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SI-MODULES

Mouamep F, YOUSIF

Introduction. A ring R is called a left SI-ring if every singular left
R-module is injective. SIrings were introduced and studied by K. R.
Goodearl. In this paper we say that a left R-module M is an SImodule if
every singular left R-module is M-injective. It was shown by K. R. Goodearl
[6] that a ring R is a left SIring if and only if Z(zxR) = 0 and for every
essential left ideal I of R, R/I is semisimple. Commutative SI-rings were
also investigated by V. C. Cateforis and F. L. Sandomierski [4] and [5].
It was proved in (5] that for a commutative ring R the following are equiva-
lent :

(i) R isan Slring.

(ii) R is (von Neumann) regular and R/Soc(R) is semisimple.

In § 2, we show that results of this type can be obtained for SI-modules.
The connections between regular modules, V-modules, Generalized V-mod-
ules and SI-modules are studied. We also prove, among other things, that if
R is a commutative ring and M is a finitely generated projective R-module
then M is an SI-module if and only if M is a finite direct sum of regular
modules each of which has at most two essential submodules. In § 3, we say
that a ring R is a left P-SI-ring if every singular left R-module is P-injec-
tive. Known results for Sl-rings are extended to P-SI-rings.

1. Preliminaries. Throughout this paper. unless otherwise mentioned,
R will always have a unit and all modules are unitary left R-modules. All
maps will be R-homomorphisms. For any module M we denote by Z(M ),
JM), Soc(M) and E(M) the singular submodule, the Jacobson radical, the
socle and the injective hull of M, respectively. An R-module M is semi-
simple if it is a direct sum of simple R-modules.

Let M and U be R-modules. Following G. Azumaya [2], we say that U
is M-injective if for each submodule K of M every R-homomorphism from K
into U can be extended to an R-homomorphism from M into U,

Following Y. Hirano [7]. U is said to be P-M-injective if every R-
homomorphism of any cyclic submodule of M into U can be extended to an
R-homomorphism of M into U. If every simple (resp. simple singular) R-
module is M-injective, M is called a V-module (resp. a GV-module). And if
every simple (resp. simple singular) R-module is P-M-injective, M is called
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a P-V-module (resp. a P-V'-module). Following Zelmanowitz [12], a module
«M is called regular if given any m € M there exists f € Homs(M, R) with
(m)fm = m. Following B. Zimmermann-Huisgen [13] we say that a module
«M is locally projective if M satisfies the following condition : For all
diagrams

AiB—>O

e

F-M

with exact upper row and a finitely generated submodule F of M there is
a map g' € Homg(M, A) such that g|F = fog'|F. It is known that every
regular module is locally projective.

Finally we state the next proposition without proof. For the proof see
[7] and [10].

Proposition 1.1. If R is a commutative ring and M is a projective
module then the following are equivalent :

(i) M is a regular module.

(ii) M is a V-module.

(iii) M is a GV-module.

(iv) M is a P-V-module.

(v) M is a P-V'-module.

2. SImodules.

Definition 2.1. A lefi R-module M is called an SI-module (resp. P-SI-
module ) if every singular left R-module is M-injective (resp. P-M-injective).
Clearly every SI-module (resp. P-SI-module) is a GV-module (resp. P-V'-
module). A ring R is called a left Slring (resp. P-SI-ring) if the left R-
module R is an SI-module (resp. P-SI-module). By [1, Proposition 16.13,
p. 188] the following proposition can easily be verified.

Proposition 2.2. (i) Submodules and homomorphic images of SI-
modules are again SI-modules.

(ii1) Die M, is an SI-module if and only if each M; is an SI-module.

Proposition 2.3. Suppose that :M is a left SI-module. Then the fol-
lowing statements are true.
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(i) Every singular homomorphic image of M is semisimple.
(i) M/N is semisimple for every essential submodule N of M.
(ili) J(M) C Soc(M), ZIM) C Soc(M) and JM) N ZIM) = 0.

