Mathematical Journal of Okayama University

On Families of Continuous Vector Fields Over Spheres

Masahiro Sugawara*

[^0]
ON FAMILIES OF CONTINUOUS VECTOR FIELDS OVER SPHERES

Masahiro SUGAWARA

It is well known that ${ }^{1)}$, for $n \equiv 3(\bmod 4)$, the sphere S^{n} admits a set of three continuous vector fields independent at each point, i.e., a 3 -field. G. W. Whitehead [3] has proved that, for $n \equiv 3(\bmod 8)$, S^{n} does not admit a 4 -field, but his proof assumes the assertion of Pontrjagin [6] that $\pi_{5}\left(S^{3}\right)=0$. But it was proved independently by Pontrjagin [7] and G. W. Whitehead [4] that $\pi_{:}\left(S^{\prime \prime}\right)$ is cyclic of order two.

In this note we will prove that the result of G. W. Whitehead is true.

1. Let R_{n+1} be the group of rotations of $(n+1)$-dimensional Euclidean space E^{n+1} and S^{n} the unit sphere of E^{n+1}. Then R_{n+1} is the bundle space over S^{n} with group and fibre R_{a}. Let $T_{u+1}: S^{n-1} \rightarrow R_{u}$ be the characteristic map ${ }^{2}$) of its normal form ${ }^{2}$. The next lemma is known.

Lemma 1". The following two properties of S^{n} are equivalent: (i) T_{n+1} is homotopic in R_{n} to a map of S^{n-1} into R_{k}, and (ii) S^{n} admits a continuous $(n-k)$-field.

Let $S p_{w+1}$ be the symplectic group operating on the space of $m+1$ quaternion variables $\left(q_{10}, \cdots \cdots, q_{m}\right)$. Then $S p_{m+1}$ is the bundle space over $S^{1 m+3}$ with group $S p_{m, 1}$, and let $T_{m+1}^{\prime \prime}: S^{1 m+2} \rightarrow S p_{n}$ be the characteristic map of its normal form. It is known that ${ }^{4)} T_{m+1}^{\prime \prime}$ is. represented by the equation
(1) $\quad T_{m+1}^{\prime \prime}(x)=\left\|\delta_{j}^{i}-2 q_{i}\left(1+q_{m}\right)^{-2} \bar{q}_{j}\right\|, \quad i, j=0,1, \cdots \cdots, m-1$;
where $x=\left(q_{0}, \cdots \cdots, q_{m}\right), \sum_{i=0}^{m} \mid q_{i}!^{n}=1$ and the real part of q_{m} is 0 and δ_{j}^{2} is the Kronecker δ. It holds the following lemma concerning. T and $T^{\prime \prime}$.

[^1]Lemma 2 ${ }^{11} . T_{4 m+1}: S^{4 m+2} \rightarrow R_{i m+3}$ is homotopic in $R_{4 m+3}$ to $T_{m+1}^{\prime \prime}$: $S^{4 m+2} \rightarrow S p_{m}$.

Let $x_{1 m-1}=\left(q_{0}, \cdots \cdots, q_{m}\right) \in S^{4 m+2}$ be the point such that $q_{i}=0$ for $i<m-1, q_{m-1}=1$ and $q_{m}=0$, and $p^{\prime \prime}: S p_{m} \rightarrow S^{m m-1}$ the bundle projection defined by $p^{\prime \prime}(s)=s\left(x_{s m-1}\right), s \in S p_{m}$. Then we have the theorem:

Theorem 1. If m is even, $p^{\prime \prime} T_{m+1}^{\prime \prime}: S^{4 m+2} \rightarrow S^{4 m-1}$ is essential and homotopic to ($4 m-5$)-hold suspension ${ }^{2}$ of a map of S^{7} on S^{4} with odd Hopf invariant ${ }^{3}$.

