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Sugawara: On Families of Continuous Vector Fields Over Spheres

ON FAMILIES OF CONTINUOUS VECTOR FIELDS
OVER SPHERES

MasaHirRO SUGAWARA

It is well known that®, for #=3 (mod 4), the sphere S" admits
a set of three continuous vector fields independent at each point, i.e.,
a 3-field. G. W. Whitehead [3] has proved that, for » = 3 (mod 8),
S* does not admit a 4-field, but his proof assumes the assertion of
Pontrjagin {6] that #;(S?®) =0. But it was proved independently by
Pontrjagin [7] and G. W. Whitehead [4] that »(S% is cyclic of order
two.

In this note we will prove that the result of G. W. Whitehead
is true.

1. Let R,,, be the group of rotations of (# + 1)-dimensional
Euclidean space E**' and S” the unit sphere of E*“*. Then R, is
the bundle space over S* with group and fibre R,. let 7,,,:S* ' >R,
be the characteristic map® of its normal form®. The next lemma
is known.

Lemma 19. The following two properties of S™ are equivalent:
(1) T,.1 s homotopic in R, to a map of S*~' into R,., and (i1) S" admits
a continuous (n — k)-field.

Let Sp,... be the symplectic group operating on the space of
m + 1 quaternion variables (g,, -+---- ,q.). Then Sp,., is the bundle
space over S'* with group Sp,., and let T,.,:S"™*'— Sp, be the
characteristic map of its normal form. It is known that® 7,, is
represented by the equation

(l) Twlrf-t-l(x} = ” 33 - 2q{(1 + Q-.u)_ij “ ] l.»j = 0’ 1’ """ s m — 1 >
where x = (gy, -+ v @)y 3,1 g 1*=1 and the real part of ¢, is O
and ¢} is the Kronecker 4. It holds the following lemma concerning
T and T".

1) Cf. Reference [1], p. 142, 27.10. Theorem.
2) Cf. [1), pp.96 -97, 18.1.

3) Cf. [1], p. 141, 27.6. Theorem.

4) Cf. [1], p.130, 24.11.
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Lemma 29, 7,,,,:S8"™"" » R, 1S homolopic in R,,.., to T,,,:
S-lm+:’. — Sp‘m .

Let x4, = (g, =<+ , 4.) € S™** be the point such that g, = 0 for
i<m-1,4,,=1and ¢q, =0, and p”:Sp, — S*™ ! the bundle projec-
tion defined by p(s) = 5(Xi.-1), S€Sp,,. Then we have the theorem:

Theorem 1. If m is even, p" Ty, : S*** — S'™! {s essential and
homotopic to (dm — 5)-hold suspension® of a map of S° on S* with odd
Hopf invariant®.

Proof. Let (7,, -+, 7,_) € S™ ! be the coordinates of p" T,,.(x),
then, from (1), p” T,/., is given by the equations

( 2) 7, = —'2(1,(1 + qﬂl) _ZQm—'l ’ i= 0, 1» """ »y m— 2:
Tl = 1 - ZQ;H-—I(]- + Q:;I)_?qm—l;

where 3™ ,¢,5; = 1 and the real part of ¢, is 0. G.W. Whitehead"”
proved that the map given by (2) has the property that it is homo-
topic to the (4m — 5)-hold suspension of a map of S* on S* with odd
Hopf invariant. Hence the theorem holds.

2. We obtain the theorem concerning to the property of the
boundary operation ¢ of homotopy sequence.

Theorem 2. If # =0 (mod 8) and == 0, and consider the composi-
tion of homomorphism and isomorphism

n,z—l;:;(wafi ’ er) _i"’" "n-ﬂ(Rn’ R —l) —Pj&_’ 7‘71+2(S7‘ _1)’

where py is the induced isomorphism of the projection p. (R,, R,_,) - S*™.
Then the element of P, 0(n, . (R,s., R))C 7, ,.(S"Y) is represented by a
map of S*** into S*' which is the (n — 5)-hold suspension of a map
of S7 into §' with even Hopf invariant.

To prove this theorem, we use three lemmas. Let &, be the
identity of R,/R, and z},, be the natural projection of R,/R.., into
R,/R,_,. In addition, let I" be the z-cube and, I” its boundary, then
" is homeomorphic with S"-%

Lemma 3°. If n=0 (mod 8) and ==0, there is a map oF : (I"**,

1) Cf. [1], p.128, 24.5. Corollary.

2) Cf. [1], pp. 111 -112, 21.3.

3) Cf [1), p. 123, 21.6.

4) See the proof of Lemma 1 of [3]. i

5) Lemmas 3 and 5 are proved by G. W. Whitehead, see |3], Lemmas 2 and 3.
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_'[n+3) —_ (RM_};/R“_“ &) such that 7;;”*'13 % . ([n+::, jn+:;) - (R7!+:;/R:l+.'!’ £) =
(S™*, x,) is essential.

Lemma 4. Under the same assumplion for n, there is a map ¢f :
(I3, Iy = (Ryyo[ Ry, &) such that a3ty ¥ (1'°, 1) — (R, R, .,
&) = (S**, x,) is essential.

