Mathematical Journal of Okayama University

Generalized Derivations with Commutativity and Anti-commutativity Conditions

Howard E. Bell*

Nadeem-ur Rehman ${ }^{\dagger}$

[^0]Copyright © 2007 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Generalized Derivations with Commutativity and Anti-commutativity Conditions

Howard E. Bell and Nadeem-ur Rehman

Abstract

Let R be a prime ring with 1 , with $\operatorname{char}(\mathrm{R}) \neq 2$; and let $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ be a generalized derivation. We determine when one of the following holds for all $x, y \in R$: (i) $[F(x) ; F(y)]=0$; (ii) $F(x) O F(y)$ $=0$; (iii) $\mathrm{F}(\mathrm{x}) \mathrm{OF}(\mathrm{y})=\mathrm{xOy}$.

Math. J. Okayama Univ. 49 (2007), 139-147

GENERALIZED DERIVATIONS WITH COMMUTATIVITY AND ANTI-COMMUTATIVITY CONDITIONS

Howard E. BELL and Nadeem-Ur REHMAN

Abstract

Let R be a prime ring with 1 , with $\operatorname{char}(R) \neq 2$; and let $F: R \longrightarrow R$ be a generalized derivation. We determine when one of the following holds for all $x, y \in R:(i)[F(x), F(y)]=0 ;(i i) F(x) \circ F(y)=0$; (iii) $F(x) \circ F(y)=x \circ y$.

1. Introduction

Let R be an associative ring with center $Z=Z(R)$. For each $x, y \in R$ denote the commutator $x y-y x$ by $[x, y]$ and the anti-commutator $x y+y x$ by $x \circ y$. Recall that a ring R is prime if for any $a, b \in R, a R b=\{0\}$ implies that $a=0$ or $b=0$. An additive mapping $d: R \longrightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. In particular, for fixed $a \in R$, the mapping $I_{a}: R \longrightarrow R$ given by $I_{a}(x)=[x, a]$ is a derivation called an inner derivation.

An additive function $F: R \longrightarrow R$ is called a generalized inner derivation if $F(x)=a x+x b$ for fixed $a, b \in R$. For such a mapping F, it is easy to see that

$$
F(x y)=F(x) y+x[y, b]=F(x) y+x I_{b}(y) \text { for all } x, y \in R .
$$

This observation leads to the following definition, given in [6]: an additive mapping $F: R \longrightarrow R$ is called a generalized derivation with associated derivation d if

$$
F(x y)=F(x) y+x d(y) \text { for all } x, y \in R .
$$

Familiar examples of generalized derivations are derivations and generalized inner derivations, and the later include left multipliers and right multipliers. Since the sum of two generalized derivations is a generalized derivation, every map of the form $F(x)=c x+d(x)$, where c is a fixed element of R and d is a derivation, is a generalized derivation; and if R has 1 , all generalized derivations have this form.

Our primary purpose is to determine when a generalized derivation F satisfies $[F(x), F(y)]=0$ for all $x, y \in R$, where R is a prime ring with 1 for

[^1]which $\operatorname{char}(R) \neq 2$; and we also study the conditions $F(x) \circ F(y)=0$ and $F(x) \circ F(y)=x \circ y$. Our results extend known results for derivations.

2. Preliminary Results

We shall use without explicit mention the following basic identities:

$$
\begin{aligned}
& {[x y, z]=x[y, z]+[x, z] y } \\
& {[x, y z]=y[x, z]+[x, y] z } \\
x \circ(y z)= & (x \circ y) z-y[x, z]=y(x \circ z)+[x, y] z \\
(x y) \circ z= & x(y \circ z)-[x, z] y=(x \circ z) y+x[y, z]
\end{aligned}
$$

We shall also use the elementary fact that if R is prime and d is a nonzero derivation, then $x d(R)=\{0\}$ or $d(R) x=\{0\}$ implies $x=0$.

We shall require several lemmas, all but two of which are known.
Lemma 2.1. Let R be a prime ring and d a nonzero derivation of R.
(a) $([4$, Theorem 2]). If $\operatorname{char}(R) \neq 2$ and $[d(x), d(y)]=0$ for all $x, y \in R$, then R is commutative.
(b) $([5$, Theorem 2]). If $\operatorname{char}(R) \neq 2$ and $[a, d(R)]=\{0\}$, then $a \in Z$.