Proof. Let $\left(\boldsymbol{r}_{0}, \ldots \ldots, r_{m-1}\right) \in S^{3 m-1}$ be the coordinates of $p^{\prime \prime} T_{n+1}^{\prime \prime}(x)$, then, from (1), $p^{\prime \prime} T_{m_{1}+1}^{\prime \prime}$ is given by the equations

$$
\begin{align*}
r_{i} & =-2 q_{i}\left(1+q_{m}\right)^{-9} \bar{q}_{m-1}, \tag{2}\\
r_{m-1} & =1-2 q_{m-1}\left(1+q_{n}\right)^{-2} \bar{q}_{m-1} ;
\end{align*}
$$

where $\sum_{i=1}^{m} q_{i} \bar{q}_{:}=1$ and the real part of $q_{i *}$ is 0 . G. W. Whitehead ${ }^{1)}$ proved that the map given by (2) has the property that it is homotopic to the $(4 m-5)$-hold suspension of a map of S^{7} on S^{4} with odd Hopf invariant. Hence the theorem holds.
2. We obtain the theorem concerning to the property of the boundary operation ∂ of homotopy sequence.

Theorem 2. If $n \equiv 0(\bmod 8)$ and $\neq 0$, and consider the composition of homomorphism and isomorphism

$$
\pi_{n+i}\left(R_{n+3}, R_{n}\right) \xrightarrow{\partial} \pi_{n+2}\left(R_{n}, R_{n-1}\right) \xrightarrow{p_{*}} \pi_{n+2}\left(S^{n-1}\right),
$$

where p_{*} is the induced isomorphism of the projection $p:\left(R_{n}, R_{n-1}\right) \rightarrow S^{n-1}$. Then the element of $p_{*} \partial\left(\pi_{n+3}\left(R_{n+3}, R_{n}\right)\right) \subset \pi_{R+2}\left(S^{n-1}\right)$ is represented by a map of S^{a+2} into S^{n-1} which is the $(n-5)$-hold suspension of a map of S^{5} into S^{4} with even Hopf invariant.

To prove this theorem, we use three lemmas. Let ξ_{0} be the identity of R_{n} / R_{p} and $\pi_{p, q}^{n}$ be the natural projection of R_{n} / R_{n-q} into R_{n} / R_{n-p}. In addition, let I^{n} be the n-cube and \dot{I}^{n} its boundary, then $\dot{\boldsymbol{I}}^{n}$ is homeomorphic with S^{n-1}.

Lemma 3^{*}. If $n \equiv 0(\bmod 8)$ and ± 0, there is a map $\phi_{1}^{*}:\left(1^{n+3}\right.$,

1) Cf. [1], p. 128, 24.5. Corollary.
2) Cf. [1], pp. 111 -112, 21.3 .
3) Cf [1], p. 123, 21.6.
4) See the proof of Lemma 1 of [3].
5) Lemmas 3 and 5 are proved by G. W. Whitehead, see [3], Lemmas 2 and 3.
$\left.\dot{I}^{n+3}\right) \rightarrow\left(R_{n+5} / R_{n-1}, \xi_{n}\right)$ such that $\pi_{i, 1}^{\prime+3} \phi_{n}^{*}:\left(I^{n+3}, \dot{I}^{n+*}\right) \rightarrow\left(R_{n+1} / R_{n+1}, \hat{\xi}_{0}\right) \cong$ (S^{n+2}, x_{0}) is essential.

Lemma 4. Under the same assumption for n, there is a map ϕ_{1}^{*} : $\left(I^{n+3}, \dot{I}^{n+3}\right) \rightarrow\left(R_{n+2} / R_{n-1}, \xi_{0}\right)$ such that $\pi_{3,1}^{n+\frac{1}{2}} \phi_{1}^{*}\left(I^{n+3}, \dot{I}^{++3}\right) \rightarrow\left(R_{n+!} / R_{n+1}\right.$, $\left.\xi_{0}\right) \cong\left(S^{n+1}, x_{0}\right)$ is essential.

