Mathematical Journal of Okayama University

Volume 2, Issue 1

2008 October 1952

Article 6

On Families of Continuous Vector Fields Over Spheres

Masahiro Sugawara*

Copyright ©2008 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

ON FAMILIES OF CONTINUOUS VECTOR FIELDS OVER SPHERES

MASAHIRO SUGAWARA

It is well known that¹⁾, for $n \equiv 3 \pmod{4}$, the sphere S^n admits a set of three continuous vector fields independent at each point, i.e., a 3-field. G. W. Whitehead [3] has proved that, for $n \equiv 3 \pmod{8}$, S^n does not admit a 4-field, but his proof assumes the assertion of Pontrjagin [6] that $\pi_5(S^3) = 0$. But it was proved independently by Pontrjagin [7] and G. W. Whitehead [4] that $\pi_5(S^n)$ is cyclic of order two.

In this note we will prove that the result of G. W. Whitehead is true.

1. Let R_{n+1} be the group of rotations of (n + 1)-dimensional Euclidean space E^{n+1} and S^n the unit sphere of E^{n+1} . Then R_{n+1} is the bundle space over S^n with group and fibre R_n . Let $T_{n+1}: S^{n-1} \to R_n$ be the characteristic map²) of its normal form². The next lemma is known.

Lemma 1³⁰. The following two properties of S^n are equivalent: (i) T_{n+1} is homotopic in R_n to a map of S^{n-1} into R_k , and (ii) S^n admits a continuous (n - k)-field.

Let Sp_{m+1} be the symplectic group operating on the space of m + 1 quaternion variables (q_0, \dots, q_m) . Then Sp_{m+1} is the bundle space over S^{4m+3} with group Sp_m , and let $T''_{m+1}: S^{4m+2} \to Sp_m$ be the characteristic map of its normal form. It is known that T''_{m+1} is represented by the equation

$$(1) T''_{m+1}(x) = \| \delta_j^i - 2q_i(1+q_m)^{-2}\bar{q}_j \|, \quad i,j=0,1,\dots,m-1;$$

where $x = (q_0, \dots, q_m)$, $\sum_{i=0}^{m} |q_i|^2 = 1$ and the real part of q_m is 0 and δ_j^i is the Kronecker δ . It holds the following lemma concerning T and T''.

¹⁾ Cf. Reference [1], p. 142, 27.10. Theorem.

²⁾ Cf. [1], pp. 96 - 97, 18.1.

³⁾ Cf. [1], p. 141, 27.6. Theorem.

⁴⁾ Cf. [1], p. 130, 24.11.

MASAILIRU SUGAWARA

Lemma 2¹). $T_{4m+4}: S^{4m+2} \rightarrow R_{4m+3}$ is homotopic in R_{4m+3} to $T''_{m+1}:$ $S^{4m+2} \rightarrow Sp_m$.

Let $x_{4m-1} = (q_0, \dots, q_m) \in S^{4m+2}$ be the point such that $q_i = 0$ for i < m-1, $q_{m-1} = 1$ and $q_m = 0$, and $p'': Sp_m \to S^{4m-1}$ the bundle projection defined by $p''(s) = s(x_{4m-1}), s \in Sp_m$. Then we have the theorem:

Theorem 1. If m is even, $p'' T''_{m+1}: S^{4m+2} \rightarrow S^{4m-1}$ is essential and homotopic to (4m - 5)-hold suspension²) of a map of S⁷ on S⁴ with odd Hopf invariant³⁾.

Proof. Let $(r_0, \dots, r_{m-1}) \in S^{m-1}$ be the coordinates of $p'' T''_{m+1}(x)$, then, from (1), $p'' T''_{m+1}$ is given by the equations

where $\sum_{i=1}^{m} q_i \bar{q}_i = 1$ and the real part of q_m is 0. G. W. Whitehead⁴ proved that the map given by (2) has the property that it is homotopic to the (4m - 5)-hold suspension of a map of S^7 on S^4 with odd Hopf invariant. Hence the theorem holds.

2. We obtain the theorem concerning to the property of the boundary operation ∂ of homotopy sequence.

Theorem 2. If $n \equiv 0 \pmod{8}$ and ± 0 , and consider the composition of homomorphism and isomorphism

$$\pi_{n+3}(R_{n+3}, R_n) \xrightarrow{\partial} \pi_{n+2}(R_n, R_{n-1}) \xrightarrow{\not p_*} \pi_{n+2}(S^{n-1}),$$

where p_* is the induced isomorphism of the projection $p:(R_n, R_{n-1}) \to S^{n-1}$. Then the element of $p_{\#} \partial(\pi_{n+3}(R_{n+3}, R_n)) \subset \pi_{n+2}(S^{n-1})$ is represented by a map of S^{n+2} into S^{n-1} which is the (n-5)-hold suspension of a map of S^{\dagger} into S^{4} with even Hopf invariant.