Lemma 2.2 ([8, Corollary 3.2]). Let R be a prime ring. If R admits a nonzero generalized derivation F with associated derivation $d \neq 0$, such that $[F(x), x]=0$ for all $x \in R$, then R is commutative.

Lemma 2.3 ([1, Theorem 4.3]). Let R be a prime ring with $\operatorname{char}(R) \neq 2$, and let I be a nonzero ideal of R. If R admits a nonzero derivation d such that $d(x) \circ d(y)=0$ for all $x, y \in I$, then R is commutative.

Lemma 2.4. Let R be a prime ring with 1 . Let F be a generalized derivation with associated derivation $d \neq 0$, such that $d(F(x))=0$ for all $x \in R$; and let $c=F(1)$. Then $c d(x)+d(x) c=0$ for all $x \in R$. Moreover, if $\operatorname{char}(R) \neq 2$, $c^{2} \in Z$; and if $c \in Z$, then $c=0$ and $F=d$.

Proof. We have

$$
\begin{equation*}
d(F(x))=0 \text { for all } x \in R \tag{2.1}
\end{equation*}
$$

Replacing x by $x y$ in (2.1) and using (2.1), we get

$$
\begin{equation*}
F(x) d(y)+d(x) d(y)+x d^{2}(y)=0 \text { for all } x, y \in R \tag{2.2}
\end{equation*}
$$

Applying d again on (2.2) and using (2.1), we have

$$
\begin{gather*}
F(x) d^{2}(y)+d^{2}(x) d(y)+d(x) d^{2}(y)+d(x) d^{2}(y) \tag{2.3}\\
+x d^{3}(y)=0 \quad \text { for all } x, y \in R .
\end{gather*}
$$

But replacing y by $d(y)$ in (2.2), we get

$$
\begin{equation*}
F(x) d^{2}(y)+d(x) d^{2}(y)+x d^{3}(y)=0 \tag{2.4}
\end{equation*}
$$

and combining (2.3) and (2.4), we find that

$$
\begin{equation*}
d(x) d^{2}(y)+d^{2}(x) d(y)=0 \text { for all } x, y \in R \tag{2.5}
\end{equation*}
$$

Since R has 1 ,

$$
\begin{equation*}
F(x)=F(1 x)=F(1) x+1 d(x)=c x+d(x) \text { for all } x \in R . \tag{2.6}
\end{equation*}
$$

Using the hypothesis that $d(F(R))=\{0\}$, we get $d(c)=0$; and by applying d to (2.6), we obtain

$$
\begin{equation*}
c d(x)+d^{2}(x)=0 \text { for all } x \in R . \tag{2.7}
\end{equation*}
$$

Using this fact to substitute for $d^{2}(x)$ and $d^{2}(y)$ in (2.5), we get

$$
d(x)(-c d(y))+(-c d(x)) d(y)=0 ;
$$

hence

$$
(d(x) c+c d(x)) d(y)=0 \text { for all } x, y \in R
$$

Thus,

$$
\begin{equation*}
c d(x)+d(x) c=0 \text { for all } x \in R . \tag{2.8}
\end{equation*}
$$

Suppose now that char $(R) \neq 2$. It follows from (2.8) that $\left[c^{2}, d(R)\right]=\{0\}$, so that $c^{2} \in Z$ by Lemma 2.1(b). If $c \in Z$, then (2.8) yields $2 c d(R)=\{0\}$; hence $2 c=0=c$ and $F=d$.

Henceforth, except in our final section, R will always be a prime ring with extended centroid C and central closure $S=R C$. (For definitions and basic properties of C and S, see [7, Section 2] or [3, Chapter 1, Section 3]). Note that if R has 1 , then C is the center $Z(S)$ of S.

Lemma 2.5 [2, Theorem 2.1]. Let R be a prime ring and let d, g, h be derivations on R for which there exist $a, b \in R \backslash Z$ such that $d(x)=a g(x)+h(x) b$ for all $x \in R$. Then there exists $\lambda \in C$ such that $d(x)=[\lambda a b, x], g(x)=[\lambda b, x]$ and $h(x)=[\lambda a, x]$ for all $x \in R$.

Lemma 2.6. Let R be prime ring with 1 . let F be a generalized derivation with associated derivation $d \neq 0$, such that $d(F(x))=0$ for all $x \in R$; and suppose $c=F(1) \notin Z$. Then
(i) there exists $\lambda \in C$ such that $d(x)=[\lambda c, x]$ for all $x \in R$;
(ii) F can be extended to a generalized derivation \hat{F} on S;
(iii) if $[F(x), F(y)]=0$ for all $x, y \in R$, then $[\hat{F}(x), \hat{F}(y)]=0$ for all $x, y \in S$.