Lemma $5^{1)}$. Under the same assumption for n, if ϕ_{2} maps (I^{n+3}, \dot{I}^{n+3}) into ($R_{n+1}\left|R_{n-1}, R_{n}\right| R_{n-1}$) and we consider the map $\phi_{2} \mid \dot{I}^{n+3}$ is defined on S^{n+2}, then the last map is homotopic to the $(n-5)$-hold suspension of a map of $S^{\text {i }}$ on S^{4} with even Hopf invariant.

Proof of Lemma 4. It is easy to see that $R_{, .} / R_{,-,}$, can be considered as the set of all $n \times p$ matrices A such that $A^{\prime} A=I$, the $p \times p$ identity matrix. Let S^{n+3} be represented by coordinates (x_{11}, $x_{1}, \cdots \cdots, x_{n}$, , where $m=n / 8, x_{1}$ is a quaternion and $x_{1}, \cdots \cdots, x_{i, 1}$ are Cayley numbers such that $\sum_{i=1}^{m}\left|x_{i}\right|=1$. The matrices of the linear transformations $y \rightarrow x y$ and $y \rightarrow y x$ are denoted by $L(x)$ and $R(x)$ respectively for a quaternion, and $L_{1}(x)$ and $R_{1}(x)$ for a Cayley number. If $x_{0} \neq 0$, let $f_{0}(x)$ be the 3×3 matrix obtained from $L\left(x_{0}\right) R\left(\bar{x}_{0}\right)\left|x_{0}\right|^{-1}$ by deleting the first row and the first column; while $x_{0}=0, f_{0}(x)$ be the 3×3 matrix of zeros. For $i=1, \cdots \cdots, m-1$, let $f_{i}(x)$ be the 8×3 matrix formed from $L_{r}\left(x_{i}\right)$ by deleting the last five columns. If $x_{m}=0$, let $f_{m}(x)$ be the 7×3 matrix of zeros; while if $x_{m} \neq 0, f_{\ldots}(x)$ be the 7×3 matrix obtained from $\left.L_{1}\left(x_{m}\right) R_{1}\left(\bar{x}_{m}\right) \backslash x_{m}\right|^{-1}$ by deleting the first row and the first four and the last columns. Let f be the map defined by $f^{\prime}(x)=\left(f_{0}^{\prime}(x), f_{1}^{\prime}(x), \cdots \cdots, f_{m}^{\prime}(x)\right)$, then $f(x)$ is a $(n+2) \times 3$ matrix and it is easy to see that $f^{\prime}(x) f(x)=I$, the 3×3 identity matrix. Hence f maps $S^{\prime+3}$ into R_{n+9} / R_{u-1} and $f^{\prime}(1,0, \cdots \cdots, 0)=(I, 0, \cdots \cdots, 0)$. Let g maps I^{n+i} on S^{n+i} with degree 1 so that $g\left(\dot{I}^{n+8}\right)=(1,0, \cdots \cdots, 0)$, and let $\phi_{1}^{*}=f g$. Clearly $\phi_{1}^{*}\left(\dot{I}^{n+\%}\right)$ $=\tilde{\boldsymbol{s}}_{11}$.

To prove the last assertion, we shall show that $h=\pi_{3,1}^{n+1} f: S^{n+3}$ $\rightarrow S^{a+1}$ is essential. The map h is given in real coordinates by

$$
\begin{array}{ll}
h_{1}(x)=\left(y_{1}^{2}+y_{z}^{2}-y_{i}^{2}-y_{i}^{2}\right) /!y!, \\
h_{i}(x)=2\left(y_{2} y_{3}+y_{1} y_{i}\right) /!y!, \\
h_{i z}(x)=2\left(y_{2} y_{4}-y_{1} y_{i}\right) /!y \mid, & \text { where }|y| \neq 0, \\
h_{i}(x)=0, & \quad \\
\quad i=1,2,3, & \text { where } \mid y!=0,
\end{array}
$$