Lemma 5°. Under the same assumption for n, if ¢, maps (I'**,
™) into (Ryu/R,-., R.[R._) and we consider the map l I js de-
fined on S*™**, then the last map is homolopic to the (n — 5)-hold sus-
pension of a map of S* on S* with even Hopf invariant.

Proof of Lemma 4. It is easy to see that R./R,., can be con-
sidered as the set of all # x p matrices A such that A’A = I, the
P x p identity matrix. Let §™** be represented by coordinates (x,,
Xy, v, %,), Wwhere m = n/8, ¥, is a quaternion and x,, ------ , X,, are
Cayley numbers such that 37, | x; = 1. The matrices of the linear
transformations y — xy and y — yx are denoted by L(x) and R(x)
respectively for a quaternion, and L,(x) and Ry(x) for a Cayley
number. If x,=2=0, let fi(x) be the 3 x3 matrix obtained from
L{x,) R(%,) | x, | by deleting the first row and the first column; while
%, = 0, fo(x) be the 3 x 3 matrix of zeros. For i=1, ...... ,ym—1, let
fi{x) be the 8 x 3 matrix formed from L,(x;) by deleting the last five
columns. If x, =0, let f,(x) be the 7 x 3 matrix of zeros; while if
¥, =0, f.(x) be the 7 x 3 matrix obtained from L,(x,)R.(%,) | ¥, |
by deleting the first row and the first four and the last columns.
Let f be the map defined by f'(x) = (fi(x), fi(x), - , fi(x)), then
f(x) is a (# + 2) x 3 matrix and it is easy to see that f’'(x)f(x) = I,
the 3 x 3 identity matrix. Hence f maps S'** into R,../R.., and

fano,-..-. , 0). = (L, 0, .- ,0)0. Let g maps I"** on S§"** with degree
1 so that g(I"*) = (1,0, ---- ,0), and let ¢} = fg. Clearly ¢¥(I"*)
=¢&,.

To prove the last assertion, we shall show that %2 = =}* f:S"**
— S§7*! is essential. The map /% is given in real coordinates by

i) = (i+yi—9 -3y, }
h(x) = 233, +y3)/ 1y, where |y |0,
(x) = 2033, — 351y, [
h(x) = 0, i=1,23, where |y =0,

1) See the footnote 5) of p.50.
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(3) }Z‘-(x) = Yii1>» 7 = 4’ 5, eneeee , 8m — 5,
kxm-3+j(x) = 2(2_“.12;, - lej+3)/ !Z ! H j = 1; 2’ 3’
hsn-y(x) = [2i + 28 — jﬁ @+ 2501121, where |z| =0,
hSm—H-J(x) = 2(zj+.‘;z:, + zlzj+l)/ Jl Zl ’ j = 1: 29 3:
hix) =0, i=8m—4, - ,8m+2, where |z]=0;

a
where %y =3 + 3 + 37 + 38 |y ]| = G, %= Sc1Vsi-1e0ba
- - o -—17 -
E=2,,m-1), x, =352, and |z| = (>%..2)%. This map
is a composition of two maps A®: S%+3 o G+t defined by

5y = i+ yi—2i—3/1y1,

KXy = 2000y, + 099/ 131, [ where |y | =0,
(4) BP(3) = 233, =330 131,
KP(y) = 0, i=1,2,3, where |y | =0,
() = Y, i=4,5 - »8m +3;
and A®; S+ 5 S+l defined by
K2(y) = ¥, i=1,2 -, 8m—5,
/1§?,3-;+j(y) = 222 — 2,255 [ I 4 I » 7=12,3,
(5)  H.(») = [22+ 2 - ?i‘,'(zi + 201 1 z1, where |[z| =0,
k.‘é.;)n)—l-;j(y) = 2(2_;.;.525, + lej,,l)/ | Z, » j = 1, 2. 3,
Py =0, i=8m—4, - ,8m+2, where jz|=0.

‘The map A% is the 8m-hold suspension of the map of S* on §* ob-
tained by setting ¥, =0 for 7 = 4,5, «----- ,8m + 3 in (4), and the last
map is the Hopf map” H:S* > S% Hence A" ~ E**H. The map
7® is the (8m — 5)-hold suspension of the map of S* on S° obtained
by setting y,=0 for /=1, 2, ------ ,8m —5 in (5), and this map is
-essential®, and so the 4-hold suspension of the Hopf map H. Hence
h» ~ EH  Thus b ~ (E*"H)-(E*H) ~ E*'(H-EH). As H- EH
represents a non zero element of n,(S)® and E:=z,,(S*) — 7,.4(S*)
is the isomorphism onto®, % is essential. Thus the proof of Lemma
4 is complete.

