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SUBMANIFOLDS IN A MANIFOLD
WITH GENERAL CONNECTIONS

Naoto ABE, Hiroakl NEMOTO and Senicui YAMAGUCHI

0. Introduction. The main purpose of this paper is to study sub-
manifold geometry in terms of O-derivative operator, which was defined
by N. Abe in [2]. An O-derivative operators is a first order differential
operator, from a vector bundle over a manifold to another vector bundle
over the manifold, whose properties are similar to those of a covariant
derivative. When these vector bundles are the tangent bundle of a man-
ifold, the operator is the covariant derivative of a general connection in
the sense of T. Otsuki. The notion of general connections was defined by
T. Otsuki in [10] as a generalization of usual ones. He defined the gen-
eral connections on the tangent tensor bundles of a manifold and defined
associating geometrical objects analogous to those of usual ones, for exam-
ple, their curvature and torsion forms [20]. In his papers [10]-[20], many
results about general connections were obtained. N. Abe defined general
connections on arbitrary vector bundles and studied some fundamental
properties in [1]. H. Nemoto [9] applied the theory to the normal bundle
of a submanifold and developed the submanifold geometry initiated by T.
Otsuki and C. -S. Houh [7], [19] and [22].

In §1, we will prepare notations used in this paper and define the O-
derivative operator and review some algebraic properties of the space of
these operators. In §2, the definitions and fundamental properties of the
curvature and torsion forms of O-derivative operators will be reviewed. In
83, we will study geometry of immersed submanifolds in a manifold with a
general connection. The second fundamental form, the shape operator and
the transversal connection will be defined and we will have fundamental
formulae on submanifold geometry. In §4, the case where the ambient
manifold have a metric will be treated. We will study totally geodesic
submanifolds and totally umbilical submanifolds in §5 and §6.

1. Preliminaries. We assume that all objects are smooth and all
vector bundles are real throughout this paper. Let M be an n-dimensional
manifold, T(M) its tangent bundle and C(M ) the ring of real-valued func-
tions on M. We will generally use letters V., W and these with superscript
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and prime to denote vector bundles over M. The fibre of a vector bundle
V at ¢ € M is denoted by V; and the dual bundle of V by V*. The
space of cross-sections of V is denoted by I'(V'), which has a canonical
C(M)-module structure. Let Hom(V,W) be the vector bundle of which
fibre Hom(V,W), at z is the vector space Hom(V,,W;) of linear map-
pings from V; to W;. Especially Hom(V,V) is denoted by End(V). We
note that Hom(V,W) can be naturally identified with the tensor product
W ® V*. The space of vector bundle homomorphisms from V to W is de-
noted by HOM(V,W). We denote zero homomorphism from V to W by
Oy w or simply 0. Especially HOM(V,V), the ring of endomorphisms on
V, is denoted by EN D(V). We denote the identity (resp. zero) endomor-
phism of V by Iy (resp. Oy or simply 0). We note thatb HOM (V,W) can
be naturally identified with the space I'( Hom(V,W)). For a non-negative
integer r, we denote HOM (A™(T(M)), W) by A"(M,W) or simply A"(W),
which consists of W-valued r-forms on M, and A"(M, M X R) by A"(M)
or simply A". We will use the same symbol to denote a vector bundle
homomorphism and the induced linear mapping on the cross-sections.

Definition. For Pe HOM(V,W), a bilinear mapping V : I'(T(M))
x['(V) 3 (X,s) = Vxs € (W) is called an O-derivative operator from
V to W with the principal homomorphism P, if V satisfies

Vixs= fVxs and Vxfs=(Xf)Ps+ fVxs

for each X € T(T(M)), s e I'(V) and f € C(M). Let O(V,W; P) be the
set of O-derivative operators from V to W with the principal homomor-
phism P. Put O(V,W) := U{O(V,W; P)|P € HOM(V,W)}. Especially
we denote O(V,V; P) by O(V; P) and O(V,V) by O(V). An element of
O(V'; P) is called the covariant derivative of a general connection, or simply
a general connection on V with the principal endomorphism P € EN D(V).

For special examples, we see that O(V,W;O0vw) = HOM(V,T(M)*®
W) = AY(Hom(V,W)) and O(V; Iy) is the set of covariant derivatives of
usual connections on V.

Definition. If X € T(T(M)), then we define a linear mapping Vx :
I'(V) > T(W)by Vxs:= Vxsfors € [(V). Wecall Vx the O-derivative
operator along X. Similarly if z € M and v € T(M )., then we can define
a linear mapping V, : (V) = W, by V,s:= (Vxs)(z) for s € I'(V) and
X € T(T(M)) such that X(z) = ».
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We see also that V,, or Vx uniquely determines V.

At first we consider addition in O(V, W) and multiplication (compo-
sition) by elements of HOM(W,W’) and HOM(V',V) as follows.

Definition. If Vi € O(V,W: P¥) (i = 1,2), then we define the sum
V!4 V? by

(VI 4+ V%) xs:= Vis+ Vs

fors € I'(V)and X € I(T(M)). f V€ O(V,W;P), L € HOM(W,W')
and R € HOM(V',V), then we define the products LV and VR by

(LV)xs:= L(Vxs)and (VR)xt := Vx(Rt)

for s € [(V), t € [(V') and X € T(T(M)).