[^2]\[

\left.$$
\begin{array}{rl}
h_{i}(x) & =y_{i+1}, \quad i=4,5, \cdots \cdots, 8 m-5, \tag{3}\\
h_{\mathrm{sm}-5+j}(x) & =2\left(z_{j+1} z_{j}-z_{1} z_{j+5}\right) /|z|, \quad j=1,2,3, \\
h_{s m-1}(x) & =\left[z_{1}^{u}+z_{5}^{2}-\sum_{j=1}\left(z_{j}^{o}+z_{j+1}^{j}\right)\right] /|z|, \\
h_{s m-1+j}(x) & =2\left(z_{j+i} z_{j}+z_{1} z_{j+1}\right) /|z|, \quad j=1,2,3,
\end{array}
$$\right\} where|z| \neq 0,
\]

where $x_{0}=y_{1}+y_{2} i+y_{3} j+y_{1} k,|y|=\left(\sum_{i=1}^{2} y_{i}^{2}\right)^{\frac{1}{2}}, x_{i}=\sum_{s a 1}^{s} y_{s_{l-1+x}} e_{a}$ ($i=2, \cdots \cdots, m-1$), $x_{m=1}=\sum_{\alpha=1}^{\stackrel{s}{s} z_{\alpha} e_{\alpha}}$ and $|z|=\left(\sum_{i=1}^{\mathrm{i}} z_{i}\right)^{\frac{1}{2}}$. This map is a composition of two maps $h^{(1)}: S^{s_{n+3}} \rightarrow S^{s m+2}$ defined by

$$
\begin{array}{lr}
h_{1}^{(1)}(y)=\left(y_{i}^{2}+y_{2}^{2}-y_{3}^{2}-y_{i}^{2}\right) /|y|, \\
h_{2}^{(1)}(y)=2\left(y_{2} y_{3}+y_{1} y_{3}\right) /|y|, \tag{4}\\
h_{i}^{(1)}(y)=2\left(y_{1} y_{1}-y_{1} y_{3} /|y|,\right. & \text { where }|y| \neq 0, \\
h_{i}^{(L)}(y)=0, & \\
h_{i}^{(1)}(y)=y_{i+1}, & \quad \text { where }|y|=0, \\
& i=4,5, \cdots \cdots, 8 m+3 ;
\end{array}
$$

and $h^{(2)}: S^{s_{m+1}} \rightarrow S^{s m+1}$ defined by

$$
\begin{align*}
h_{i}^{(2)}(y) & =y_{i}, \quad i=1,2, \cdots \cdots, 8 m-5, \\
h_{s m-j+j}^{(2)}(y) & =2\left(z_{j+1} z_{j}-z_{1} z_{j+3}\right) /|z|, \quad j=1,2,3, \\
h_{5 m-1}^{(2)}(y) & =\left[z_{1}^{2}+z_{5}^{2}-\sum_{j=0}^{4}\left(z_{j}^{2}+z_{j+1}^{2}\right)\right] /|z|, \\
h_{s m}^{(2)}(-1+j(y) & =2\left(z_{j+3} z_{5}^{2}+z_{1} z_{j+1}\right) /|z|, \quad j=1,2.3, \tag{5}\\
h_{i}^{(2)}(y) & =0, \quad i=8 m-4, \cdots \cdots, 8 m+2, \quad \text { where }|z|=0 .
\end{align*} \text { where }|z| \neq 0,
$$

The map $h^{(1)}$ is the 8 m -hold suspension of the map of S^{3} on S^{n} obtained by setting $y_{i}=0$ for $i=4,5, \cdots \cdots, 8 m+3$ in (4), and the last map is the Hopf map ${ }^{1} H: S^{3} \rightarrow S^{2}$. Hence $h^{(1)} \sim E^{\text {sn }} H$. The map $h^{(2)}$ is the ($8 m-5$)-hold suspension of the map of S^{2} on S^{6} obtained by setting $y_{i}=0$ for $i=1,2, \cdots \cdots, 8 m-5$ in (5), and this map is essential"), and so the 4 -hold suspension of the Hopf map H. Hence $h^{(2)} \sim E^{s_{m-1}} H$. Thus $h \sim\left(E^{8_{n-1}} H\right) \cdot\left(E^{8 m} H\right) \sim E^{8 m-1}(H \cdot E H)$. As $H \cdot E H$ represents a non zero element of $\pi_{4}\left(S^{2}\right)^{3}$ and $E: \pi_{i+2}\left(S^{k}\right) \rightarrow \pi_{k+3}\left(S^{k+1}\right)$ is the isomorphism onto ${ }^{11}$, h is essential. Thus the proof of Lemma 4 is complete.