Proof. (i) If L is a singular homomorphic image of M then, by
Proposition 2.2( i ), L is a singular SI-module. Whence every submodule of
L, which necessarily has to be singular, is L-injective. Hence every sub-
module of L is a direct summand of L, and so L is semisimple.

(ii) If N is an essential submodule of M then M/N is a singular
homomorphic image of M, whence semisimple from above.

(iii) Since Soc{M ) is an intersection of essential submodules of M and
every proper essential submodule is an intersection of maximal submodules,
it follows that J(M) C Soc(M). Since Z(M) is a singular SI-module (since
submodules of SI-modules are also SI-modules), by ( i ) we infer that Z(M)
is semisimple, and hence Z(M) C Soc(M ). Since every SI-module is a GV-
module, it follows from [7, Theorem 3.15] that JIM) N Z(M) = 0.

Proposition 2.4. For a locally projective module M the following
conditions are equivalent :

(i) M is an SLmodule.

(ii) Z(M) = 0 and every singular homomorphic image of M is semi-
simple.

(iii) Z(M) = 0 and M/N is semisimple for every essential submodule
N of M.

Proof. (i) <=>(ii): Suppose Z(M) #+=0 and let x be a non-zero
element of Z(M). Then Rx is a singular submodule of M and hence a direct
summand of M. Since M is locally projective it follows that Rx is projec-
tive. ' Now consider the following exact sequence of left R-modules 0 —

Anng(x) > R S Rx — 0, where 7 is given by n(r) = rx, Vr € R. Since
Rx is projective the sequence splits, and hence Anng(x) is not essential in
&R, contradicting the choice of x. Now the rest of the assertion follows
from Proposition 2.3( i ).

(ii) = (iii) ; Clear.

(iii)=>(i): Let L be a singular R-module. We want to show that
L is M-injective. So, let N be a proper essential submodule of M and f: N
- L be any non-zero R-homomorphism. Let K = Ker(f). We claim that
K is essential in N. For if K N I = 0 for some non-zero submodule I of N,

Produced by The Berkeley Electronic Press, 1986



Mathematical Journal of Okayama University, Vol. 28 [1986], Iss. 1, Art. 18

136 M. F. YOUSIF

then f|I: I -» L is a monomorphism. So [ is a non-zero singular submodule
of M, a clear contradiction since Z(M) = 0. Now, since K is essential in
M it follows that M/K is semisimple and N/K is a direct summand of M/K.
Whence f can be extended to a map g: M — L in the obvious way.

Note that along the lines of the above proof we have shown that every
locally projective SI-module is non-singular. In fact with the same argument
one can prove the following.

Proposition 2.5. Every locally projective P-SI-module is non-singular.

Proposition 2.6. Let M be a non-singular module. Then the following
conditions are equivalent :

(i) M is an SI-module.

(ii) Z(L) C Soc(L), for every homomorphic image L of M.

(iii) Ewvery singular homomorphic image of M is semisimple.

(iv) M/N is semisimple, for every essential submodule N of M.

Proof. (i)=(ii}): If L is a homomorphic image of M then L is an
SI-module and hence Z(L) C Soc(L), by Proposition 2.3(iii). The rest of

the implications are trivial.

Observe that if R is a left SI-ring then for any left R-module M, every
singular left R-module is M-injective. As a result of this observation we
have the following.

Proposition 2.7. For any ring R the following are equivalent :
(i) Risaleft SLring.

(ii) Every left R-module is an SImodule.

(iii) Every cyclic left R-module is an SI-module.

Proposition 2.8. For a locally projective module M the following are
equivalent :

(i) M is an SI-module with essential socle.

(ii) Soc(M) is projective and M/Soc(M) is semisimple.