Proposition 1.1([2]). V! + V?2 € O(V,W;P! + P?), LV ¢
O(V,W';LP) and VR € O(V',W;PR). The mappings HOM(W,W') x
O(V,W)— O(V,W") and O(V.W)x HOM(V',V)) — O(V', W) are bilin-
ear. Moreover, the set O(V,W) has a right EN D(V)- and left EN D(W)-
module structure with respect to these addition and multiplication (compo-
sttion).

Since (LV)R = L(VR), we denote (LV)R by LVR. We will de-
fine O-derivative operators on dual and tensor product bundles. If P €
HOM(V,W), then P* € HOM(W=,V*) is defined by (P*n)(s) := n(Ps)
for n € T(W*) and s € (V). Let V € O(V,W;P).

Definition. The dual V~ of V is defined by
(Vxn)(s) := X(n(Ps)) —n(Vxs)
for ne I(W*), X € I(T(M)) and s € I'(V).

We see that Vin € I'(V*), V* € O(W*,V*; P*) and the mapping
*:O(V,W) - O(W*,V~) is linear.

If Pt € HOM(V?,W?) (i = 1,2), then we define P1@P? ¢ HOM(V'®
V2 W! @ W?) by requiring (P! ® P?)(s; ® s2) = (Pls;) ® (P%sy) for
s; € (VY. Let Vi € O(VI, W PH (i = 1,2).

Definition. The tensor product V! ® V2 of V! and V? is defined
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by requiring
(VI ® V)x(s1® 52) = (Vixs1) ® (P?s2) + (P's1) ® (Vi 52)
for s; € (V) and X € T(T(M)).

We see that VI @ V2 € O(VI @ V2, W! @ W2, P! ® P?) and the map-
ping ® : O(V,W!) x O(V2,W?) — O(V! @ V2, W! ® W?) is bilinear.
When V & V' and W = W' are isomorphic vector bundles, O(V, W) and
O(V',W') are isomorphic as modules. Then we will denote the correspond-
ing O-derivative operators by the same symbol in a natural isomorphism,
for example, (VI @ V)@ V3 2 Vi@ (V2@ V3), W@ V* = Hom(V,W)
and V*® V* = (V ® V)". For a later section, we prepare

Proposition 1.2 ([2]). Let V € O(V,W;P). Under the canonical
isomorphism V*Q V* 2 (V V)" and W* @ W* = (W ® W)*, the cor-
responding V* @ V> = (VR V)* € O(W @ W)*, (V@ V)" (P ® P))
satisfies

(V" @ V*)xg)(s1,82) = X(9(Ps1,Ps2)) — g(Vxs1,Ps2) — g(Ps1,Vxsz)
for g e T(W @ W)*) and s; € T'(V).

Proposition 1.3 ([2]). Let'V € O(W,W'/ P) and V'eO(V',V;P").
Under the canonical isomorphism WQV™* & Hom(V,W) and W'®(V')* =

Hom(V',W’), the corresponding 'V @ (V')* € O(Hom(V,W), Hom(V’,
W'); 'PQ® (P')*) satisfies

(Ve (V)xC)t =' Vx((CP't) =" PC(Vt)
for C € T(Hom(V,W)) and t € T(V").
2. Curvature and torsion forms. At first we define the following

form which generalizes the difference of two covariant derivatives of usual

connections. Let V € O(V,W; P) and V' € O(V',V; P").

Definition If X € I'(T(M)), then a linear mapping S(V,V')x :
(V') — T(W) is defined by
S(V,Vxt := Vx(P't) - P(V'xt) for t € T(V').

We call §(V,V’) the difference form of the pair (V,V’).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/18
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Proposition 2.1 ([2]). S(V,V)=(V®(V'))*IycA}(Hom(V',W))
and the mapping S : O(V,W) x O(V',V) — AY(Hom(V',W)) is bilinear.
Moreover, for 'V € O(W, W' P), we have

S(LV, V") =LS(V,V') for L € HOM(W,W'),
S('V,RV')=S('VR,V') for R € HOM(V,W)
and S('V,VR)=S(V,V)R' for R'€ HOM(V'V).
Definition. If W = T(M), then s(V,V’) € I'(V™) is defined by
s(V, V)t :=tr(S(V, V1) = T2, (S(V, V) t) for teV,
where e, -, €y, is a base of T(M); and w?,---,w™ is the dual base. We call

$(V,V’) the contracting difference form of (V,V’). Especially we denote
s(V,V) by s(V).

Next we define the following auxiliary operator which can be used in
some formulae concerning curvature forms.

Definition. If X,Y € I'(T(M)), then alinear mapping (VAV')xy :
I'(V') - (W) is defined by

(VAV)xyt:= Vx(vlyt) - Vy(V"Xt) for te (V')
and denote (V[ ])X,y = V[X,Y] : I‘(V’) — I(W).

Now we define the curvature form of a triple as follows. Let 'V €
o(W,W','P).

Definition. If X,Y € I'(T(M)), then a linear mapping K('V,V,
Vxy : T(V')— (W) is defined by
K(V,V,V)xyt:=(VAVP)xyt - (VAPV)xyt

+(’PV A V’)X,yt — ('PV[ ]P’)X,yt for te F(V’).