To prove this theorem, we use three lemmas. Let ξ_0 be the identity of R_n/R_p and $\pi_{p,q}^n$ be the natural projection of R_n/R_{n-q} into R_n/R_{n-p} . In addition, let I^n be the *n*-cube and I^n its boundary, then I^n is homeomorphic with S^{n-1} .

Lemma 3⁵. If $n \equiv 0 \pmod{8}$ and $\neq 0$, there is a map $\phi_0^* : (I^{n+3}, I)$

-50

¹⁾ Cf. [1], p. 128, 24.5. Corollary.

 ²⁾ Cf. [1], pp. 111 - 112, 21.3.
 3) Cf [1], p. 123, 21.6.

⁴⁾ See the proof of Lemma 1 of [3].

⁵⁾ Lemmas 3 and 5 are proved by G. W. Whitehead, see [3], Lemmas 2 and 3.

51

 $I^{n+3} \to (R_{n+3}/R_{n-1}, \xi_0)$ such that $\pi_{i,1}^{n+3} \phi_0^* : (I^{n+3}, I^{n+3}) \to (R_{n+3}/R_{n+2}, \xi_0) \cong (S^{n+2}, x_0)$ is essential.

Lemma 4. Under the same assumption for n, there is a map ϕ_1^* : $(I^{n+3}, \dot{I}^{n+3}) \rightarrow (R_{n+2}/R_{n-1}, \xi_0)$ such that $\pi_{3,1}^{n+2} \phi_1^* (I^{n+3}, \dot{I}^{n+3}) \rightarrow (R_{n+2}/R_{n+1}, \xi_0) \cong (S^{n+1}, x_0)$ is essential.

Lemma 5¹⁾. Under the same assumption for n, if ϕ_2 maps (I^{n+3}, I^{n+3}) into $(R_{n+1}/R_{n-1}, R_n/R_{n-1})$ and we consider the map $\phi_2 \mid I^{n+3}$ is defined on S^{n+2} , then the last map is homotopic to the (n-5)-hold suspension of a map of S^7 on S^4 with even Hopf invariant.

Proof of Lemma 4. It is easy to see that $R_{\mu}/R_{\mu-\mu}$ can be considered as the set of all $n \times p$ matrices A such that A'A = I, the $p \times p$ identity matrix. Let S^{n+3} be represented by coordinates (x_0, x_0) x_1, \dots, x_m , where m = n/8, x_0 is a quaternion and x_1, \dots, x_m are Cayley numbers such that $\sum_{i=0}^{m} |x_i|^2 = 1$. The matrices of the linear transformations $y \rightarrow xy$ and $y \rightarrow yx$ are denoted by L(x) and R(x)respectively for a quaternion, and $L_1(x)$ and $R_1(x)$ for a Cayley number. If $x_0 \neq 0$, let $f_0(x)$ be the 3×3 matrix obtained from $L(x_0) R(\bar{x}_0) \mid x_0 \mid^{-1}$ by deleting the first row and the first column; while $x_0 = 0$, $f_0(x)$ be the 3×3 matrix of zeros. For $i = 1, \dots, m-1$, let $f_i(x)$ be the 8×3 matrix formed from $L_i(x_i)$ by deleting the last five columns. If $x_m = 0$, let $f_m(x)$ be the 7×3 matrix of zeros; while if $x_m \neq 0$, $f_m(x)$ be the 7 × 3 matrix obtained from $L_1(x_m) R_1(\vec{x}_m) \mid x_m \mid^{-1}$ by deleting the first row and the first four and the last columns. Let f be the map defined by $f'(x) = (f'_0(x), f'_1(x), \dots, f'_m(x))$, then f(x) is a $(n+2) \times 3$ matrix and it is easy to see that f'(x)f(x) = I, the 3×3 identity matrix. Hence f maps S^{n+3} into R_{n+2}/R_{n-1} and $f'(1, 0, \dots, 0) = (I, 0, \dots, 0)$. Let g maps I^{n+3} on S^{n+3} with degree 1 so that $g(\dot{I}^{n+3}) = (1, 0, \dots, 0)$, and let $\phi_1^* = fg$. Clearly $\phi_1^*(\dot{I}^{n+3})$ $= \hat{s}_0$.