Proof. (i) =>(ii): Since M is a locally projective SI-module, Z(M)
= 0 by Proposition 2.4, and hence Soc(M) is projective. Since Soc(M) is
essential in M, it follows from Proposition 2.3(ii) that M/Soc(M) is semi-
simple.
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(ii)=>(i): If Soc(M) N I =0 for some non-zero submodule I of .M,
then I = (I4+ Soc(M))/Soc(M) C M/Soc(M) which implies that I is semi-
simple and hence I € Soc(M ), a contradiction. Thus Soc(M) is essential
in M. Now, if Z(M) is non-zero, then Z(M) N Soc(M) % 0, a contradic-
tion with the projectivity of Soc(M). Thus Z(M) = 0. Now if N is any
essential submodule of M then Soc(M) C N and hence M/N is semisimple,
and we can apply Proposition 2.6.

In case we restrict our attention to locally projective modules M such

that M/J(M) is Artinian, we obtain the following.

Proposition 2.9. (cf. [10, Proposition 3.5]). If M is a locally projec-
tive module such that M/J(M ) is Artinian, then the following are equivalent :

(i) M is a GV-module.

(ii) M is an SI-module.

Proof. (i)=>(ii): Since M is a GV-module, by [7, Theorem 3.15] it
follows that Z(M) N J(M) = 0, and hence Z(M) = (Z(M) & JIM))/JM)
is a semisimple module being isomorphic to a submodule of the semisimple
module M/J(M), This means that Z(M) C Soc(M). But since M is
a locally projective GV-module, by [10, Proposition 3.4] it follows that
ZM) N Soc(M) = 0, and hence Z(M) must be zero.

Now let L be any singular R-module, N any essential submodule of M
and f: N > L any non-zero R-homomorphism. If K = Ker(f) then we can
easily see that K is essential in M and hence J(M) C Soc{M) C K.
Whence N/K is a direct summand of M/K and the map f can be extended to
amap g: M - L. Therefore M is an SI-module.

(ii)=>(i): Obvious.

It was proved in [5, Theorem 1 and Theorem 5] that for a commutative
ring R the following conditions are equivalent :

(i) R isan SIring.

(ii) R is a regular ring and R/ Soc(R) is semisimple.

In [6, Theorem 3.9] K. R. Goodearl has proved that the above conditions
are equivalent to saying that :

(iii) R is a finite direct sum of non-singular rings which have at most
two essential ideals.

In our next proposition we shall extend these results to modules. Before
doing so, we need the following two results, the first of which can be found
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in [6, Proposition 1.22] while the second is an extension of [6, Proposition
3.6] to modules.

Lemma 2.10. A module M is finitely generated semisimple if and only
if M is finite dimensional and every cyclic submodule of M is a direct
summand.

Lemma 2.11. If M is a finitely generated SI-module then M/Soc(M)

is Noetherian.

Proof. Although the proof is similar to that of [6, Proposition 3.6] it
will be presented here due to its importance in the proof of the next proposi-
tion. We will show that every submodule of M/Soc(M ) is finitely generated.
Let J = Soc(M) and I be a submodule of M with I D J. Let K be a submod-
ule of I maximal with respect to K NJ = 0. Then J@® K is essential in
Iand I/(J ® K) is a singular module. Since M/(J & K ) is an SI-module we
see that I/(J® K) is a direct summand of M/(J® K). Thus I/(J®K) is
finitely generated. Our aim is to show that I/J is finitely generated. From
the exactness of 0 = K » I/J - I/(J® K) — 0 we see that it suffices to
prove that K is finitely generated. We first show that K is finite dimen-
sional. If not, then there exists an infinite direct sum K, ® K, & --- of
non-zero submodules of K. Since K N J = 0, none of the K; are semi-
simple ; whence each K, has a proper essential submodule H,. Inasmuch
as (O, K)/(DryH,) = D, (K;/H) is a singular module and hence is
M/(Bsr., H)-injective, it follows that (D, K)/(DPr,H,) is a direct
summand of M/(P7.,H,) and so is finitely generated, which contradicts the
fact that it is an infinite direct sum of non-zero modules. By the finite
dimensionality of K, let { E;|7-, be a maximal family of non-zero cyclic sub-
modules of K such that the sum 2,7, E; is direct. Clearly E = @ E; is
essential in K, and hence K/E is singular. Inasmuch as M/E is an SI
module it follows that K/E is a direct summand of M/E and thus is finitely
generated. Whence K is finitely generated.

