S04n) — Tant2(Yn) 2, Tan+1(Spn) — 0.

Similarly, by (2.2) and (2.4), the cokernel of (rc), is isomorphic to Z(s ,,41)

for n > 3. By the proof of Proposition 3.2, A(Bn4n+1) = 003, ;. Since
2(BNan+1) = 0, this leads us to the assertion and completes the proof. O

We note that the diagram
Tk+1 (F2n) iy (Xn)

(3.1) k\ -

Tk (U2n)

is commutative, where p’ : Us, — X, is the projection. We show

Proposition 3.4. If n is even and n > 2, then w4,13(Y,) 2 Z @ Zs.

Produced by The Berkeley Electronic Press, 2006
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Proof. Consider the exact sequence

A A
Tan+4(D2n) = Tant3(Xn) = Tant3(Yn) = Tang3(Tan) — Tant2(Xn).

In the diagram (3.1) for k = 4n + 2, we know

7T4n+2(U2n) = Z(2n+1)!{c*’7n(H)} ® Z?{’YQn(C)nzn}

(see [15, Theorem 4]). By (2.1), the image of A" is in Z g, 1y1{csvn(H)} and
p/*AI =A: 7T4n+3(F2n) — 7T4n+2(Xn) is trivial.

Next, consider the diagram (3.1) for k = 4n + 3. Since m4y,44(SO0y4y) = 0
(see [8]), man+a(Tan) = Z2,pn) (see [6]) and Tany3(Uzn) = Zy(12,,) (see [10]),
A’ is monomorphic and the image is 274, +3(Uzy,). From the group structure
of myn+2(Uzn) as above, man12(Spn) = Zapt1y{vn(H)} (see [3]) is naturally
embedded in 74y,42(Us2,) and so p', is epimorphic. Then the cokernel of A :
Tan+4(L2n) — Tanys(X,) is isomorphic to Zg because mypn43(X,) = Z(24,n)
(see [11]) and n is even. Since man4+3(I'2n) = Z (see [3]), the assertion is
obtained. ]

We show the following to complete the proof of the main theorem.

Lemma 3.5. Ifn > 2, then

(1) T4n+3(SO4p) = Z @ Zs has a direct summand Za{ryon(C)van}.

(2) reckyn(H)nant2 = n(r«y2n(C)van).
Proof. By making use of the fibration Us, — Uspi1 — 54"“, we have
Tan+3(U2n) = Zza2,m){72n(C)van}. In the proof of Proposition 3.4, it is
shown that the connecting homomorphism 74y,4+4(2,) — 7Tant3(Uspn) has

the image 27m4y,+3(Usa,) when n is even. Then (1) is proved when n is even.
Assume that n is odd. Consider the commutative diagram

Ay

7T4n+1(v;1n+6,6) 7r4n(SO4n)
Van+1* Van™
Tan+4(Van+6,6) Tan+3(SOun).

2

Here, A; is isomorphic and Ag is monomorphic (see [8]). We use the group
structure of 7r4n+l(v4n+k,k) (Cf. [17]) Let a € 7T4n+1(‘/;1n+2,2) =7 ® 2o
be a generator of the direct summand Z. The exact sequence induced
from the fibration Vyp429 — Vipyzs — S4n+2 leads to the group structure
Tant+4(Vint2,2) = Zoa{ows,1}. Similarly, by use of the fibration Vi1 r —
‘/4n+k+1,k+1 — S4n+k for 2 < k < 5, we see that 7T4n+1(‘/;1n+6,6) = (ZQ)2
has the direct summand Zs{j.a}, where j : Vipi29 — Vinye is the map

http://escholarship.lib.okayama-u.ac.jp/mjou/vol48/iss1/11
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induced from the inclusion SOy4y,12 — SOy4nt6. By the exact sequence

Tantd(Vant2,2) 2 Tanta(Vinte,6) — Tanta(Vinte,4)
and man4+4(Vanye,4) = 0, we have man44(Vinte,6) = Zo{jx0ans1}. Hence, in
the above diagram, Imvy,* = Im(vg,* A1) = Im(Agvgn 1) = Imyg,1* =
Zs. By Lemma 3.1(1) and the relation 74,—1v4, = 0, we have (1).
In [14, Lemma 2.1], the relation ¢y, (H)nin+2 = n(y2n(C)ray,) is obtained.
This leads to (2) and completes the proof. O

Proposition 3.6. If n is odd and n > 5, then myn4+3(Yn) X Z D Zy.