Proof. (i) By Lemma 2.4, $c d(x)+d(x) c=0$ for all $x \in R$; hence by Lemma 2.5 , there exists $\lambda \in C$ such that $d(x)=[\lambda c, x]$ for all $x \in R$.
(ii) Define $\hat{F}(x)=c x+[\lambda c, x]$ for all $x \in S$.
(iii) Let $x \in S$, and write $x=\sum_{i=1}^{n} r_{i} u_{i}$, where $r_{i} \in R, u_{i} \in C$. Then using the fact that $u_{i} \in Z(S)$, we get $\hat{F}(x)=\sum c r_{i} u_{i}+\sum\left[\lambda c, r_{i} u_{i}\right]=$ $\sum u_{i}\left(c r_{i}+\left[\lambda c, r_{i}\right]\right)=\sum u_{i} F\left(r_{i}\right)$; and (iii) follows at once.

Lemma 2.7 [7, Theorem 3]. If R is prime and S satisfies a generalized polynomial identity over C, then S is primitive.

3. The condition $[F(x), F(y)]=0$

In view of Lemma 2.1(a), it is natural to conjecture that if a prime ring R of characteristic different from 2 admits a nonzero generalized derivation F such that $[F(x), F(y)]=0$ for all $x, y \in R$, then R is commutative. However, this is not the case.

Example 3.1. Let R be either the ring H of real quaternions or the subring K of H consisting of all elements $a+b i+c j+d k$ where a, b, c, d are integers. Define $F(x)=i x+x i$ for all $x \in R$. Then R is a noncommutative prime ring, and F is a generalized derivation such that $[F(x), F(y)]=0$ for all $x, y \in R$.

Example 3.2. Let K be any field, and let R be the ring $M_{2}(K)$ of 2×2 matrices over K. Define $F(x)=c x+x c$, where c is either $e_{11}-e_{22}$ or e_{12}. It is easy to verify that, in either case, $[F(x), F(y)]=0$ for all $x, y \in R$.

Example 3.3. Let R be the noncommutative prime $\operatorname{ring} M_{2}(\mathbb{Z})$; and for arbitrary $x=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in R$, define $d(x)=\left[\begin{array}{cc}0 & -b \\ c & 0\end{array}\right]$. Define $F: R \longrightarrow R$ by $F(x)=\left(e_{11}-e_{22}\right) x+d(x)$. It is easily verified that d is a derivation on R, so that F is a generalized derivation; and since $F\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{cc}a & 0 \\ 0 & -d\end{array}\right]$, $[F(x), F(y)]=0$ for all $x, y \in R$. Note that F is the restriction to R of the $\operatorname{map} \hat{F}: M_{2}(Q) \longrightarrow M_{2}(Q)$ given by $\hat{F}(x)=c x+x c$, where $c=\frac{1}{2} e_{11}-\frac{1}{2} e_{22}$.

In fact, for 2-torsion free prime rings with 1 , these examples illustrate all possibilities, as our next (and principal) theorem shows.

Theorem 3.4. Let R be a prime ring with 1 such that $\operatorname{char}(R) \neq 2$. If R admits a nonzero generalized derivation F such that $[F(x), F(y)]=0$ for all $x, y \in R$, then one of the following holds:
(i) R is commutative;
(ii) R is a noncommutative subring of a division ring Δ, and there exists $\delta \in \Delta$ such that $F(x)=\delta x+x \delta$ for all $x \in R$;
(iii) R is a noncommutative subring of a 2×2 total matrix ring M over a field, and there exists $m \in M$ such that $F(x)=m x+x m$ for all $x \in R$.
The following lemma is the first step in the proof.
Lemma 3.5. Let R be a noncommutative prime ring with 1 and with $\operatorname{char}(R) \neq 2$. Let F be a nonzero generalized derivation with associated derivation d, such that $[F(x), F(y)]=0$ for all $x, y \in R$. Then
(i) $d(F(x))=0$ for all $x \in R$;
(ii) $c=F(1) \notin Z$ and $c^{2} \in Z$;
(iii) S is primitive and there exists $s \in S$ such that $s^{2} \in Z(S)$ and $\hat{F}(x)=s x+x s$ for all $x \in S$.
Proof. (i) If $d=0$, then $c \neq 0$ and $[c x, c y]=0$ for all $x, y \in R$; thus $c R$ is a nonzero commutative right ideal. But a noncommutative prime ring cannot have such a right ideal, hence $d \neq 0$.