1) Cf. [1], p. 126, 24.3, equation (9).
2) See [2], p. 140, equation (8).
3) See [1], p. 113, 21.7.
4) Cf. [7] or [4] for $k=2$, [5] for $k=3$ and [8] for $k>3$.

Proof of Theorem 2. Since ${ }^{*} \pi_{i, q}^{n}: \pi_{i}\left(R_{i a} / R_{i a-q}, R_{i-1} / R_{i-q}\right) \rightarrow \pi_{i}\left(R_{n} /\right.$ $\left.R_{n-1}\right)$ is an isomorphism onto, we shall show that an element of the image of the map $\partial: \pi_{n+3}\left(R_{i+3} / R_{n+1}, R_{i /} / R_{n-1}\right) \rightarrow \pi_{a+2}\left(R_{n} / R_{i-1}\right) \cong \pi_{n+2}\left(S^{n-1}\right)$ is represented by a map of S^{n+2} into S^{n-1} being the ($n-5$)-hold suspension of a map of S^{i} into S^{4} with even Hopf invariant.

Let ϕ_{10} be a map of (I^{n+3}, \dot{I}^{n+3}) into ($\left.R_{i j+3} / R_{i-1}, R_{v i} / R_{i i-1}\right)$. We assert that there exists a map $\phi_{1}:\left(I^{n+3}, \dot{I}^{i+3}\right) \rightarrow\left(R_{n+2} / R_{n-1}, R_{n} / R_{i a-1}\right)$ such that $\phi_{0}\left|\dot{I}^{n+3}=\phi_{1}\right| \dot{I}^{n+3}$. If ${\pi_{1}^{n+3} \phi_{0}}^{\text {is }}$ inessential, let $h:\left(I^{n+3} \times I\right.$, $\left.\dot{I}^{n+3} \times I\right) \rightarrow\left(S^{n+2}, x_{0}\right)$ be a homotopy of $\pi_{i, 1}^{n+3} \phi_{0}$ into a point. Since $\pi_{i, 1}^{n+3}: R_{n+3} / R_{n-1} \rightarrow R_{n+3} / R_{n+2}$ is a bundle projection, there exists a covering homotopy ${ }^{1)} h^{*}:\left(I^{n+3} \times I, \dot{I}^{n+3} \times I\right) \rightarrow\left(R_{n+3} / R_{i j-1}, R_{i,} / R_{i-1}\right)$ of ϕ_{0} such that $\pi_{4,1}^{n+3} h^{*}=h$ and $h^{*}(y, t)=\phi_{0}(y)$ for $(y, t) \in \dot{I}^{n+3} \times I$. Let $\phi_{1}=h^{*} \mid\left(I^{n+3} \times 1, \dot{I}^{n+3} \times 1\right)$, then $\phi_{1} \operatorname{maps}\left(I^{n+3}, \dot{I}^{n+3}\right)$ into $\left(R_{n+2} / R_{n-1}\right.$, R_{u} / R_{n-1}) and $\phi_{1}\left|\dot{I}^{n+3}=\phi_{0}\right| \dot{I}^{n+3}$. If $\pi_{i, i}^{i+3} \dot{\phi}_{n}$ is essential, let ϕ_{10}^{*} be the map of Lemma 3. Since both $\pi_{1,1}^{n+i} \phi_{0}$ and $\pi_{i, 1}^{n+3} \phi_{i}^{*}$ are essential, they represent the same element of $\pi_{n+3}\left(S^{n+2}\right)$. As ${ }^{{ }^{*} \pi_{i, 1}^{n+3}: \pi_{n+3}}\left(R_{n+3} / R_{i-1}\right.$, $\left.R_{i+2} / R_{n-1}\right) \rightarrow \pi_{n+5}\left(S^{n+2}\right)$ is an isomorphism, ϕ_{0} and ϕ_{0}^{*} represent the same element of $\pi_{n+3}\left(R_{n+3} / R_{n-1}, R_{n+2} / R_{n-1}\right)$, hence $\phi_{0} \mid \dot{I}^{n+3}$ is homotopic in R_{n+2} / R_{n-1} to $\phi_{0}^{*} \mid \dot{I}^{n+3}=\xi_{0}$. By this homotopy, we obtain the map $\phi_{1}:\left(I^{n+3}, \dot{I}^{n+3}\right) \rightarrow\left(R_{n+2} / R_{n-1}, R_{n} / R_{n-1}\right)$ such that $\phi_{0}\left|\dot{I}^{n+8}=\phi_{1}\right| \dot{I}^{n+3}$.