Proof. By the same argument in the proof of Proposition 3.4, the connecting
homomorphism 74y,4+3(I2n) — Tant2(Xy) is trivial. Next, we examine the
cokernel of 74,44(T2n) — Tan13(X,) by use of the diagram (3.1). Consider
the exact sequence

Tan+3(Spn) == Tans3(Uan) LN Tan+3(Xn)

and groups m4,43(Spn) = Zo{vn(H)n4nt2} (see [13]), Tan13(Uan) = Zo2.n)-
Since n is odd, m4pn+3(Uzn) = Zo®Z 3 ) and, by Lemma 3.5, c.vn (H)n4n 12 #
0. Then the image of p’, is isomorphic to Z(3,n)- In the exact sequence

AI
7T4n+4(SO4n) — T4n+4 (FQn) — 7r4n+3(U2n)7

Tan+4(SO04n) = Za (see [8]) and man14(T2n) = Zo(12,) = L2 D L3, (see [6]).
So, A’ maps the odd component isomorphically. Hence, by the diagram
(3.1) and the group mani3(Xn) = Za ® Zzy) (see [11]), the cokernel of
A : Tant4(T2n) — Tan+3(Xy) is isomorphic to Zs. Therefore, there exists
an exact sequence

0 — Zy — man+3(Yn) — Tans3(T2n) — 0.

By (2.2), many3(Tapn) = Z & Zy for n > 5 (see [6]) and so mant3(Yy) is
isomorphic to Z @ (Z2)? or Z @ Z4. In the exact sequence

Tan+3(SPn) o, Tan+3(SO04an) — Tan+3(Yn) = Tant2(SPn),

the cokernel of (7¢), is isomorphic to Z by Lemma 3.5, and m4y,42(Spy,) is a
cyclic group. Therefore, m4,4+3(Y,) = Z @ Zy. O
Proposition 3.7. m4,14(Y,) = Zo forn > 2.
Proof. Consider the exact sequence

Tant4(SPn) = Tan+4(SO0an) = Tanta(Yn) = Tan+3(5Pn) = Tan13(SOun).

By Lemma 3.5 and 74,43(Spn) = Zo{vn(H)Nant2}, the kernel of (rc). :
Tan+3(SPn) — Tan+3(SO04y) i Tan+3(Spn) when n is even and 0 when n is
odd. If n is even, m4,4+4(S04y) = 0 leads to man44(Yy) = Zo. If n is odd,
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Tant4(Spn) = Zo{ym(H)n3,, 5} (see [13]). By Lemma 3.5 and the relation
VinMan+3 = 0, the image of (rc)y : T4n+4(SPn) — Tant+4(SO4y) is generated
by T*'YQn(C)V4n774n+3 = 0. Then 7T4n+4( ) = 7T4n+4(504n) ZLo. O

Proposition 3.8. If n > 2, then m4,15(Yyn) = (Z2)® when n is even and
Tants5(Yn) = (Z2)? when n is odd.

Proof. In the exact sequence

Tan+6(Vin+3,3) = Tants(Yn) = Tants5(Ynt1) = Tants5(Vintsz),

Tan+5(Vant3,3) = Zo (see [17]). Let P™ be the n-dimensional real projective
space and set P?, = P"/P™~! for n > m. Since the pair (V;,,, P'Z1) is
(2n — 2m)-connected (see [5]) and P;"2 is of the same homotopy type as
PiZﬁ V S we have Tan+6(Vints,3) = Zz. Then the above sequence is

Ly — Tants(Yn) = (Z2)* — Zs.

Hence, Tiny5(Yy) is isomorphic to (Z2)?, (Z2)3, (Z2)*, 74 @© Zo or Zy @
(Z2)%. Furthermore, when n is even, by the continuation of the above exact
sequence and the group structure ma,+4(Vants3) = (Z2)? (see [17]), there is
an exact sequence

Zy — Tanys(Yn) — (Z2)® — Zy — Zog — (Z2)® — (Z2)*.

This implies that the image of 74y,45(Y;) — Tant5(Yn+1) is isomorphic to
(Z2)? and so Tan+5(Yy) is isomorphic to (Z2)?, (Z2)? or Zs ® Zy when n is
even.

On the other hand, consider the exact sequence

7r4n+5(504n) p—*> 7r4n+5(Yn) - 7T4n+4(Spn) - 7T4n+4(SO4n)a

where p : SOy, — Y, is the projection. By making use of the isomorphism
7Tn+k(SOn) = 7Tn+k(SOn+m) D 7Tn+k+1(vn+m7m) for m > k + 2, n > 13,
k <n—2 (see [9]), and by [1, 4],

Tan+5(S0un) = Tant5(S0un+8) ® Tant6(Vintss)

~ {(ZZ)Q n is even and n > 4

Zo n is odd and n > 5.

By [12], m3(SOg) = (Z3)? and, by [7], the free part and the 2-primary
component of m17(S012) is isomorphic to Zs. Since m4,44(Spy,) is isomorphic
to (Z2)? when n is even and Zy when n is odd (see [13]), the assertion of
this proposition is clearly obtained when n is odd.

Assume that n is even. Since 74y,44(S04,) = 0, the above sequence is

(Z2)? 25 Tani5(Yn) — (Z2)* — 0.
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By the proof of [15, Theorem 2i)], the element p.ys,(R)v2, ; is nontrivial
and not divisible by two. Then 74,15(Yy) is isomorphic to (Z2)3, (Z2)* or
7.4 @ (Z2)?. Therefore, min15(Yn) = (Z2)? when n is even. O
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