We call K('V,V,V’) the curvature form of the triple ('V,V,V’). Espe-
cially we denote K(V,V,V) by K(V) for V€ O(V; P).

We get the following fundamental fact:

Proposition 2.2 ([2]). K('V,V,V') € A% (Hom(V',W')) and the
mapping K : O(W,W') x O(V,W) x O(V',V) — A%*(Hom(V',W')) is
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trilinear. Moreover, for V! € O(V!,W) and 'V! € O(WY,W'), we have

K(L'V,V.V') ='LK('V,V,V') for 'Le HOM(W' W),

K(VLLV,V)=K(V'L,V,V') for L € HOM(W,W1),

K('V,VL,RV)=K(V,VIR,V') for R € HOM(V,V!)
and K('V,V,V'R') =K('V,V,V)R' for R'e HOM(V',V').

Definition. If W' = T(M), then k('V,V,V’) € A}(V™) is defined
by

v

E('V,V,V)t:=tr(K('V,V,V') 4t for teV! and veT(M),.
We call £('V, V, V') the contracted curvature form of the triple ('V,V, V’).
Especially we denote £(V,V,V) by k(V). f W/ =V'=T(M) and g is a
pseudo-Riemannian metric on M, then x('V,V V') € C(M) is defined by

k('V,V, V') i= trg(k('V,V, V) = T, g(es, e )k('V,V, V'), e,

where eq,---, e, is an orthonormal base of T(M ),. Especially we denote
k(V,V,V) by &(V).

Remark. f V = V! = W = W/ and V = V' = 'V, then
K(V) = K('V,V,V’) coincides with the curvature form of the general
connection V € O(V), which was defined in [10,1]. If V/ = W' = T(M),
then k('V,V,V’) € AY(T(M)*) is a generalization of the Ricci curvature
and k('V,V,V’) is a generalization of the scalar curvature.

For a later section, we prepare some formulae in the following special
cases:

Proposition 2.3 ([2]).

K('V,V,V")

= 'V A S(V,V) if 'P=0,

—'VAVP' +'PYAV' = 'PY P if P =0,

= _5(V,V)A V' if P'=o,

='VAVP if 'P=0 and P =0,
—'PYAV if P=0 and P'=0,
=-'VAPV if 'P=0 and P =0,

=0 if 'P=0,P=0 and P =0.

We can generalize the torsion forms of usual connections on the tangent

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/18
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bundle to the case of O-derivative operators from T(M ) to another vector
bundle over M as follows. Let V € O(T(M),W; P).

Definition. For X, Y e I'(T(M)), T(V)xy € I'(W) is defined by
T(V)xy :=VxY - VyX - P([X,Y]).

We call T(V) the torsion form of V. If T(V) = 0, then V is said to be
torsion-free.

Remark. In [11], T. Otsuki defined the torsion form of a general
connection on the tangent bundle.

Proposition 2.4 ([2]). T(V) € A%*(W) and the mapping T :
O(T(M),W) — AYX(W) is linear. Moreover, we have T(LV) = LT(V)
for L € HOM(W, W").

Definition. If W = T(M), then t(V) € A! is defined by #(V), :=
tr(T(V)., ) forv € T(M)z. We call the 1-form ¢(V) the contracted torsion
form of V.

Let M be a manifold and f : M — M a mapping. If V is a vector
bundle over M, then we denote the induced bundle over M by f#V,
the bundle map by f : f#¥V — V and its restriction to the fibre by
fy for y € M. A linear mapping f# : [(V) — T(f#V) is defined by
(f#s)(y) := f;7(s(f(y))) for s € T(V) and y € M. For P € HOM(V, W),
f#P € HOM(f#V, f#W) is defined by requiring (f#P)f#s = f#(Ps)
for s € T(V). Let V € O(V,W; P). We make

Definition. The induced O-derivative operator f#V € O(f#V,
f#W; f#P) is defined by requiring (f#V),f#s = fy‘l(vfws) for each
seT(V),veT(M), and y€ M, where f. is the differential of the mapping
f.

The existence and uniqueness of f#V were proved in [2]. Now we
consider the forms S and K of the induced O-derivative operators. Gen-
erally, for vector bundle valued forms L € A"(M,V), we define f#1L ¢
AT(M, f#V) by

(f#z)y(vlv‘ v ) 1= fy_l(ff(y)(f*vla"' » favr))
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for v; € T(M), and y € M. Let V' and W' be vector bundles over M,
V' € O(V',V) and 'V € O(W,W’). Then we have

Proposition 2.5 ([2]).

S(f#V, V') = fA(S(V, V) in ANM, f¥Hom(V',W))
and
K(f#9, f#V, f#V) = ;2K (V,V,¥)) in A¥M, f#¥Hom(V' ,W")).

3. O-derivative operators in submanifold geometry. Let M be
an immersed submanifold of a manifold M and f : M — M the immersion.
Put T = f#¥T(M), T = T(M), I = Iz, I = I and let i € HOM(T,T)
be the inclusion mapping. A subbundle W will be called a transversal
bundle of M in Tif T = T @ W (direct sum). Let W be a transversal
bundle, p € HOM(T,T), ¢ € HOM(T,W) the projection operators and
j € HOM(W,T) the inclusion. Put J = Iir. Then we see that

pi=1, qi=0, pj=0 and ¢j = J.
We note that the decomposition of T in this section may have no relations
with a metric.