We have

$$
\begin{equation*}
[F(x), F(y)]=0 \text { for all } x, y \in R \tag{3.1}
\end{equation*}
$$

Replacing y by $y z$ in (3.1) and using (3.1), we get

$$
\begin{equation*}
F(y)[F(x), z]+y[F(x), d(z)]+[F(x), y] d(z)=0 \text { for all } x, y, z \in R \tag{3.2}
\end{equation*}
$$

Now replacing y by $r y$ in (3.2) gives

$$
\begin{gathered}
F(r) y[F(x), z]+r d(y)[F(x), z]+r y[F(x), d(z)]+r[F(x), y] d(z) \\
+[F(x), r] y d(z)=0 \quad \text { for all } x, y, z, r \in R
\end{gathered}
$$

and hence application of (3.2) yields

$$
F(r) y[F(x), z]+r d(y)[F(x), z]+[F(x), r] y d(z)-r F(y)[F(x), z]=0
$$

Letting $z=F(x)$, we obtain $[F(x), r] y d(F(x))=0$ for all $x, y, r \in R$-i.e.

$$
[F(x), r] R d(F(x))=\{0\} \text { for all } x, r \in R
$$

Since R is prime, for each $x \in R$, either $F(x) \in Z$ or $d(F(x))=0$. The sets of $x \in R$ for which these alternatives hold are additive subgroups whose union is R; therefore, either $F(R) \subseteq Z$ or $d(F(x))=0$ for all $x \in R$. But by Lemma 2.2, $F(R) \subseteq Z$ would force R to be a commutative; hence
$d(F(R))=\{0\}$.
(ii) Since R is not commutative, it follows from Lemmas 2.4 and 2.1 (a) that $c \notin Z$ and $c^{2} \in Z$.
(iii) By Lemma 2.4 we now have $c d(x)+d(x) c=0$ for all $x \in R$; and since $c \notin Z$, it follows by Lemma 2.6 that there exists $\lambda \in C$ such that $d(x)=[\lambda c, x]=\lambda[c, x]$ for all $x \in R$. Therefore $\hat{F}(x)=c x+\lambda[c, x]$ for all $x \in S$. Since $\hat{F}(1)=c$ and $[\hat{F}(x), \hat{F}(y)]=0$ for all $x, y \in S$, we have

$$
\begin{equation*}
c(c x+\lambda[c, x])=(c x+\lambda[c, x]) c \text { for all } x \in S \tag{3.3}
\end{equation*}
$$

Now $c^{2} \in Z(S)$ by Lemma 2.4, so (3.3) can be written as

$$
(2 \lambda+1)\left(c^{2} x-c x c\right)=0 \text { for all } x \in S
$$

from which it follows that

$$
\begin{equation*}
2 \lambda+1=0 \text { or } c^{2} x-c x c=0 \text { for all } x \in S \tag{3.4}
\end{equation*}
$$

Since $c^{2} \in Z(S)$, either c is regular or $c^{2}=0$. In the first case we see from (3.4) that $2 \lambda+1 \neq 0$ contradicts the fact that $c \notin Z$; in the second case $2 \lambda+1 \neq 0$ yields $c=0$, contrary to our observation that $c \notin Z$. Therefore $\lambda=-\frac{1}{2}$ and for each $x \in S, \hat{F}(x)=c x-\frac{1}{2}(c x-x c)=s x+x s$, where $s=\frac{c}{2}$. Recalling that $[\hat{F}(x), \hat{F}(y)]=0$ for all $x, y \in S$, we see that S satisfies the generalized polynomial identity $\frac{1}{4}(c x+x c)(c y+y c)=\frac{1}{4}(c y+y c)(c x+x c)$ over C; hence S is primitive by Lemma 2.7.

Proof of Theorem 3.4. In view of Lemma 3.5 and Jacobson's density theorem, we may assume that R is a noncommutative dense ring of linear transformations on a vector space V over a division ring Δ, and that there exists $k \in R \backslash\{0\}$ such that $k^{2} \in Z$ and $F(x)=k x+x k$ for all $x \in R$. We need only show that $\operatorname{dim}(V) \leq 2$ and that in the case $\operatorname{dim}(V)=2, \Delta$ is a field. For any subset $W \subseteq V$, we denote by $\langle W\rangle$ the subspace generated by W.