To prove the last assertion, we shall show that $h = \pi_{n+1}^{n+2} f: S^{n+3} \rightarrow S^{n+1}$ is essential. The map h is given in real coordinates by

$$\begin{array}{l} h_1(x) &= (y_1^2 + y_2^2 - y_3^2 - y_1^2) / |y|, \\ h_2(x) &= 2(y_2y_3 + y_1y_3) / |y|, \\ h_3(x) &= 2(y_2y_4 - y_1y_3) / |y|, \\ h_i(x) &= 0, \qquad i = 1, 2, 3, \end{array} \right\} \quad \text{where } |y| = 0,$$

¹⁾ See the footnote 5) of p. 50.

MASAHIRO SUGAWARA

where $x_0 = y_1 + y_2 i + y_3 j + y_4 k$, $|y| = (\sum_{i=1}^{4} y_i^2)^{\frac{1}{2}}$, $x_i = \sum_{\alpha=1}^{8} y_{8i-1+\alpha} e_{\alpha}$ $(i = 2, \dots, m-1)$, $x_m = \sum_{\alpha=1}^{8} z_{\alpha} e_{\alpha}$ and $|z| = (\sum_{i=1}^{8} z_i^2)^{\frac{1}{2}}$. This map is a composition of two maps $h^{(1)}: S^{8m+3} \to S^{8m+2}$ defined by

$$\begin{array}{cccc} h_{1}^{(1)}(y) &=& (y_{1}^{2} + y_{2}^{2} - y_{3}^{2} - y_{4}^{2}) \mid y \mid , \\ h_{2}^{(1)}(y) &=& 2(y_{2}y_{3} + y_{1}y_{4}) \mid y \mid , \\ h_{3}^{(1)}(y) &=& 2(y_{2}y_{1} - y_{1}y_{3}) \mid y \mid , \\ h_{i}^{(1)}(y) &=& 0, & i = 1, 2, 3, \\ h_{i}^{(1)}(y) &=& y_{i+1}, & i = 4, 5, \dots, 8m + 3; \end{array} \right\}$$
 where $\mid y \mid = 0, \\ \end{array}$

and $h^{(2)}: S^{s_{m+2}} \rightarrow S^{s_{m+1}}$ defined by

52

$$\begin{array}{rcl} h_{i}^{(2)}(y) &= y_{i}, & i = 1, 2, \dots, 8m-5, \\ h_{8m-5+j}^{(3)}(y) &= 2(z_{j+1}z_{5} - z_{1}z_{j+5}) \mid \mid z \mid , \quad j = 1, 2, 3, \\ (5) & h_{8m-1}^{(2)}(y) &= [z_{1}^{2} + z_{5}^{2} - \sum_{j=2}^{4} (z_{j}^{2} + z_{j+1}^{2})] \mid \mid z \mid , \\ h_{8m-1+j}^{(2)}(y) &= 2(z_{j+5}z_{5} + z_{1}z_{j+1}) \mid \mid z \mid , \quad j = 1, 2, 3, \\ h_{i}^{(2)}(y) &= 0, \quad i = 8m-4, \dots, 8m+2, \quad \text{where } \mid z \mid = 0. \end{array}$$

The map $h^{(1)}$ is the 8*m*-hold suspension of the map of S^3 on S^2 obtained by setting $y_i = 0$ for $i = 4, 5, \dots, 8m + 3$ in (4), and the last map is the Hopf map¹⁰ $H: S^3 \to S^2$. Hence $h^{(1)} \sim E^{8m}H$. The map $h^{(2)}$ is the (8m - 5)-hold suspension of the map of S^7 on S^6 obtained by setting $y_i = 0$ for $i = 1, 2, \dots, 8m - 5$ in (5), and this map is essential²⁰, and so the 4-hold suspension of the Hopf map H. Hence $h^{(2)} \sim E^{8m-1}H$. Thus $h \sim (E^{8m-1}H) \cdot (E^{8m}H) \sim E^{8m-1}(H \cdot EH)$. As $H \cdot EH$ represents a non zero element of $\pi_4(S^2)^{33}$ and $E: \pi_{k+2}(S^k) \to \pi_{k+3}(S^{k+1})$ is the isomorphism onto⁴⁰, h is essential. Thus the proof of Lemma 4 is complete.

4) Cf. [7] or [4] for k = 2, [5] for k = 3 and [8] for k > 3.

¹⁾ Cf. [1], p. 126, 24.3, equation (9).

²⁾ See [2], p. 140, equation (8).

³⁾ See [1], p. 113, 21.7.

