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ON THE EXISTENCE OF IDENTITIES
IN IDEALS AND SUBRINGS

Hiroakt KOMATSU and Hisao TOMINAGA

Throughout the present paper, R(+ 0) will represent a ring with Ja-
cobson radical J = J(R). Recently, the second author and I. Murase [10,
Theorem 1] and Dinh Van Huynh [2, Theorem 1] gave some necessary
and sufficient conditions for the existence of a right (resp. left) identity in
R with J nilpotent such that R/J has an identity. Furthermore, Dinh Van
Huynh [2] investigated the conditions for the existence of a right identity
in an ideal of a right Artinian ring.

In the present paper, we improve considerably the results in [2] (§2).
extend [7, Lemma], [4, Proposition 4.4]. [9, Theorem 3], [5, Theorem 1]
and [3, Proposition 2.1] to subrings in place of ideals, and deduce some
results in [8] (§3).

l. Let M be a non-zero left (resp. right) R-module. Following [9],
M is called s-unital if u € Ru (resp. u € uR) for all u € M. If xR (resp.
Rg) is s-unital, we term R a left (resp. right) s-unital ring. Given a left
(resp. right) ideal 7 of R and a subset L of zM (resp. Mz), we set /'L =
(ue MlIuc L} (resp. LI''={ucMlul SL}) and »y{I) (=110 )=
{ue M|Iu=0} (resp. Iu(I)={uc Mlul =0}). Let &, = @{R) be the
intersection of all maximal right ideals of R, and K,= K,(R)=
{x € R|xR € @,}. Then K, is an ideal of R which is known as the (right)
Kertész radical of R. As usual, the left (resp. right) annihilator of a
subset S of R will be denoted by /(S) (resp. »(S)).

In preparation for the subsequent study, we state the following
lemmas.

Lemma 1. Let M be a non-zero left R-module. Then the following are
equivalent

1) &M is s-unital.

2) For every proper R-submodule M’ of M, M/ M’ s unital.

3) For every R-submodule M' of M, R-'\M' =M.

4) For every finite subset U of M, there exists an element e in R such
that eu= u for all u € U.

Proof. See [9, Theorem 1].
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Lemma 2. Let [ be a left ideal of a ring R. Then the following are
equivalent:

1) [ is left T-nilpotent.

2) For every non-zero right R-module M, [, (I) =+ 0.

3) For every right R-module M, Iy(I) is essential in M.

4) For every non-zero left R-module M, IM + M,

5) For every left R-module M, IM is small in g M.

Proof. The proof proceeds in the same way as that of [1, Proposition 8].
Only minor modifications are needed in proving 2)=4) and 5)=1).

Corollary 1. Let I be a (left and right) T-nilpotent ideal of a ring R.
If R/I has an identity and RI = IR, then R is a dirvect sum of a ring with
identity and a T-nilpotent ving.

Proof. Choose an idempotent e such that e+ is the identity of R/
Then

(R, +) = R11 D Ria D Ro1 ® Roo,

where Ry, = eRe, Rjy=eR(l1—e), Roy=(1—e)Re, and Roo =(1—e)R(1—e).
Since Rio+ Ro1+ Roo E I, we have

(I,+) = ele ® Rio® Ro1 @ Roo.
Now, it is easy to see that

(RI+) = ele ® R0 ® (Ro1le+ RooRo1) @ (Ro1 Rio+ Rdy),
(IR,+) = ele ® (eIR1o+ R10Rw0) ® Ror @ (Ro1 Rio+ Rio).

Since RI = IR, from these it follows that Rp = elR10+ R10Ro0 and Roy =
Role+ RooRoi.  Since ele is a left T-nilpotent ideal of Ry, elR10 = eleR\o
is small in Ry, as left R;;-module (Lemma 2), and therefore Rio = R10Roo0.
Similarly, R10Roo is small in Rio as right Rep-module, and consequently
R0 =0. A similar argument shows that Ry = 0, and therefore R=F:1 D
Roo.

Let / be an ideal of R. An idempotent ¢ of R is called a right
(resp. left) identity of R modulo I if e+1 is a right (resp. left) identity of
R/I

Lemma 3. Let ! be a quasi-regular ideal of R. If R has a right identity
e modulo I, then the following are equivalent:
1) R has a right identity.
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2) Jis a small left ideal of R.
3) Iis a small left ideal of R.

Proof. 1)=2). Since R is a cyclic left R-module, every proper left
ideal of R is contained in some (modular) maximal left ideal. Hence, J
is a small left ideal of R.