By a standard argument it follows that if $\operatorname{dim}(V)>1$ and $k(u) \in\langle u>$ for each $u \in V$, then there exists $\beta \in \Delta \backslash\{0\}$ such that $k(u)=\beta u$ for all $u \in V$. But in this case we have $(k x+x k)(k y+y k)(u)=4 \beta^{2} x y(u)$ and $(k y+y k)(k x+x k)(u)=4 \beta^{2} y x(u)$ for all $u \in V$, contradicting our hypothesis that R is not commutative.

Assume that $\operatorname{dim}(V) \geq 3$, and choose $u \in V$ such that $k(u)=v \notin$ $<u>$. Since $k^{2} \in Z(R)$, there exists $\alpha \in Z(\Delta)$ such that $k^{2}(w)=\alpha w$ for all $w \in V$; therefore $k(v)=\alpha u$.

Suppose that $k(V) \nsubseteq<u, v>$, in which case there exists $z \in V \backslash$ $\langle u, v>$ and $w \in V$ such that $k(w)=z$. Then $\{u, v, w\}$ is a linearly independent subset of V and there exist $a, b \in R$ such that $a(u)=v, a(v)=$ $w, a(w)=u, b(u)=u, b(v)=0$ and $b(w)=0$. It is readily verified that the condition $(k a+a k)(k b+b k)(u)=(k b+b k)(k a+a k)(u)$ implies that $b(z)=z$. It follows that if $z \in\langle u, v, w\rangle$, then $z=b(z) \in\langle u\rangle$, contrary to the fact that $z \notin<u, v>$; therefore $\{u, v, w, z\}$ is a linearly independent subset of V and there exist $a^{\prime}, b^{\prime} \in R$ such that $\left(a^{\prime}(u), a^{\prime}(v), a^{\prime}(w), a^{\prime}(z)\right)=(v, w, u, 0)$ and $\left(b^{\prime}(u), b^{\prime}(v), b^{\prime}(w), b^{\prime}(z)\right)=(u, 0,0,0)$. But the argument given for a and b shows that this is incompatible with the requirement that $\left[F\left(a^{\prime}\right), F\left(b^{\prime}\right)\right]=$ 0 ; therefore we must have $k(V) \subseteq<u, v>$.

Since $\operatorname{dim}(V) \geq 3, \operatorname{ker}(k) \neq\{0\}$ and there exists $t \in V \backslash\{0\}$ such that $k(t)=0$. Therefore $k^{2}(t)=\alpha t=0$, so that $\alpha=0, k(v)=0$ and $k^{2}=0$. Thus, if $q \in V$ and $k(q)=\gamma u+\delta(v)$, then $0=k^{2}(q)=\gamma v$ so $\gamma=0$. Hence $k(V) \subseteq<v>$ and $\operatorname{ker}(k)$ has dimension at least 2 ; and since $<u, v>\neq \operatorname{ker}(k)$, there exists $y \in \operatorname{ker}(k) \backslash\langle u, v\rangle$. Choosing $a, b \in R$ such that $(a(u), a(v), a(y))=(v, y, u)$ and $(b(u), b(v), b(y))=(u, u, y)$, we get $(k b+b k)(k a+a k)(u)=0$ and $(k a+a k)(k b+b k)(u)=y-a$ contradiction. Therefore $\operatorname{dim}(V)<3$ as required.

Finally, assume $\operatorname{dim}(V)=2$. As before, we have linearly independent u, v such that $k(u)=v$. Let $\beta, \gamma \in \Delta$ and consider $a, b \in R$ such that $(a(u), a(v))=(0, \beta u)$ and $(b(u), b(v))=(0, \gamma u)$. Then $(k a+a k)(u)=\beta u$ and $(k b+b k)(u)=\gamma u$, and the condition $[F(a), F(b)]=0$ gives $\beta \gamma u=\gamma \beta u$, so that $\beta \gamma=\gamma \beta$. Thus Δ is a field.

4. Anti-commutativity conditions

In our final section we present some more elementary results, which involve anti-commutativity hypotheses.

Theorem 4.1. Let R be a prime ring with 1 and $\operatorname{char}(R) \neq 2$. If F is a generalized derivation on R such that $F(x) \circ F(y)=0$ for all $x, y \in R$, then $F=0$.
Proof. Note that if R is commutative, it is a domain; and the condition $F(x) \circ F(y)=0$ is just $2 F(x) F(y)=0$. Taking $y=x$ then shows that $F(x)=0$ for all $x \in R$.