For this ϕ_{1}, there is a map $\phi_{2}:\left(I^{n+3}, I^{n+3}\right) \rightarrow\left(R_{n+1} / R_{a-1}, R_{n} / R_{n-1}\right)$ such that $\phi_{1}\left|\dot{I}^{u-3}=\phi_{1}\right| \dot{I}^{u+3}$. If $\pi_{3,1}^{i+i+1} \phi_{1}$ is inessential, we can construct ϕ_{2} by the analoguous process of the first case of the above. If $\pi_{3,1}^{n+1} \phi_{1}$ is essential, we can also construct ϕ_{2} by Lemma 4 and the analoguous process of the second case of the above.

The last map ϕ_{i} maps (I^{n+3}, \dot{I}^{n+3}) into ($R_{n+1} / R_{n-1}, R_{n} / R_{n-1}$), and so, by Lemma $5, \phi_{2} \mid \dot{I}^{n+3}$, considered as defined on S^{n+2}, is homotopic to the $(n-5)$-hold suspension of a map of S^{i} on S^{4} with even Hopf invariant. By the construction, $\phi_{2}\left|\dot{I}^{n+3}=\phi_{0}\right| \dot{I}^{n+3}$, and hence $\phi_{1} \mid \dot{I}^{n+3}$ has the same property. This completes the proof of Theorem 2.
3. Here we have the principal result.

Theorem 3. If $n \equiv 3(\bmod 8), S^{a}$ does not admit a continuous 4-field.

By Lemma 1, to prove this theorem, it is sufficient to prove
Theorem 4. If $n \equiv 0(\bmod 8)$ and $\neq 0$, then the characteristic map $T_{n+1}: S^{n+2} \rightarrow R_{n+3}$ is not homotopic to a map of S^{n+2} into $R_{n,-1}$.

1) Cf. [1], p. 50, 11.3. Theorem.

Proof. Consider the diagram

$$
\begin{array}{ccc}
\pi_{n+2}\left(R_{\mu}\right) & i_{*} & \\
j_{*} & & \pi_{n+2}\left(R_{n+;}\right) \\
\downarrow & & \\
\pi_{n+2}\left(R_{n},\right. & \left.R_{n-1}\right) & \xrightarrow{m_{*}} \\
& & \\
\pi_{\mu+1}\left(R_{n+3},\right. & \left.R_{n-1}\right)
\end{array}
$$

where i_{*}, j_{*}, k_{*} and m_{*} are the induced homomorphisms of the inclusion maps i, j, k and m respectively, and the lower line is from the homotopy sequence of the triple ($R_{r_{+3}}, R_{n}, R_{n_{-1}}$).

