Mathematical Journal of Okayama University

Volume 34, Issue 1

1992

Article 14

JANUARY 1992

Subrings Containing Ideals

Shalom Feigelstock*

^{*}Bar-Ilan University

Math. J. Okayama Univ. 34 (1992), 149-151

SUBRINGS CONTAINING IDEALS

SHALOM FEIGELSTOCK

All groups in this note are abelian, with addition the group operation. A group belonging to a class \mathscr{C} of abelian groups will be called a \mathscr{C} -group. The additive group of a ring R will be donoted R^+ , and E(G) will denote the additive group of the ring of endomorphisms of a group G.

In [1], Hirano proved that if a ring R is a subring of a ring S with S^+/R^+ a finite group, then there exists an ideal $I ext{ } ext$

Definition. A non-empty class \mathscr{C} of groups will be called a finite-like class if \mathscr{C} is closed with respect to subgroups, epimorphic images, extensions of \mathscr{C} -groups by \mathscr{C} -groups, and E(G) belong to \mathscr{C} for every \mathscr{C} -group G.

Examples of finite-like classes of groups are the class of: finite groups, finitely generated groups, bounded groups, groups G which do not possess an element of order p, for every prime p belonging to a set of primes P.

Theorem 1. Let \mathscr{C} be a finite-like class of groups, and let R be a subring of a ring S such that S^+/R^+ belongs to \mathscr{C} . Then S possesses a left ideal I_{ϵ} , and a right ideal I_{τ} , both contained in R, such that S^+/I_{ϵ}^+ , and S^+/I_{τ}^+ belong to \mathscr{C} .

Proof. Let $\varphi: R^+ \to E(S^+/R^+)$ be the homomorphism defined by $\varphi(a)(s+R^+) = as+R^+$ for all $a \in R$, and $s \in S$. Let $K_1 = \ker \varphi$. Clearly $K_1 = \{a \in R \mid aS \subseteq R\}$, and R^+/K_1 is a \mathscr{C} -group. Similarly, it follows that the group $K_2 = \{a \in R \mid Sa \subseteq R\}$ satisfies $R^+/K_2 \in \mathscr{C}$. Put $K = K_1 \cap K_2$. Since R^+/K is isomorphic to a subgroup of $(R^+/K_1) \oplus (R^+/K_2)$, it follows that R^+/K is a \mathscr{C} -group. Let $I_\ell = K + SK$, and $I_r = K + KS$. Clearly I_ℓ is a left ideal in S, and $I_\ell \subseteq R$. Since R^+/I_ℓ^+ is an epimorphic image of R^+/K , it follows that R^+/I_ℓ^+ is a \mathscr{C} -group. Similarly, I_r satisfies the desired properties.

An immediate consequence of Theorem 1 is:

150

S. FEIGELSTOCK

Corollary 2. Let \mathscr{C} be a finite-like class of groups, and let S be a ring such that S^+ does not belong to \mathscr{C} , and aS = Sa = S for all $a \in S$, $a \neq 0$. If R is a subring of S with S^+/R^+ a \mathscr{C} -group, then S = R.

Corollary 3. Let \mathscr{C} be a finite-like class of groups. Let S be a ring such that S^+ does not belong to \mathscr{C} , and let R be a subring of S with unity, satisfying aR = Ra = R for all $a \in R$, $a \neq 0$. If S^+/R^+ belongs to \mathscr{C} , then S is a ring direct sum $S = R \oplus T$, with T^+ a \mathscr{C} -group.

Proof. Theorem 1 yields that S possesses a left ideal I_{ℓ} , and right ideal I_r , both contained in R, such that S^+/I_{ℓ}^+ , and S^+/I_r^+ belong to \mathscr{C} . Since S^+ is not a \mathscr{C} -group, both I_{ℓ} and I_r are non-zero ideals. Let $a \in I_{\ell}$, $a \neq 0$. Then $R = Ra \subseteq I_{\ell}$, and so $I_{\ell} = R$. Similarly, $I_r = R$. Therefore R is a two-sided ideal in S. Let e be the unity in R, and $s \in S$. Then es = ese = se, and so e is a central idempotent in S. Put $T = \{s - se \mid s \in S\}$. Since R = Se, it follows that $S = R \oplus T$, with T^+ a \mathscr{C} -group.

Definition. A class of groups consisting only of finitely generated groups, and closed with respect to epimorphic images, and finite direct sums will be called a finitely generated class.

It it easy see that a class of groups \mathscr{C} is a finitely generated class if and only if \mathscr{C} is a finite-like class, and every group belonging to \mathscr{C} is finitely generated.

Theorem 4. Let \mathscr{C} be a finitely generated class of groups. Let R be a subring of a ring S such that S^+/R^+ belongs to \mathscr{C} . Then S possesses a two-sided ideal I contained in R such that S^+/I^+ is a \mathscr{C} -group.

Proof. Let $K = \{a \in R \mid aS \subseteq R\}$. Then R^+/K belongs to $\mathscr C$ as was shown in the proof of Theorem 1. Let $\{a_1+R^+, \cdots, a_n+R^+\}$ be a finite set of generators for S^+/R^+ . For each $1 \le i \le n$ define $\varphi_i \colon K \to E(S^+/R^+)$ via $\varphi_i(a)(s+R^+) = a_ias+R^+$ for all $a \in K$, and $s \in S$. Put $L_i = \ker \varphi_i$, and $L = \bigcap_{i=1}^n L_i$. It is readily seen that K/L belongs to $\mathscr C$, that $LS \subseteq R$, and $SL \subseteq R$. For any element $x \in S$, there exist integers $m_i, 1 \le i \le n$, and $b \in R$ such that $x = b + \sum_{i=1}^n m_i a_i$. Let $a \in L$, and $s \in S$. Since $bas \in R$, and $a_ias \in R$ for all $1 \le i \le n$, it follows that $xas \in R$, i.e., $SLS \subseteq R$. Put I = L + SL + LS + SLS. Clearly I is an ideal in S contained in R, and S^+/I^+ belongs to $\mathscr C$.

The following consequences of Theorem 4 are the counterparts of Corollaries 1-4 in [1]. The proofs are easy, and essentially the same as those given

in [1].

Corollary 5. Let \mathscr{C} by a finitely generated class of group, and let S be a simple ring such that S^+ does not belong to \mathscr{C} . If R is a subring of S with S^+/R^+ belonging to \mathscr{C} , then S=R.

Corollary 6. Let \mathscr{C} be a finitely generated class of groups, and let S be a ring such that S^+ does not belong to \mathscr{C} . If R is a subring such that R is simple, R possesses a unity, and S^+/R^+ belongs to \mathscr{C} , then S is a ring direct sum $S=R\oplus T$ with T^+ belong to \mathscr{C} .

Corollary 7. Let \mathscr{C} be a finitely generated class of groups, and let S be a ring such that T^+ does not belong to \mathscr{C} for every non-zero epimorphic image T of S. Let d be a derivation on S. If im(d) belongs to \mathscr{C} , then d=0.

Corollary 8. Let \mathscr{C} be a finitely generated class of groups, and let S be a ring such that T^+ does not belong to \mathscr{C} for every non-zero epimorphic image T of S. Let d be the inner derivation on S induced by an element x in S. If im(d) belongs to \mathscr{C} then x is contained in the center of S.

REFERENCE

[1] Y. HIRANO: On extensions of rings with finite additive index. Math. J. Okayama Univ. 32 (1990), 93—95.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
BAR-ILAN UNIVERSITY
RAMAT-GAN 52900
ISRAEL

(Received December 25, 1991)