2)=3). Trivial

3)=1). Since R =Re+1I, we get R = Re by 3).

Lemma 4. Suppose K- = 0. If R has a left identity e modulo ], then e
is a right identity of R. In particular, if R has a left identity then R has an
identity.

Proof. Let a be an arbitrary element of R. Then (a—ae)R =
(a—ae)eR+]J)= (a—ae)]. Since RJ is seen to be contained in all max-
imal right ideals of R, the last implies that ¢ —ae € K, namely a— ae = 0.

2. In this section, we improve [2, Theorems 1, 3 and 7]. Our main
theorem (Theorem 1) will be followed by corollaries which generalize
[2, Theorem 10 and Corollary 11]. We begin with reproving [5, Lemma 1].

Proposition 1. (1) A 7ing R has a left identity if and only if R is
left s-unital and there exists an element ¢ in R such that [(c) is nil.

(2) A ring R has an identity if and only if R is left s-unital and there
exists an element ¢ in R such that I(c) = 0.

Proof. (1) Suppose that R is left s-unital and there exists ¢ € R
such that /(¢) is nil. Choose b € R with bc = ¢. Since 2—b € I(c), we
have (52— b)™ = 0 for some positive integer m, and so ™' —b™ = 0 with
some &' in the subring generated by 5. Now, let 2 be an arbitrary element
of R, and choose d € R such that d(¥'a—a)=ba—a. Since d—db™"< i(c),
we have (d—db™)* = 0 with some positive integer .. On the other hand,
noting that ™(b'a—a)=(b™"b'—b™)a=0, we get(d—db™)(b'a—a)=ba—a.
This together with (d—db™)* = 0 proves that ¥a—a =0. The converse
is trivial, since if e is a left identity of R then (/(e))?> = 0.

(2) The existence of a right identity of R is rather familiar, so that
R has an identity by (1).

We are now in a position to prove the following that improves
[2, Theorem 1].

Produced by The Berkeley Electronic Press, 1981



Mathematical Journal of Okayama University, Vol. 23[1981], Iss. 2, Art. 8

156 H. KOMATSU and H. TOMINAGA

Theorem 1. If I is a nil ideal of R and R/I has a right identity, then
the following ave equivalent:

1) R has a right identity.

2) Jis a small left ideal of R.

3) [Iis a small left ideal of R.

4) R is right s-unital,
If I is a left T-nilpotent ideal of R and R/I has a right identity, then 1)—4)
are equivalent to the following:

5) For every ideal H of R with HS I, HR™' = H.

6) IR=1

Proof. In view of Lemma 3, it is enough to show that 4) implies 1).
As is well known, R has a right identity e modulo I. Since Rr(e) =
(Re+1)r(e) S I, v(e) is a nil right ideal. Hence, by Proposition 1 (1), R
has a right identity. We assume henceforth that 7 is left 7-nilpotent, and
show that 4)=5)= 6)= 3).

4)=5). Obvious by Lemma 1.

" 5)=>6). Since IR S I, we have (JR)R~' = IR. Combining this with

the fact that 7 < (/R)R™!, we readily obtain / = IR.

6)=3). By Lemma 2, /R is a small left ideal of R. Thus 6) implies
3).

Corollary 2. If I is a T-nilpotent ideal of R and R/I has an identity,
then the following are equivalent:

1) R has an identity.

2) Iis a small left ideal and a small right ideal of R.

3) R isleft and right s-unital.

4) RI=IR=1.

5) RI=IR and R*=R.

6) RI=IR and I(R)N »(R)=0.

Proof. The equivalence of 1)—4) is obvious by Theorem 1. It there-
fore remains to prove that each of 5) and 6) implies 1). Recall here that
if 5) or 6) is satisfied then R = U@ T, where U has an identity and 7T is
T-nilpotent (Corollary 1). If 5) is satisfied then the T-nilpotent ideal T
is idempotent, and hence 7 = 0 by Lemma 2. Henceforth, we assume that
6) is satisfied.  Suppose. T # 0. In general, if tm*** t1fi -t + 0 for
some b, >, tm H, =, tw € T, then [+(T) N »7(T) =0 implies that fn+1tm
et tw#+ 0 for some tmer €E T or fme bt tptws1#+ 0 for some
tmy1 € T. But, this contradicts the T-nilpotency of 7. Thus, T =0,
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and so R = U.

The next includes [2, Theorem 10].

Corollary 3. Suppose that R has a left identity e modulo J. If K, is
nil then the following are equivalent.

1) R has a right identity.

2) Jis a small left ideal of R.

3) K, is a small left ideal of R.