Let $q=n / 4$ so that q is even. By Lemma 2, T_{n+1} is homotopic to $T_{q+1}^{\prime \prime}: S^{a+2} \rightarrow S p_{4}$. Since $S p_{q} \subset R_{n}, T_{n+1}^{\prime \prime}$ represents an element α of $\pi_{n+2}\left(R_{v}\right)$ such that $i_{*} \alpha$ is represented by T_{n+1+1}. As the composition.

$$
S^{n+2} \xrightarrow{T_{q+1}^{\prime \prime}} S p_{p_{1}} \xrightarrow{l} R_{u}{ }^{j} \rightarrow\left(R_{n}, R_{u-1}\right) \xrightarrow{p} S^{n-1}
$$

where l is the inclusion map and p is the projection, is just the map $p^{\prime \prime} T_{q+1}^{\prime \prime}, p^{\prime \prime} T_{q+1}^{\prime \prime}$ represents the element $p_{*} j_{*} \alpha$. As q is even, Theorem 1 implies that $p^{\prime \prime} T_{i, 1}^{\prime \prime}$ is the ($n-5$)-hold suspension of the map of S^{7} on S^{4} with odd Hopf invariant. Hence, by Theorem $2, p_{*} j_{*} \alpha$ is not contained in $p_{*} \partial\left(\pi_{n+i ;}\left(R_{n+i}, R_{n}\right)\right)$, and so $j_{*} \alpha$ is not contained in $\partial\left(\pi_{n+3}\left(R_{n+;}, R_{n}\right)\right)$. Exactness of homotopy sequence implies that the kernel of m_{*} does not contain $j_{*} a$, and so $m_{*} j_{*} \alpha \neq 0$. From $m j=k i$, it follows that $k_{*} i_{*} \alpha \neq 0$. Therefore $k T_{n+4}$ represents a non-zero element of $\pi_{n+2}\left(R_{n+i}, R_{n-1}\right)$. This is equivalent to the desired conclusion. The proof of Theorem 4 is completed.
4. For a field of tangent hyperplanes of S^{n}, it is known that ${ }^{1)}$, for $2 k \leqslant n, S^{n}$ admits a continuous field of tangent k-planes if and only if it admits a continuous k-field. Theorem 3 implies immediately

Theorem 5. If $n \equiv 3(\bmod 8)$, the n-sphere does $n o t$ admit a continuous field of k-planes for $4 \leqslant k \leqslant n-4$.

References

[1] Sterxrod, N. E., Theory of fibre bundles, Princeton, 1951.
[2] Whitefead, G. W., On the homotopy properties of the real orthogonal groups. Annals of Math., 43 (1942), 132-146.

1) Cf. [1], p. 144, 7.16, Theorem.
[3] - On families of continuous vector fields over spheres, Ibid., 47 (1946), 779 785; also 48 (1947), 782-783.
[4] - The $(n+2)^{\text {nd }}$ homotopy group of the n-sphere, Ibid., 52 (1950), 245-247.
[5] Hurewicz, W. and Steenron, N. E., Homotopy relations in fibre spaces, Proc. Nat. Acad. Sci., 27 (1941), 60 - 64.
[6] Pontruagr, L., A classification of continuous transformations of a complex into a sphere 2, Doklady Akad. Nauk SSSR, 19 (1938), 361-363.
[7] -, Homotopy classification of the mappings of an $(n+2)$-dimensional sphere on an n-dimensional one, Ibid., 70 (1950), 957 - 959.
[8] Freunenthat., H., Über die Klassen der Spharenabbildungen, Comp. Math., 5 (1937), 299-314.

Department of Mathematics,
 Orayama University

(Received May 26, 1952)

[^0]: *

 Copyright © 2008 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

[^1]: 1) Cf. Reference [1], p. 142, 27.10. Theorem.
 2) Cf. [1], pp. 96-97, 18.1 .
 3) Cf. [1], p. 141, 27.6. Theorem.
 4) Cf. [1], p. 130, 24.11.
[^2]: 1) See the footnote 5) of p. 50.