ON FAMILIES OF CONTINUOUS VECTOR FIELDS OVER SPHERES

53

Proof of Theorem 2. Since $\pi \pi_{\mu,q}^{n}: \pi_{i}(R_{a}/R_{a-q}, R_{a-\mu}/R_{a-\eta}) \rightarrow \pi_{i}(R_{n}/R_{a-\mu})$ is an isomorphism onto, we shall show that an element of the image of the map $\partial: \pi_{n+3}(R_{n+3}/R_{n+1}, R_n/R_{n-1}) \rightarrow \pi_{n+2}(R_n/R_{n-1}) \cong \pi_{n+2}(S^{n-1})$ is represented by a map of S^{n+2} into S^{n-1} being the (n-5)-hold suspension of a map of S^{i} into S^{i} with even Hopf invariant.

Let ϕ_0 be a map of (I^{n+3}, I^{n+3}) into $(R_{u+3}/R_{a-1}, R_u/R_{a-1})$. We assert that there exists a map $\phi_1: (I^{n+3}, I^{n+3}) \to (R_{n+2}/R_{n-1}, R_n/R_{n-1})$ such that $\phi_0 \mid I^{n+3} = \phi_1 \mid I^{n+3}$. If $\pi_{i,1}^{n+3}\phi_0$ is inessential, let $h: (I^{n+3} \times I, I^{n+3} \times I) \to (S^{n+2}, x_0)$ be a homotopy of $\pi_{i,1}^{n+3}\phi_0$ into a point. Since $\pi_{i,1}^{n+3}: R_{n+3}/R_{n-1} \to R_{n+3}/R_{n+2}$ is a bundle projection, there exists a covering homotopy $h^*: (I^{n+3} \times I, I^{n+3} \times I) \to (R_{n+3}/R_{n-1}, R_n/R_{n-1})$ of ϕ_0 such that $\pi_{i,1}^{n+3}h^* = h$ and $h^*(y, t) = \phi_0(y)$ for $(y, t) \in I^{n+3} \times I$. Let $\phi_1 = h^* \mid (I^{n+3} \times 1, I^{n+3} \times 1)$, then ϕ_1 maps (I^{n+3}, I^{n+3}) into $(R_{n+2}/R_{n-1}, R_n/R_{n-1})$ $R_n/R_{n-1})$ and $\phi_1 \mid I^{n+3} = \phi_0 \mid I^{n+3}$. If $\pi_{i,1}^{n+3}\phi_0$ is essential, let ϕ_0^* be the map of Lemma 3. Since both $\pi_{i,1}^{n+3}\phi_0$ and $\pi_{i,1}^{n+3}\phi_0^*$ are essential, they represent the same element of $\pi_{n+3}(S^{n+2})$. As $\pi_{i,1}^{n+3}:\pi_{n+3}(R_{n+3}/R_{n-1}, R_{n+2}/R_{n-1})$ $R_{n+2}/R_{n-1} \to \pi_{n+3}(R_{n+3}, R_{n-1}, R_{n+2}/R_{n-1})$, hence $\phi_0 \mid I^{n+3}$ is homotopic in R_{n+2}/R_{n-1} to $\phi_0^* \mid I^{n+3} = \hat{s}_0$. By this homotopy, we obtain the map $\phi_1: (I^{n+3}, I^{n+3}) \to (R_{n+2}/R_{n-1}, R_n/R_{n-1})$ such that $\phi_0 \mid I^{n+3} = \phi_1 \mid I^{n+3}$.

For this ϕ_1 , there is a map $\phi_2: (I^{n+3}, I^{n+3}) \rightarrow (R_{n+1}/R_{n-1}, R_n/R_{n-1})$ such that $\phi_1 \mid I^{n-3} = \phi_2 \mid I^{n+3}$. If $\pi_{3,1}^{n+2}\phi_1$ is inessential, we can construct ϕ_2 by the analoguous process of the first case of the above. If $\pi_{3,1}^{n+2}\phi_1$ is essential, we can also construct ϕ_2 by Lemma 4 and the analoguous process of the above.

The last map ϕ_2 maps (I^{n+3}, \dot{I}^{n+3}) into $(R_{n+1}/R_{n-1}, R_n/R_{n-1})$, and so, by Lemma 5, $\phi_2 \mid \dot{I}^{n+3}$, considered as defined on S^{n+2} , is homotopic to the (n-5)-hold suspension of a map of S^7 on S^4 with even Hopf invariant. By the construction, $\phi_2 \mid \dot{I}^{n+3} = \phi_0 \mid \dot{I}^{n+3}$, and hence $\phi_0 \mid \dot{I}^{n+3}$ has the same property. This completes the proof of Theorem 2.