Assume that $F \neq 0$. Then R is not commutative; and since $F(1) \circ F(1)=0$, we have $c^{2}=0$. Note that we cannot have $d=0$, for in that case $F(1) \circ F(x)=0$ becomes $c x c=0$ for all $x \in R$, which implies that $c=0$ and hence $F=0$.

We now have $d \neq 0$ and

$$
\begin{equation*}
F(x) \circ F(y)=0 \text { for all } x, y \in R . \tag{4.1}
\end{equation*}
$$

Replacing y by $y z$ in (4.1) and using (4.1), we get
(4.2) $(F(x) \circ y) d(z)-F(y)[F(x), z]-y[F(x), d(z)]=0$ for all $x, y, z \in R$.

Now replacing z by $z F(x)$ in (4.2) and using (4.2), we obtain

$$
\begin{equation*}
(F(x) \circ y) z d(F(x))-y z[F(x), d(F(x))]-y[F(x), z] d(F(x))=0 \tag{4.3}
\end{equation*}
$$

Finally, replacing y by $r y$ in (4.3) and using (4.3), we conclude that

$$
[F(x), r] y R d(F(x))=\{0\} \text { for all } x, y, r \in R .
$$

Again, invoking the primeness of R, we learn that $F(R) \subseteq Z$ or $d(F(x))$ $=0$ for all $x \in R$. But Lemma 2.2 implies that if $F(R) \subseteq Z$, then R is commutative, contrary to our assumption that $F \neq 0$; therefore $d(F(x))=0$ for all $x \in R$, and by Lemma $2.4 c d(x)+d(x) c=0$ for all $x \in R$. The condition that $F(1) \circ F(x)=0=c(c x+d(x))+(c x+d(x)) c$ reduces to $c x c=0$; hence $c=0$ and R is commutative by Lemma 2.3, so we have again contradicted our assumption that $F \neq 0$. Therefore, $F=0$.

Theorem 4.2. Let R be a 2 -torsion free ring with 1 . If F is a generalized derivation such that $F(x) \circ F(y)=x \circ y$ for all $x, y \in R$, then there exists c in Z such that $c^{2}=1$ and $F(x)=c x$ for all x in R. Thus, if R is prime, F is the identity map or its negative.

Proof. Since $F(1) \circ F(1)=1 \circ 1$, we have $c^{2}=1$. Thus, the condition $F(x) \circ F(1)=x \circ 1$ reduces to

$$
\begin{equation*}
c x c+d(x) c+c d(x)=x \tag{4.4}
\end{equation*}
$$

Postmultiplying and premultiplying this equation by c and comparing the results yields $d(x)+c d(x) c=0$; and premultiplying by c gives

$$
\begin{equation*}
c d(x)+d(x) c=0 \tag{4.5}
\end{equation*}
$$

It now follows from (4.4) that $c x=x c$ for all x in R, so that c is in Z; and since c is invertible, (4.5) shows that $d=0$ and hence $F(x)=c x$ for all x in R.

A similar proof yields our final theorem.

Theorem 4.3. Let R be a 2 -torsion free ring with 1 . If F is a generalized derivation such that $F(x) \circ F(y)+x \circ y=0$ for all $x, y \in R$, then there exists c in Z such that $c^{2}=-1$ and $F(x)=c x$ for all x in R.

References

[1] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002) 3-8.
[2] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
[3] I. N. Herstein, Rings with involution, Univ. Chicago Press, 1976.
[4] I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), 369-370.
[5] I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), 509-511.
[6] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), 1149-1166.
[7] W. S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[8] N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ. 44 (2002) 43-49.

Howard E. BELL
Department of Mathematics, Brock University, St. Catharines, Ontario,
CANADA L2S 3A1
e-mail address: hbell@brocku.ca
Nadeem-ur REHMAN
Department of Mathematics, Aligarh Muslim University, Aligarh 202002(U.P.), India
e-mail address: rehman100@gmail.com
(Received May 3, 2006)

[^0]: *Brock University
 ${ }^{\dagger}$ Aligarh Muslim University

[^1]: Mathematics Subject Classification. 16W25, 16N60, 16 U 80.
 Key words and phrases. prime rings, generalized derivations and commutativity.
 The first author was supported by the Natural Sciences and Engineering Research Council of Canada, Grant 3961.