Corollary 2.12. If M is a finitely generated regular module then the
following statemenits are equivalent :

(i) M is an SI-module.
(ii) M/Soc(M) is semisimple.

Proof. (i) = (ii): Note first M/Soc(M) is Noetherian, by Lemma
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2.11. We claim that Soc(M ) is essential in M, for if I N Soc(M) = 0 for
some non-zero submodule I of M it follows that I = I ® Soc(M)/Soc(M) C
M/Soc(M), which implies that I is a Noetherian module. And since submod-
ules of regular modules are again regular we conclude that I'is semisimple
by Lemma 2.10. Whence I C Soc(M), a clear contradiction. Now by
Proposition 2.3(ii) it follows that M/Soc(M) is semisimple.

(ii)=> (i): Since M is a regular module, it follows that every simple
submodule is a direct summand and hence projective. Hence Soc(M) is
projective, Since M/Soc(M) is semisimple, Soc(M) is essential in M.
Inasmuch as M is regular, and hence locally projective, it follows from
Proposition 2.8 that M is an SLmodule.

Following M. S. Shrikhande [8], a module M is called hereditary (resp.
semihereditary) if every submodule (resp. finitely generated submodule) of
M is projective.

Proposition 2.13. If R is a commutative ring and M is a finitely
generated projeciive R-module. Then the following conditions are equivalent :

(i) M is an SI-module.

(ii) M is a regular module and M/Soc(M) is semisimple.

(iii) M is a semihereditary module and M/Soc(M ) is semisimple.

(iv) M is a non-singular module and M/Soc(M ) is semisimple.

(v) M is a finite direct sum of regular modules each of which has at
most iwo essential submodules.

(vi) M is a finite direct sum of non-singular modules each of which has
at most two essential submodules.

Proof. (i) =>(ii): Since every SI-module is a GV-module it follows
from Proposition 1.1 that M is a regular module, and hence M/Soc(M) is
semisimple by Corollary 2.12.

(ii) = (iii) : Clear since every regular module is semihereditary.

(iii) = (iv) : Clear since every semihereditary module is non-singular.

(v) = (vi): Obvious since every regular module is non-singular.

(vi)=>(i): LetM =M ® --- ®M,, where M, is non-singular and
has at most two essential submodules. By Proposition 2.2(ii), it is enough
to show that each M; is an SI-module. But if [ is any essential submodule of
M, then M,/I is either zero or simple, and by Proposition 2.4 it follows that
each M; is an SI-module.

(iv)=>(i): Let L be any non-zero singular R-module, N any essen-
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tial submodule of M and f: N — L any non-zero R-homomorphism. Let K =
Ker(f). Since M is non-singular, it is not difficult to see that K is essential
in M, and so Soc(M) C K. Now since M/K = (M/Soc(M))/(K/Soc(M))
is a semisimple module, we see that N/K is a direct summand of M/K and
the map f can be extended to a map g: M > L. Whence every singular R-
module is M-injective, and so M is an SImodule.

(ii) = (v): Since M/Soc{M) is a finite direct sum of simple mod-
ules, it has a composition series. We shall prove our assertion by induction
on the composition length of M/Soc(M). If I((M)/Soc(M)) = 0 then M =
Soc(M ) and M is a finite direct sum of simple projective modules. Assuming
that {(M/Soc(M)) > 0, then M/Soc(M) has a non-zero simple submodule
I/Soc(M). Let K = Soc(M) and choose some x €I with x& K. Thus
Rx/(K N Rx) & 0. Hence Rx/(K N Rx) = I/K. Because I/K is simple,
it follows that Soc(Rx) = K N Rx is a maximal submodule of Rx. Inasmuch
as M is a regular module we see that Rx is a projective summand of M.
Write M = Rx@® N. Since Soc(Rx) is an intersection of essential sub-
modules of Rx and Soc(Rx) is a maximal submodule of Rx, it follows that Rx
has only two essential submodules, namely Rx and Soc(Rx). Since M/K =
Rx® N/Soc(Rx® N) = Rx/Soc(Rx) ® N/Soc(N), we have {(N/Soc(N))
= I(M/K)—1, and hence may use an inductive hypothesis on the module N.