3. Here we have the principal result.

Theorem 3. If $n \equiv 3 \pmod{8}$, S^n does not admit a continuous 4-field.

By Lemma 1, to prove this theorem, it is sufficient to prove

Theorem 4. If $n \equiv 0 \pmod{8}$ and $\neq 0$, then the characteristic map $T_{n+4}: S^{n+2} \rightarrow R_{n+3}$ is not homotopic to a map of S^{n+2} into R_{n-1} .

¹⁾ Cf. [1], p. 50, 11.3. Theorem.

MASAHIRO SUGAWARA

Proof. Consider the diagram

$$\pi_{n+2}(R_n) \xrightarrow{i_*} \pi_{n+2}(R_{n+3})$$

$$\downarrow^{j_*} \qquad \downarrow^{k_*}$$

$$\pi_{n+3}(R_{n+3}, R_n) \xrightarrow{\partial} \pi_{n+2}(R_n, R_{n-1}) \xrightarrow{m_*} \pi_{n+2}(R_{n+3}, R_{n-1}),$$

where i_* , j_* , k_* and m_* are the induced homomorphisms of the inclusion maps i, j, k and m respectively, and the lower line is from the homotopy sequence of the triple (R_{n+3}, R_n, R_{n-1}) .

Let q = n/4 so that q is even. By Lemma 2, T_{n+4} is homotopic to $T''_{q+1}: S^{n+2} \to Sp_q$. Since $Sp_q \subset R_n$, T''_{q+1} represents an element α of $\pi_{n+2}(R_n)$ such that $i_*\alpha$ is represented by T_{n+4} . As the composition.

$$S^{n+2} \xrightarrow{T''_{q+1}} Sp_q \xrightarrow{l} R_a \xrightarrow{j} \to (R_n, R_{a-1}) \xrightarrow{p} S^{n-1},$$

where *l* is the inclusion map and *p* is the projection, is just the map $p'' T_{q+1}'', p'' T_{q+1}''$ represents the element $p_* j_* \alpha$. As *q* is even, Theorem 1 implies that $p'' T_{q+1}''$ is the (n-5)-hold suspension of the map of S^7 on S^4 with odd Hopf invariant. Hence, by Theorem 2, $p_* j_* \alpha$ is not contained in $p_* \partial (\pi_{n+3}(R_{n+3}, R_n))$, and so $j_* \alpha$ is not contained in $\partial (\pi_{n+3}(R_{n+3}, R_n))$. Exactness of homotopy sequence implies that the kernel of m_* does not contain $j_* \alpha$, and so $m_* j_* \alpha \neq 0$. From mj = ki, it follows that $k_* i_* \alpha \neq 0$. Therefore $k T_{n+4}$ represents a non-zero element of $\pi_{n+2}(R_{n+3}, R_{n-1})$. This is equivalent to the desired conclusion. The proof of Theorem 4 is completed.

4. For a field of tangent hyperplanes of S^n , it is known that¹, for $2k \leq n$, S^n admits a continuous field of tangent k-planes if and only if it admits a continuous k-field. Theorem 3 implies immediately

Theorem 5. If $n \equiv 3 \pmod{8}$, the n-sphere does not admit a continuous field of k-planes for $4 \leq k \leq n-4$.

References

- [1] STEENROD, N. E., Theory of fibre bundles, Princeton, 1951.
- [2] WHITEHEAD, G. W., On the homotopy properties of the real orthogonal groups, Annals of Math., 43 (1942), 132 - 146.
 - 1) Cf. [1], p. 144, 27.16, Theorem.

54

ON FAMILIES OF CONTINUOUS VECTOR FIELDS OVER SPHERES 55

- [3] —, On families of continuous vector fields over spheres, Ibid., 47 (1946), 779 785; also 48 (1947), 782 783.
- [4] -----, The $(n + 2)^{nd}$ homotopy group of the *n*-sphere, Ibid., 52 (1950), 245 247.
- [5] HUREWICZ, W. and STEENROD, N. E., Homotopy relations in fibre spaces, Proc. Nat. Acad. Sci., 27 (1941), 60 - 64.
- [6] PONTRIAGIN, L., A classification of continuous transformations of a complex into a sphere 2, Doklady Akad. Nauk SSSR, 19 (1938), 361 - 363.
- [7] , Homotopy classification of the mappings of an (n + 2)-dimensional sphere on an *n*-dimensional one, Ibid., 70 (1950), 957 959.
- [8] FREUDENTHAL, H., Über die Klassen der Spharenabbildungen, Comp. Math., 5 (1937), 299 - 314.

Department of Mathematics, Okayama University

(Received May 26, 1952)