For V € O(T(M); P), that is, a covariant derivatives of general con-
nections, we will use the same notations P = f#P ¢ END(T) and
V = f#V € O(T;P) for simplicity. Proposition 2.5 assures us that this
convention on notations is also admissible in the study of the forms § and
K. Let V € O(T; P).

Definition. If Pi = iP, we say that (M,V) is a submanifold of
(M,V) with the extended second fundamental form

Bi= Vi-iV e O(T,T).

Choosing a transversal subbundle W of M in T, we call (M,V,W) a sub-
manifold with a transversal bundle in (M,V) if

pB = 0.
Moreover, if P(W) C W, then (M,V,W) is said to be adapted in (M, V).

Remark. In the case where V and V are usual torsion-free connec-
tions, an affine immersion (see [8], for example) is an adapted submanifold
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with a transversal bundle.

From Proposition 1.1, we have

Proposition 3.1. If (M,V,W) is a submanifold of (M,V), then
B =Vi-iVc AY(Hom(T,T)).

Let (M, V,W) be a submanifold in (M, V). Note that P(T) C T. For
P ¢ END(T), put

E:= qﬁl) F:= —pF]~ Q = qﬁ]’

then we have E = 0 € HOM(T, W), F € HOM(W,T), Q € END(W). For
¥V € O(T; P), put

B:=qVi, A:=—pVj, D:=4Vj.

Then, from Proposition 1.1, we have

Theorem 3.2 ([7,19,9,2]). If (M,V,W) is a submanifold with a
transversal bundle, then

V =pVie O(T; P), B = qB € AY(Hom(T,W)),
A€ O(W,T;F), D € O(W:Q)
and
Vi=iV4+B=iV+jB in OT,T), Vj=—iA+jD in OW.T).

We call D the transversal connection, B the second fundamental form
and A the shape operator of (M,V, W) in (M, V). The last two formulae
in the above theorem correspond to Gauss’ and Weingarten’s formulae in
usual submanifold geometry.

Corollary 3.3 ([9]). If(M.V,W) is adapted, then
F=0 and A€ A'(Hom(W,T)).
We denote Ax€ by A°X for X € I(T) and £ € T(W). Then we have
A% € END(T) for £ € T(W).

Definition. If (M,V,W) is adapted in (M, V), then the mean cur-
vature covector field u € I'(W~) is defined to be

pe8) = —1r(A) = TR w(A6)
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for £ € W, and © € M, where €1,---,e, is a base of T, and w!,---,w" is
the dual base.

We will study the forms S, K and T defined in §2. Proposition 2.1
and Theorem 3.2 imply

Theorem 3.4.

5(V), S(A,B) = —FB € A(End(T)),

$(B,V)=BP, $(D,B) = -QB € AY(Hom(T,W)),

S(D), S(B,A) = BF € AY(End(W)),

S(A,D), S(V,A) € A'(Hom(W,T))

and

pS(V)i = S(V) - S(A,B) = §(V) + FB,
qS(V)i = $(B,V)+ §(D,B)= BP — B,
9S(V)j = S(D) - §(B,A) = S(D) - BF,
pS(V)j = —S(A,D) — 5(V, A).

Moreover, from Corollary 3.3, we have

Corollary 3.5. If (M,V,W) is adapted, then
S(A,B)=0, S(B,V)=BP, S(D,B)= -QB,
S(B,A)=0, S(A,D)= AQ, S(V,A)=-PA

and
pS(V)i = §(V), ¢S(V)i = BP - B,
¢5(V)j = S(D), pS(V)j = -AQ + PA.

Proposition 2.2, 2.3 and Theorem 3.2 imply

Theorem 3.6.
K(V),K(A,B,V)=AANBP+ FBAV —~ FB} P,
K(A,D,B)= -S(A,D)A B, K(V,A,B)
= —S(V,A) A B € A*(End(T)),
K(B,V,V)= BAS(V), K(D,B,V)
=DABP+QBAV - QB P,
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K(D,D,B)= —-S(D)A B, K(B,A,B)

= —B A FB € A*(Hom(T,W)),
K(D),K(B,A,D)= BAS(A,D), K(B,V,A) = BAS(V,A),
K(D,B,A)= DABF+QBNA- QB[ |F € A*(End(W)),
K(A,D,D), K(V,A,D), K(V,V,A),
K(A,B,A)= ANBF + FBAA - FB[|F € A*(Hom(W,T))

and
pK (V)i =K(V)- K(A,B,V)- K(A,D,B) - K(V,A,B)
=K(V)- ANBP-FBAV + FB P
+ S(A,D)ANB + §(V,A)A B,
¢k (V)i =K(B,V,V)+ K(D,B,V)+ K(D,D,B) — K(B,A,B)
=BAS(V)+ DABP+QBAV
- QB P-S(D)AB+ BAFB,
¢k (V)j=K(D)~- K(B,A,D)- K(B,V,A) - K(D, B, A)
=K(D)—- BAS(A,D)— BAS(V,A)
- DABF -QBAA+ QB[ F,
pK(V)j=—- K(A.D,D)- K(V,A,D)- K(V,V,A)+ K(A, B, A)
=K(A,D,D) - K(V,A,D)- K(V,V,A4)
+ AABF + FBAA- FB,F.