Remark 2.14. The above proposition remains valid if we.replace “reg-
ular module” by “A-module”, where A stands for one of the symbols V, GV,
P-V, P-V' or P-SI. See Proposition 1.1 and the next proposition.

If M is regular module then every left R-module is P-M-injective ([7,
Proposition 3.8]), and hence every regular module is a P-SImodule. By
Proposition 1.1, since every P-SI-module is a P-V'-module, we can easily
see the following :

Proposition 2.15. If R is a commutative ring and M is a projective
R-module then the following are equivalent :

(i) M is a regular module.

(ii) M is a P-SILmodule.

In particular if R is a commutative ring then R is a regular ring if and

only if R is a P-SI-ring.

3. P-Slrings. A module M is said to be P-injective if for any princi-
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pal left ideal I of R and f& Homx(I, M) there exists an element m & M
such that f(x) = xm, for all x € I. Equivalently M is P-injective if
Exti(R/Rx, M) = 0 for each x € R. It was proved in [11] that a ring R is
regular if and only if every R-module is P-injective. A ring R is defined to
be a left P-V-ring if every simple left R-module is P-injective. P-V-rings
were introduced and studied by Yue Chi Ming [11] and H. Tominaga [9].
We defined a ring R to be a left P-SI-ring if every singular left R-module is
P-injective (Definition 2.1). In this section we establish the following char-
acterization :

Proposition 3.1. For a ring R with essential left socle, the following
statements are equivalent :

(i) R is a left P-Slring.

(ii) Soc(rR) is projective and R/Soc(zR) is a regular ring.

We postpone the proof until some of the ideas involved have been suffi-
ciently developed below. Let t be a two-sided ideal of R. G. Azumaya has
proved in [2, Proposition 10(ii)] that, every injective right R/f-module is
injective as a right R-module if and only if R/t is flat as a left R-module.
For P-injective modules we have the following :

Proposition 3.2. Let t be a two sided ideal of R. Then every P-
injective right R/t-module is P-injective as a right R-module if and only if
R/t is flat as a left R-module.

Proof. “Only if” part : Adopted from [2, Proposition 10]. Leta € f
and consider the right R-modules aR, af and aR/at. Let ¢: aR - aR/at
be the canonical mapping. aR/af is annihilated by €, and so can be regarded
as a right R/f-module. Let Q = E(aR/at) be the injective hull of the right
R/t-module aR/at. Then @ is P-injective as a right R/t-module, whence
P-injective as a right R-module, by assumption. Now the map ¢: aR - @
can be regarded as a map of R-modules. Therefore ¢ can be extended to an
R-homomorphism ¢: R - Q. Let ¢(1) =y, y€ Q Then ¢(x) = yx,
Vx€aR. But aR Ct, and Q is annihilated by £, so yx = 0 Vx € aR.
Thus ¢ = 0, and aR = af. Since a were arbitrarily chosen from t, a € af
Va €t and it follows from [2, Proposition 5] that (R/f) is flat.

“If” part : Suppose (R/f) is flat as a left R-module. And let @ be
a P-injective right R/f-module. We want to show that Ext}{(R/xR, Q) =0
for every x€ R. So let x be any element of R and consider the following
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exact sequence of right R-modules 0 - xR - R —» R/xR - 0. Since
A R/E) is flat it follows that (R/f)/(¥+xR/t) = (R/xR) ® x(R/f) and that
Exti{R/xR, Q) = Extix(R/xR ® R/t, Q). Whence Extx(R/xR, Q) =
Extinf(R/(t+xR). Q). Now since Q is P-injective as a right R/f-module
and ((£+xR)/t) is a principal right ideal of R/t we get Ext¥(R/xR, Q)
= 0 for every x € R and @ is P-injective as a right R-module.