1) Ci. [1], p.126, 24.3, equation (9).
2) See[2], p. 140, equation (8).
© 3) See[l] p.113,21.7.
4) Cf. [7]or[4]for k=2, [5] for k =3 and [8] for 2> 3.
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Proof of Theorem 2. Since *a ,:n (R, /R, ., R, ,|R,.) — a(R,[
R,_)) is an isomorphism onto, we shall show that an element of the
image of the map 9:7n,,,(Ross/Rosis RIR,\) & 7,0o(R,[R,_)) = 7,.,.(5"7")
is represented by a map of S*** into S™' being the (n — 5)-hold suspen-
sion of @ map of S* into S* with even Hopf invariant.

Let ¢, be a map of (J**%, I**) into (R,.,/R..., R,/R,_)). We
assert that there exists a map &,:(I"*, I***) » (R,../R..., R,/ R._})
such that ¢, | I**5 = ¢, | I**s. If ai*3¢, is inessential, let &: (I™** x I,
I x Iy - (§**, x,) be a homotopy of =3¢, into a point. Since
235 Rysy[ Ryi = Ryus[R,y: s a pundle projection, there exists a cover-
ing homotopy® Z* : (I*** x I I'** x Iy > (R,sy/R,,, R,/R, ) of ¢
such that z}**h* = h and h*(y, ) = é(y) for (y, 1) € I3 % I Let
o, =% | (" x 1, 3 x 1), then ¢, maps (J**%, I**9 into (R Ry
R,/R,_ l) and ¢, | I = ¢, i Jers, If ni g, is essential, let ¢f be the
map of Lemma 3. Since both a}*'¢, and =}''¢# are essential, they
represent the same element of =z,,,(S**%). As *ai% :7,,,(Rus/R, 1,
R.../R, ) — =n,,,(S™) is an isomorphism, ¢, and ¢f represent the same
element of =,,,(R,.;/R.-1s Ruse/R,.)), hence ¢, | I+ is homotopic in
Ross/R,.. to ¢ | ["**=¢,. By this homotopy, we obtain the map
&2 (I3, T+t (Ros:/Ruy, R,[R, ) such that ¢, | I = ¢, ! Ires,

For this ¢,, there is ¢ map ¢,: (I"*5, I"*%) - (R,../R._,, R,[R,_)
such that ¢, | I = ¢, | I*+s, If ng*}¢, is inessential, we can construct
¢, by the analoguous process of the ﬁrst case of the above. If =I%¢,
is essential, we can also construct ¢, by Lemma 4 and the analoguous
process of the second case of the above.

The last map ¢. maps (I**%, I*** into (R,.,/R..., R./R,_,), and
s0, by Lemma 5, 4, | I3, considered as defined on S**:, is homotopic
to the (n — 5)-hold suspension of a map of S on S* with even Hopf
invariant. By the construction, ¢, | **' = ¢, | J**5, and hence g, | ™+
has the same property. This completes the proof of Theorem 2.

3. Here we have the principal result.

Theorem 3. If =3 (mod 8), S* does not admit a continuous
4-field.,

By Lemma 1, to prove this theorem, it is sufficient to prove

Theorem 4. If =0 (mod 8) and ==0, then the characteristic
map T,..:S"** — R,., is not homotopic to a maep of S*** into R, _,.

1) Cf. [1], p.50, 11.3. Theorem.
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Proof. Consider the diagram

7
xn+2(R.-f) — ‘T.H-?.(R,.i-:;)

A k,
Iy o

TE,H;;(R,,...;;, Rn) 0 - T[ni-‘.!(Rn! Rn-l) Py

—p 7!,,+.~.(R,1+;; ’ Rn—l)l

where i, j«, k. and m, are the induced homomorphisms of the in-
clusion maps 7, j, 2 and m respectively, and the lower line is from
the homotopy sequence of the triple (R,.,, R,., B,.).

Let ¢ = #/4 so that ¢ is even. By Lemma 2, T,,; is homotopic
to T,,:S*** -~ Sp,. Since Sp,cR,, T,,, represents an element a of
7,..(R,) such that i,« is represented by 7,.,. As the composition.

S+ 7“'+__._>1 Sp“ ——)l R,, "'] - (4R',J, Rq—l) L; S"—l)

where ! is the inclusion map and p is the projection, is just the map
' T.i, p'T,., represents the element p.j.a. As g is even, Theorem
1 implies that »” 7T,[, is the (# — 5)-hold suspension of the map of S’
on S* with odd Hopf invariant. Hence, by Theorem 2, p,j.« is not
contained in p,8(n,,(R..., R)), and so j.a is not contained in
(n, (R, R,)). Exactness of homotopy sequence implies that the
kernel of m, does not contain j,a, and so m,j,a=0. From mj = ki,
it follows that Ay i a Z=0. Therefore 27,., represents a non-zero
element of =,.,(R,.,, R,_,). This is equivalent to the desired conclu-
sion. The proof of Theorem 4 is completed.

4. For a field of tangent hyperplanes of S* it is known that",
for 2k < n, S™ admits a continuous field of tangent k-planes if and
only if it admits a continuous k-field. Theorem 3 implies immediately

Theorem 5. If n = 3 (mod 8), the n-sphere does not admit a con-
tinuons field of k-planes for 4 L k< n — 4.
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