The last four equations in this theorem correspond to the equations
of Gauss, Codazzi and Ricci respectively in usual submanifold geometry.
Moreover, from Corollary 3.3, we have

Corollary 3.7 ([2,9]). If(M,V,W) is adapted, then
K(A,B,V) = AABP, K(A,D.B)=-AQA B,
K(V.A,B) = PAANB, K(B,V,V)=BAS(V),
K(D,B,V)=DABP+QBAV - QB[ P,
K(D,D,B)=—S(D)A B, K(B,A,B) =0,
K(B,A,D) = BAAQ, K(B,V,A) = -BAPA,
K(D,B,A) =QBAA, K(A,D,D)= ANAS(D),
K(V,A, D)=V AAQ+PAAND - PA[Q,

Produced by The Berkeley Electronic Press, 1993

11



Mathematical Journal of Okayama University, Vol. 35[1993], Iss. 1, Art. 18

264 N. ABE, H. NEMOTO and S. YAMAGUCHI

K(V,V,A) =-S(V)ANA, K(A,B,A) =0

and

pK(V)i = K(V)—AANBP+ AQAB—-PAARB,

gK(V)i =BAS(V)+ DABP4+QBAV — QB 1P - S(V)AB,

gKk(V)j = K(D)-BAAQ+BAPA-QBA A4,

PE(V)j = ~AANS(V)-VAAQ - PAAND+ PA[jQ + 5(V) A A.

Hereafter in this paper, the letters X,Y, Z will always denote elements

of I'(T), and &, n those of T'(W).

Remark. Note that, by Proposition 1.3,
DR V*®V*: A (Hom(T,W)) - ANT* ® Hom(T,W))
operates such as
(D®V"®V")xB)yZ = DxBpyPZ - QBpyVxZ — QBy,yPZ.

Thus we have

(D®V*®V*)xB)yZ—-(PRV*®V*)yB)xZ

=(DABpP)xyZ +(Q@Bp AV)xyZ — QBpixy|PZ — QBr(v)y , PZ

= K(D.Bp,V)xyZ — QBr(v)x ,PZ,
where Bp € A'(Hom(T,W)) is defined by (Bp)x := Bpx.

From Proposition 2.4 and Theorem 3.2 we have the following results
on torsion forms.

Proposition 3.8. T(V) € A*(T), T(B) € AXT), T(B) € A%(W)
and
FAT(V)xy = T(Vi)xy
=iT(V)xy + T(B)xy
=iT(V)xy +JiT(B)xy
=iT(V)xy + j(BxY — By X).

Corollary 3.9. f#*T(V) = iT(V) if and only if B is symmetric,
that is, BxY = By X.

Corollary 3.10 ([9]). If V is torsion-free, then V is torsion-free
and B is symmetric.
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4, Submanifold geometry with metrics. At first we make

Definition. If V € O(V, W) satisfies (V®V)*g = 0 (see Proposition
1.2) for g € T((W ® W)*), then V is called a metric O-derivative operator
with respect to g. If g € T'((W ® W)*) is symmetric and non-degenerate
on each fibre of W, then g is called a metric on W.

From now on, we denote (V® V)" by V for V € O(V,W). For
C € HOM(V,W) and g € T((W ® W)*), we define gC € T((V ® V)*) by

(9C)(s1,2) := g(Cs1,Cs2) for 81,5, € T(V).

For C € HOM(V,W) and metrics g € [(W@W)*) and h e T(VQV')*),
we define *C € HOM (W, V) by requiring

h(!Cs,t) = g(s,Ct) for se (W), te (V).

Let M be an immersed submanifold of M and f : M — M be the

immersion. Let (M, V) be a submanifold of (M, V) and g be a metric on
T.

Definition. The extended mean curvature vector field H € I'(T) is
defined to be
H, := %t'rg—B_ = % ? ,9(e; e)Bee; for ze M,
where €1, ---, e, is an orthonormal base of T.

Let § be a metric on T(M). We use the same notation g for the
metric f#7 on the induced bundle T = f#T (). Moreover, we assume
that g = gi and the take the orthogonal complement T+ in T with respect
to g as the transversal bundle W and the orthogonal projections as p and
g. We call W = T the normal bundle of M.

Definition. If g = i and pB = 0, we say (M, V,g) is a submanifold
of (M,V,g) and the mean curvature vector field H € ['(W) is defined to
be H := qH.

Hereafter, in this section, we consider the case where (M,V,g) is a
submanifold of (M,V,g). Put A := g7, then we have § = gp + hq.