With the same argument used in the “if” part of the above proof one can
also verify the following.

Proposition 3.3. Let t be a two-sided ideal of R, R/t flat as a left
R-module and Q a right R/t-module. If Q is P-injective as a right R-module
then it is also P-injective as a right R /t-module.

We shall also make use of the following result, which was proved in
[3, Proposition 1.4 and Corollary 1.11].

Proposition 3.4. For every ring R one has Socy(zR) = (SockR)?,
where Socu( xR ) denotes the projective homogenous component of the left socle
of R. Moreover, if t is a two-sided ideal contained in Soc(xR). then the
following conditions are equivalent :

(i) =L

(ii) (R/¥t)g is flat.

Proposition 3.5. Let M be a left R-module. If Soc(M) is projective
and M/Soc(M) is a regular module then M is a P-SI-module.

Proof. Let N be a cyclic submodule of M, L a singular R-module and
f: N - L anon-zero homomorphism. We want to show that f can be extended
toamap g: M - L. Let K= Ker(f). If KN I=0 for some non-zero
submodule I of N, then f: I - L is a monomorphism and [ is a non-zero

singular submodule of M. Thus I N Soc(M) =0, and hence I=

(I+ Soc(M)/Soc(M))CM/Soc(M ), which implies thatI is a regular submodule
of M. But since every regular module is non-singular, it follows that Z(I)
= 0, a clear contradiction with the singularity of I. Thus K is essential in
N, and hence Soc(N) C K.

Now, define ¢: N/Soc(N) = (N+ Soc(M))/Soc(M), by ¢(n+ Soc(N))
=n+Soc(M). Then ¢ is an isomorphism. Let —: M - M/Soc(M)
denotes the canonical quotient map, and write M = M/Soc(M). Since M is

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 28/iss1/18

10



Y ousif: SI-modules

SI-MODULES 143

a regular module and N is a cyclic submodule of M, we can write M =
N® T, for some submodule T of M. Since Soc(N) C Ker(f), there is
amap f: N/Soc(N) —» L, such that f(n+ Soc(N)) = f(n). Thus fo ¢ ' N
- L. Extend (fog ) toamapg: M = N® T - L in the obvious way.
Define g: M —» L, by g(m) = g(m), Yme M. Now, if x&€ N then: g(x)
= g(x) = g(x+Soc(M)) = (fo ¢)(x+Soc(M)) =f(¢"(x+Soc(M)) =
flx+Soc(N)) = f(x). Thus the map g is the required map.

We can now prove Proposition 3.1 :

(i)=>(ii): By Proposition 2.5, since R is a left P-Slring, R is
left non-singular and so Soc(zR) is projective. Now, in order to show that
R/(SocyzR) is a regular ring we must prove that every left R/(SocyR )-
module is P-injective. So let M be a left R/(SociR )-module. Since
Soc(gR) is essential in xR it follows that M is a singular left R-module,
whence M is P-injective as a left R-module. Inasmuch as Soc(zR) is pro-
jective, it follows from Proposition 3.4 that (R/SocxR )x is flat as a right
R-module. And by Proposition 3.3 we infer that M is P-injective as a left
R/(Soc R )-module.

(ii) = (i) : By Proposition 3.5.

It was proved in [6, Proposition 3.5] that if R/J(R) is semisimple,
then the following statements are equivalent :

(i) ZAR) =10 and R is a right Sl-ring.

(ii) ZAR) =0 and [J(R)]* = 0.

(iii) Z{(R) =0 and [J(R)]*=0.

(iv) Z{R) =0 and R is a left SIring.