4) R is right s-unital.
If K, is left T-nilpotent then 1) —4) are equivalent to the following:

5) For every ideal H of R with H € K,, HR™' = H.

6) K,R=K..

Proof. It is easy to see that K,(R/K,)=0. Since e+ K, is a left
identity of R/K, modulo J(R/K,)=J/K, e+K, is a right identity of
R/K, by Lemma 4. Thus, we can apply Theorem 1 for [ = K.

As an easy combination of Theorem 1 and Corollary 3, we obtain the
following generalization of [2, Corollary 11].

Corollary 4. If ] is left T-nilpotent and R/] has an identity, then the
Jollowing are equivalent:

1) R has a right identity.

2) Jis a small left ideal of R.

3) K, is a small left ideal of R.

4) R is right s-unital.

5) For every ideal H of R with H < J, HR™' = H.

6) For every ideal H of R with H € K,, HR™' = H.

7) JR=1]

8) K,R=K.,

In the rest of this section, our interest will be exclusively directed
toward the existence of identities in ideals.

A ring R is called a left (resp. right) perfect ring if J is left (resp.
right) T-nilpotent and R/J is Artinian. (In case R has an identity, it is
well known that R is a right perfect ring if and only if R satisfies the
minimum condition for principal left ideals.)

Now, [2, Theorems 3 and 7] can be improved as follows:

Theorem 2. Let A be an ideal of R.
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(1) IfJis nil and R/] is Antinian then the following are equivalent:

1) A has a right identity.

2) J(A) is a small left ideal of A.

3) A is right s-unital.
If R is left perfect then 1) — 3) ave equivalent to the following:

4) For every ideal H of A with H < J(A), HA™' = H (in A).

5) J(AA =J(A).

(2) If R is a (left and right) perfect ring, then the following are
equivalent:

1) A has an identity.

2) J(A) is a small left ideal and a small right ideal of A.

3) A is s-unital.

4) AJ(A)=J(AA=J](A).

5) AJ(A)=J(A)A and A% = A.

6) AJ(A)=J(AA and i.(A) N ra(A) =0.

Proof. In either case, J(A)= A NJ and A/J(A) is isomorphic to the
semisimple Artinian ring (A+/)/J. Hence, (1) and (2) are immediate by
Theorem 1 and Corollary 2, respectively.

Finally, we note that [2, Corollary 4] can be improved as follows:

Proposition 2. Let A be a left ideal of a left m-vegular ving R. Then
A has a right identity if (and only if) there exists cE A such that (c)=0.

Proof. By hypothesis, there exists a positive integer # and an element
e in A such that ¢ = ec™. Then ¢ =ec and e is a right identity of A.

3. First, we generalize the key lemma of [7] as follows:

Proposition 3. Let R be a ring satisfying the maximum condition for
left annihilators., If A is a subring of R, then the following ave equivalent

1) A has a left identity.

2) A contains an element a such that aA= A and bA= A for all
be A with ab = a.

Proof. It is enough to show that 2) implies 1). According to 2),
there exists an infinite sequence {a»} of elements in A such that an-,a» =
an-1 (@o=a) and a,A=A. Then #(an_\) 2 »(a,) for all »n. Since R
satisfies the minimum condition for right annihilators, there is a positive
integer % such that 7(ax-1) = 7(ax). Then, as can be easily seen, aa,= a.
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Now, given x € A, there exists y € A such that x = a.y. Since a,_(y—a.y)
=0, we see that 0= a.(y—asy) = x—arx, namely a, is a left identity
of A.

Corollary 5. Let I be an ideal of a vight Artinian ving R. Let a be an
element of R. If a* = a+1 is an idempotent in R* = R/I, then aR contains
an idempotent e such that e* = a*.

Proof. Let A be a right ideal of R which is minimal with respect to
the property that A S aR and A* = ¢*R*. Without loss of generality,
we may assume that a is in A. Then, since a*A* = a**R* = a*R* and
aA S A, we obtain 2A = A. Next, if b is an element in A such that
ab = a, then b*A* = g*b*A* = a*A* = @*R* and bA S A, and therefore
bA=A. Thus, A contains a left identity e with ae = @, by Proposition
3 and its proof. It is now immediate that e* = a*e* = g*.

We are now in a position to state the first main theorem of this sec-
tion that generalizes [4, Proposition 4.4], [5, Theorem 1] and [9. Theorem
3].

Theorem 3. Let A be a subring of a left Goldie ring R. Then the
Jollowing ave equivalent:

1) A has a left identity.

2) A is left s-unital.