Theorem 4.1. If (M,V,g) is a submanifold of (M,V,5), then we
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have
(Vx9)i=Vxg, (Vx9)j = Axg+ Dxh
and

(Vx9)(iY,jn) = =X (9(PY,Fn)) + g(VxY, Fn)
+9(PY.Axn) — h(BxY,Qn).
Proof. Proposition 1.2 and Theorem 3.2 imply
(Vx)i)Y, Z) = X(G(PiY, PiZ)) - §(VxiY, PiZ) — g(PiY, VxiZ)
= X(g(iPY,iPZ)) - g(iVxY + jBxY,iPZ)
—g(iPY,iVxZ + jBxZ)
=X(g(PY,PZ))—g(VxY,PZ) - g(PY,Vx2Z)
=(Vxg)(Y, 2),
(Vx9)i)(&n) = X(g(Pj€, Pin)) — 9(Vxi€, Pin) — g(PiE, Vxjn)
= X(g(—iF¢, —iFn)) + X(g(5Q¢E, iQn)
- 9(—iAx& + jDx€, —iFn 4+ jQn)
- g(—iF+ jQ&,—iAxn+ jDxn)
= X(9(F&, Fn)) - 9(Ax& Fn) — g(FE, Axn)
+ X (h(Q&,Qn)) — h(Dx§&,Qn) — h(QE, Dxn)
=(Axg)(&,n) + (Dxh)(& n),
(Vx9)(iY.jn) = X(g(PiY,Pjn)) - g(VxiY,Pjn) — G(PiY,Vxjn)
= X(g(iPY,-iFn)) - g(iVxY + jBxY,—iFn+ jQn)
- g(iPY,—iAxn+ jDxn)
= — X(g9(PY,Fn)) + ¢(VxY, Fn)
+9(PY,Axn) — h(BxY,Qn).

Remark. For another proof, see [2].
Let V be a metric O-derivative operator with respect to g.

Corollary 4.2. If(M,V,g) is a submanifold of (M,V,g) and V is
metrical, then we have

Vxg=0, Dxh=—-Axg
and g(PY,Axn) — h(BxY,Qn) = X(g9(PY, Fn)) — ¢(VxY, Fn).
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Moreover, if (M,V,g) is an adapted submanifold of (M,V,7), then
we have

Vxg=0, Dxh=0
and g(PY,Axn) = h(BxY,Qn), that is, 'PAx =* BxQ.

The last formula in the above corollary corresponds to the well-known
one in usual Riemannian submanifold geometry.

Remark. In the case of an adapted submanifold, Corollary 4.2 was
partially obtained in [7] and [9].

For the mean curvature vector field H € I'(W), we have

Corollary 4.3. If (M,V,g) is an adapted submanifold of (M,V,7)
and V is metrical, then we have

h(H,QE) = —tr('PA).

Corollary 4.4. If (M,V,g) is an adapted ubmanifold of (M,V,7)
and V is torsion-free and metrical, then we have

g(PY,A*X) = g(PX,A%Y), thatis, 'PA¢ = (AS)P.

Remark. For the details of metric general connections, see [14], [3]
and [15], where they discussed the existence and uniqueness of metric
general connections.

5. Totally B-umbilical submanifolds. Let (M,V) be a sub-
manifold in (M,V) with the extended second fundamental form B. Put
b, 1= dim(Span({Byw|v,w € T;})) for z € M. If (M,V,W) is a submani-
fold with the transversal bundle W, then put b; := dim(Span({B,w|v,w €
T.})) for z € M.

Definition. If B = 0 at z € M, we say that (M, V) is B-geodesic
at z. If B = 0 over M, then (M, V) is said to be totally B-geodesic.

Proposition 5.1. If (M,V,W) is a submanifold with transversal
bundle W, then b, = by forx € M.

Proof. dim(Span({B,w|v,w € Tp})) = dim(jSpan({B,w

v, w €
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T:})) = dim(Span(j{B,w|v,w € T.})) = dim(Span({B,w|v,w €
T:})) = bs.

Since the subspace Span({B,w|v,w € T;}) at = € M is indepen-
dent of the choice of the transversal bundle W which satisfies V = pVi,
dim(Span({B,w|v,w € T,})) is also independent of the choice. For to-

tally B-geodesic submanifold, Theorem 3.4 and 3.6 imply the following
theorems:

Theorem 5.2. If (M,V,W) is totally B-geodesic, then
S(A,B)=0, §(B,V)=0, S(D,B)=0, S(B,A)=0
and
pS(V)i = §(V), ¢S(V)i=0, ¢S(V)j = S(D).

Theorem 5.3. If (M,V,W) is totally B-geodesic, then
K(A,B,V)=0, K(A,D,B)=0, K(V,A,B) =0,
K(B,V,V)=0, K(D,B,V)=0, K(D,D,B) =0,
K(B,A,B)=0, K(B,A,D)=0, K(B,V,A) =0,
K(D,B,A)=0, K(A,B,A)=0

and
pK(V)i = K(V), ¢Kk(V)i =0, ¢K(V)j = K(D),
pK(V)j = —*K(A,D,D) - K(V,A,D)- K(V,V,A).

Let g be a metric on T' and H the extended mean curvature vector
field. We make

Definition. Let (M,V) be a submanifold and V torsion free. We
say that a point z € M is B-umbilic point if there exists ¢ € T, such that

B,w = g(v,w)( forany v, w € T;.

If (M,V) is B-umbilic at every point, then (M, V) is said to be totally
B-umbilic in (M, V).

Proposition 5.4. If (M,V) is totally B-umbilical and V is torsion-
free, then V is torsion free and

Bxy = g(X,Y)F.
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From Theorem 3.4, 3.6 and Proposition 5.4, we have the following
theorems:

Theorem 5.5. If (M,V,W) is totally B-umbilical and V is torsion-
free, then
S(A,B)xY = - g(X,Y)FH, S(B,V)xY = g(X,PY)H,
S(D,B)xY= —g(X,Y)QH, S(B,A)x¢{ =g(X,F{)H,
and
pS(V)xiY= S(V)xY + g(X,Y)FH,
gS(V)xiY = g(X,PY)H - g(X,Y)QH,
¢S(V)xj€ = S(D)x& - 9(X,FE)H.