However in view of our Proposition 2.5, R is a right SI-ring=Z,(R)
= 0 (similarly R a left SLring=Z(R) = 0). Thus in( i) we can remove
the condition Z{R) = 0 (similarly in (iv) we can remove the condition
Z{R) = 0).

In the next proposition we shall prove also that, under the same hypoth-
esis, a ring R is a right P-SIring if and only if R is a left P-SI-ring. But
first we need the following lemma.

Lemma 3.6. Suppose that M is a P-V'-module. Then J(M) C Soc(M)
and JIM) N Z(M) = 0. In particular if R is left P-V'-ring then J(R) is

a direct sum of minimal projective left ideals.

Proof. Suppose to the contrary there exists an element x € M such
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that x € J(M ) and x & Soc{M ). Since Soc(M ) is the intersection of all the
essential submodules of M, it follows that x & T for some proper essential
submodule T of M. By Zorn's lemma, the set of all essential submodules
I of M such that x & I has a maximal member L. Let 7: M - M/L denote
the quotient map and x = m{x) = x+L. Writing M for the factor module
M/L, we see that 0 # x € M and any non-zero submodule of M must contain
%. It follows that Rx is a simple singular submodule of M. Let 7 denote the
restriction of the map x to the submodule Rx. Clearly n: Rx —» Rx is onto.
Since M is a left P-V'-module, 7 can be extended to a map 7: M — Rux.
Clearly 7 is onto. If N = Ker(7) then M/N = Rx and N is a maximal sub-
module of M with x & N, a contradiction with the fact that x € J(M ).
A similar argument shows that J(M) N Z(M) = 0.

Proposition 3.7. IfR/J(R) is semisimple then the following conditions
are equivalent :

(i) R is aright Slring.

(ii) R is aleft Sl-ring.

(iti) ZAR) =0 and [J(R)]* = 0.
(iv) Z(R)=0and[J(R)]*=0.
(v) R is aright P-Slring.
(vi) R is a left P-Sl-ring.
(vii) R is a right GV-ring.
(viii) R is a left GV-ring.
(ix) R is a right P-V'-ring.
(x) Risaleft P-V'-ring.
(xi) R is right semihereditary and [J(R)]? = 0.
(xii) R is left semihereditary and [J(R)]® = 0.
(xiii) R is right hereditary and [J(R)]* = 0.
(xiv) R is left hereditary and [J(R)]? = 0.

Proof. (v) = (ix): Clear.

(ix) = (iii) : Inasmuch as R is a right P-V'-ring, [J(R)]* = 0 and
JR) N ZAR) = 0, by Lemma 3.6. Hence Z(R) = (J(R) & Z{R))/J(R)
C R/J(R). Whence Z{R) is semisimple right R-module and so Z{R) C
Soc(Rz). But since R is a right P-V'-ring, it follows that every minimal
right ideal of R must be projective. Therefore Z(R) = 0.

(iii) = (i) : By [6, Proposition 3.5].

(i)=>(v): Obvious.
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(x) < (vi) < (iv) < (ii) : By symmetry.

(i) <> (ii): By [6, Proposition 3.5].

(i) <> (vii): By Proposition 2.9,

(xiii) = (xi) : Clear.

(xi) = (iii) : If x is any non-zero element of R then the sequence 0 —
Anng(x) » R —» xR - 0 splits, where Anng{x) denotes the right annihilator
of x in R. Whence Z{R) = 0.

(i) = (xiii) : By [6, Proposition 3.3].

(xiv) < (xii) < (iv) <> (ii) : By symmetry.

Finally we conclude this section with the following.

Proposition 3.8. For a left self-injective ring R, the following condi-
tions are equivalent :

(i) R is a left P-Slring.

(ii) R is a regular ring.

Proof. (i) =>(ii): By Proposition 2.5, since R is a left P-SILring
it follows that R is left non-singular. And since R is left self-injective,
J(R) =0 and R is a regular ring.

(ii) = (i): Since R is a regular ring, every R-module is P-injective,
in particular every singular left R-module is P-injective, and hence R is
a left P-Slring.
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