3) A contains an element a such that aA = A and bA = A for all
be A with ab = a.

Proof The equivalence of 1) and 3) is included in Proposition 3.
Thus, in view of Proposition 1 (1), it suffices to show that there exists an
element of A whose left annihilator in A is nil. Suppose on the contrary
that A contains no element whose left annihilator in A is nil. We shall
show that there exists an infinite sequence {a.} of non-nilpotent elements
of A such that a, € ls(la1+ -+ +ax-1) and (Rai+ - +Ran) NI (a,+ -
+an) =0, which will complete the proof. Choose first a non-nilpotent
element @) in A such that /(@) is maximal in the (non-empty) family
{/(a)la€ A is not nilpotent}. Observe Ra; N I(a;) =0. Now, we pro-
ceed by induction. Let b, = a1+ +an and choose a non-nilpotent
element @n41 in /a(b») such that /(@n+1) is maximal in the family {/(a)]
a € la(bn) is not nilpotent). Observe that Ransi N (an+a) = 0.
Since (Ra\+ ** +Ran) N I(by) =0, we can easily see that {{bn+ani1) =
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l(bn) N l(an+1). Then

(Ral+ +Ran+l) N [(bn+an+1)
= [{(Ral+ +Ran) N l(bn)]"‘Ram»l] N l(anﬂ)
= Ran1 N 1(an+l) =0.

This completes the induction.

Following [6], we say that a ring R is almost left Artinian (resp. almost
left Noetherian) if for each infinite descending (resp. ascending) chain
L2052 (resp. I, I, S -) of left ideals of R there exists a positive
integer & such that R*7, < I, (resp. R*I, < I.) for all .

Corollary 6. (1) Let R be an almost left Noetherian ring, and A a
subring of R. If A is left s-unital then A has a left identily.

(2) Let R be an almost left Artinian ring, and A a subring of R. If A
is left s-unital then A has a left identity.

Proof. (1) As was claimed in the proof of [6, Theorem 3], there
exists a positive integer ¢ such that R/»(R9) is left Goldie. Noting that
A is left s-unital, we can easily see that AN »(R°)=0. Hence, A is
isomorphic to the subring (A+7(R%)/»(R?) of the left Goldie ring
R/7(R?), and consequently A has a left identity by Theorem 3.

(2) This is obvious by (1) and [6, Theorem 4].

The next generalizes [3, Proposition 2.1] and [2, Theorem 14].

Theorem 4. Let R be a ring satisfying the maximum condition for
right annihilators. If A is a left s-unital subrving of R, then A has a left
identity.

Proof. Given a< A, we set I(a) = r(R(1—a)). By hypothesis, we
can select an element ¢ in A such that /(e) is maximal in the family of
all such right annihilators /(a) (¢ € A). Suppose A& I(e), and choose
b€ A such that & I(e). By Lemma 1, there exists an element ¢ in A
such that e’e = e and ¢’ =5b. Then b is obviously in I(e’). Moreover,
if x is in I{e) then (¢'—e)x =e(l1—e)x =0, and so R(1—¢)x =
R((1—e)x—(e'—e)x)=0. Thus we have I(e)E I(e). This contradic-
tion shows that A € I(e), whence if follows that A(a—ea) =10 for all
a€ A. This implies that e is a left identity of A.

Combining Theorem 4 with Corollary 6 (1), we readily obtain
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Corollary 7. Let R be a one-sided Noetherian ving, and A a subring
of R. If A is left (vesp. right) s-unital then A has a left (resp. right)
identity.

As an application of Corollary 7, we prove [8, Proposition 3.11] (see
also [4, Corollary 2.3]).

Corollary 8. If the polynomial ring R[X] is right Noetherian, then R
has a right identity.

Proof. 1t is a routine to show that R is right s-unital. Hence, R has

-

a right identity by Corollary 7.

The next is a partial extension of [2, Theorem 3] in another direction.

Corollary 9. Let R be a onesided Artinian ring, and A a subring of
R. If A is left s-unital then A has a left identity.

Proof. Obviously, R22 A%2=A. Since R?2is left or right Noetherian
according as R is left or right Artinian (see [10, Theorem 4 (c)]). A has
a left identity by Corollary 7.

We end by generalizing [8, Corollary 2.4] as follows:

Corollary 10. Let A be a subring of a one-sided Noetherian (resp.
Artinian) ring R. If every right ideal of A is a right annihilator and every
left ideal of A is a left annihilator, then A has an identily.

Proof. It is immediate that A is an s-unital ring. Hence, A has an
identity by Corollary 7 (resp. Corollary 9).
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