Corollary 5.6. If (M,V,W) is totally B-umbilical and ¥V is torsion-
free, then

s(A,B)YY = —g(FH,Y)
and

s(pV, Vi)Y = s(V)Y + g(FH,Y).

Theorem 5.7. If (M,V,W) is totally B-umbilical and V is torsion-
free, then
K(A,B,V)xyZ =(Xg(Y,PZ)-Yg(X,PZ)-g(Y,Vx Z)
+9(X,VyZ) - 9([X,Y],PZ))FH
+9(Y,PZ)AxH — ¢(X,PZ)Avy H,
K(A,D,B)xyZ = —g(Y,Z)5(A,D)xH + g(X,Z)S(A, D)y H,
K(V,A,B)xyZ = —g(Y,Z)S(V,A)xH + g(X,Z)S(V,A)y H,
K(B,V,V)xyZ =(9(X,5(V)yZ) - 9(Y,5(V)x 2))H,
K(D,B,V)xyZ=(Xg(Y,PZ)-Yg(X,PZ)-g(Y,VxZ)
+9(X,VyZ) - g([X.Y], PZ))QH
+9(Y,PZ)DxH — g(X,PZ)Dy H,
K(D,D.B)xyZ = -4g(Y,Z)S(D)xH + g(X,Z)S(D)y H,
K(B,A,B)xyZ =(—9(Y,2)g(X,FH) + g(X,Z)g(Y,FH))H.
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K(B,A,D)xy€& =(9(X,S(A. D)y€) - g(Y,5(A, D)x€))H,
K(B,V,A)xy€¢ =(g(X,5(V,A)y€) - g(Y,5(V,A)x&))H,
K(D,B, A)xy€ =(Xg(Y,F€) - Yg(X,Ft) - g(¥, Ax€)
+9(X,Ax€) - 9([X,Y], FE))QH
+g(Y,F§)Dx H — g(X,F¢)Dy H,
K(A,B,A)xyt =(Xg(Y,F€&)-Yg(X,F€) — g(Y,AxE)
+9(X, Ay &) — g([X, Y], F€))FH
+9(Y,F§)AxH — g(X,F§)Ay H

and

pK(VxyiZ=K(V)xyZ - (Xg(Y,PZ)-Yg(X,PZ)
-9(Y,Vx2Z)+9(X,VyZ) - g([X,Y],PZ))FH
- g(Y,PZ)AxH + g(X,PZ)Ay H
+9(Y,Z)(S(A,V)xH + S(V,A)x H)
- 9(X,Z)(S(A,V)yH + S(V,A)y H),
gK(V)xyiZ=(9(X,5(V)vZ) - g(Y,S(V)x Z)
-9(Y,Z2)g(X,FH)+ g(X,Z)g(Y,FH))H
+(Xg(Y,PZ)-Yg(X,PZ)+ g(Y,VxZ)
-9(X,VyZ)-g([X,Y),PZ))QH
+9(Y,PZ)\Dx H — g(X,PZ)Dy H
~9(Y,Z)S(D)xH +9(X,Z)S(D)y H,
gK(V)xyj€ = K(D)xy€ - (9(X,5(4,D)y§) — g(Y, S(A, D)x§)
+9(X,85(V,A)y€) —g(Y,S(V,A)x &) H
— (X(g(Y,F&) - Yg(X, F¢) — g(Y, Ax¢)
+9(X, AvE) — 9([X, Y], F€))QH
- g(Y,F&)DxH + g(X,F€)Dy H,
pK(V)xyjé =-K(A,D,D)xy&~ K(V,A,D)xyé
- K(V,V,A)xy&+ (Xg(Y, F§) - Yg(X, F¢)
—9(Y,Ax&) + 9(X, Ay€) - g([X, Y], FE))FH
+9(Y,F§)Ax H — g(X, F§)Ay H.

Corollary 5.8. If (M,V,W) is adapted totally B-umbilical and v
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is torsion free, then

k(A,B,V)yZ =ng(Y,PZ)u(H) — g(AyH,PZ),
k(A,D,B)yZ = — g(Y,Z)s(A,D)H + g(S(A,D)y H, Z),
k(V,A,B)yZ = — g(Y,Z)s(V,A)H + g(S(V,A)y H, Z),
k(A,B,A)y§ =0

and

k(pV,V,Vi)yZ=k(V)yZ — ng(Y,PZ)u(H) + g(AyH,PZ)

+ g(Y,Z)(s(A,V)H + s(V, A)H)

~- 9(S(A,V)yH+ S(V,A)yH,2Z),
k(pV,V,Vi)y€ = — k(A,D,D)y€ — k(V,A,D)y€ — k(V,V, A)y¢,
k(pV,V,Vi) = «(V)—nu(H)trP + tr(*PAH)

+(n—1)(s(A,V)H + s(V,A)H).

Let g be a metric on M and (M, V,g) be a submanifold of (M,V, 7).
Corollary 4.2 implies

Proposition 5.9. If (M,V,g) is adapted totally B-umbilical and V

is torsion-free and metrical, then we have

tPASX = h(H,Q6)X.

6. Totally A-umbilical submanifolds. Let (M,V,W) be an
adapted submanifold with the transversal bundle W in (M,V). We make

Definition. If (M,V,W) is adapted and A%v = p(€)v (resp. A%v =
0 ) for any v € Ty, £ € W;, we say that (M,V,W) is A-umbilical (resp.
A-geodesic) at z. If (M,V,W)is A-umbilical (resp. A-geodesic) at every
point, then (M,V,W) is said to be totally A-umbilical (resp. totally A-
geodesic) in (M, V).

For a totally A-umbilical submanifold, Proposition 2.3, Corollaries 3.5
and 3.7 imply the following theorems:

Theorem 6.1. If (M,V,W) is totally A-umbilical, then
S(A,D)x€ = AxQ€ = W(QEX, S(V,A)x§ = —PAx¢§ = —p()PX
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and

pS(V)xj€ = —p(QE)X + u(§)PX.

Corollary 6.2. If (M,V,W) is totally A—umbilical, then
s(4, D)E = nu(QE), (V. A)xE = —p(£)trP
and

s(pV, Vi€ = —np(QE) + p(E)trP.

Theorem 6.3. If (M,V,W) is totally A-umbilical, then
K(A,B,V)xyZ=(AANBP)xyZ = u(ByPZ)X — p(BxPZ)Y,
K(A,D,B)xyZ=—-(AQAB)xyZ = ~u(@ByZ)X + p(QBx 2)Y,
K(V,A,B)xyZ=(PAAB)xyZ = w(ByZ)PX — p(BxZ)PY,
E(B,A,D)xy€ = (B A AQ)xvE = n(QET(B)xy,
K(B,V,A)xy€§ = —(BAPA)xy&= -p(&)T(BP)xy,

K(D,B, A)xy€ = (QB A A)xyé = p(E)QT(B)xy,
K(A,D,D)x y€ = (AA S(D))x.v€ = u(S(D) €)X — u(S(D)x£)Y,
K(V.4,D)xx€ = (Dku)()PY - (Dym)(€)PX + p(QET(V)x.v
K(V,V,A)xy€& = —u()(T(VP)xy — PT(V)xy),

K(A,B,A) =0

and

pK(V)xyiZ= K(V)xyZ — p(By PZ)X + w(Bx PZ)Y
+u(QByZ)X — p(QBx2)Y
— w(ByZ)PX + u(Bx Z)PY,

gK(V)xyj€ = K(D)x y€ — m(QE)T(B)x,y
+ wé)NT(BP)xy — QT(B)xy),

pE(V)xyié= — p(S(D)y &)X + u(S(D)x €)Y — (Dxu)é)PY
+ (DY) PX - p(QOT(V)xy
+ p(é)T(VP)xy — PT(V)xy).

For the contracted curvature form, we have
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Corollary 6.4. If (M,V,W) is totally A-umbilical, then
KA, B,V)y Z = (n — 1)u(By PZ),
k(A,D,B)yZ= - (n-1)u(QByZ),
k(V,A,B)y Z = u(By Z)trP — u(Bpy Z),
k(A,D,D)y¢ = (n - 1)u(S(D)y§),
k(V,A,D)y€ = (Dpyu)(€) — (Dyp)(E)irP + p(QE)HV)y,
k(V,V,A)y€ = — p(§)(t(VP)y — t(PV)y),
k(A,B,A) =0
and
k(pV,V,Vi)yZ= k(V)yZ — (n - 1)(u(By PZ) — p(Q By 2))
— u(By Z)trP + u(Bpy Z),
k(pV,V,Vi)yE= —(n = Du(S(D)y€) — (Dpyp)(€) + (DY p)(é)trP
— w(QE(V)y + u(E)(H(VP)y - t(PV)y).

Corollary 6.5. If(M,V,W) is totally A-umbilical and ¥V is torsion-

free, then
K(B,A,D)xy&=0, K(D,B,A)xy&=0,
K(V,A,D)xy&=(Dxu)€)PY — (DY p)(§)PX,
K(V,V,A)xyé= — wT(VP)xy

and

aK(V)xyjé= K(D)x,yé+ mé)T(BP)xy,
PE(V)xyjé= — p(S(D)y &)X + u(S(D)x €)Y — (Dxu)()PY
+ (Dyp)(E)PX + w(&)T(VP)xy.
Note that Corollary 3.10 implies T(VP) = T(BP) = 0 if VP is

torsion-free. Let g be a metric on M. Corollary 6.4 implies
Corollary 6.6. If (M,V,W) is totally A-umbilical, then

K(pV,¥,Ti) = £(V) — (n — 1)(try(u(BP)) - trg(u(QB)))
— try(u(B))trP + try(u( Bp)).

Let § be a metric on M and (M, V,g) be an adapted submanifold of
(M,V,5). We define u= € T(W) by requiring g(u*,€) = u(£). For the
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mean curvature vector field H € T'(W), Corollary 4.2 implies

Corollary 6.7. If(M,V,g) is totally A-umbilical and V is metrical,
then we have

'‘QBxY = g(PY,X)u* and 'QH = %u"trP.
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