
Mathematical Journal of Okayama
University

Volume 50, Issue 1 2008 Article 10

JANUARY 2008

K-semimetrizabilities and C-stratifiabilities of
Spaces

Iwao Yoshioka∗

∗

Copyright c©2008 by the authors. Mathematical Journal of Okayama University is produced by
The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/12532289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Math. J. Okayama Univ. 50 (2008), 177–199

K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES

OF SPACES

Iwao YOSHIOKA

1. Introduction and definitions

In 1966, Arhangel’skĭı [1] introduced the concepts of symmetrizable spaces
and he showed that a T2-space is metrizable if, and only if, it has a compat-
ible symmetric d satisfying condition (A): d(F,K)>0 for any disjoint closed

subset F and compact subset K. Also, Arhangel’skĭi gave the class of spaces
with a compatible symmetric d satisfying condition (K): d(H,K)>0 for any
disjoint compact subsets H and K, and he conjectured that every sym-
metrizable space has a compatible symmetric satisfying condition (K). After
that, in 1975, Martin [26] presented the question on whether every regular
semimetrizable space is K-semimetrizable (i.e. it has a compatible semimet-
ric satisfying condition (K)) , or if every Moore space is K-semimetrizable.
In 1979, Burke [6] gave a negative answer that there exists a separable Moore
space which is not K-semimetrizable.

Lee [22] defined the class of c-stratifiable spaces which contains the classes
of spaces with a regular Gδ-diagonal and of γ, T2-spaces. He proved that a
space X is K-semimetrizable if, and only if, X is c-stratifiable semimetriz-
able if, and only if, X is regular c-stratifiable, first countable and β. On the
other hand, in [31], we introduced the concepts of strong α-ness and showed
that every strongly α, wM -space is metrizable. The properties of strongly
α-spaces were also studied in the same paper.

In this note, we study the relations among c-stratifiable spaces, strongly α-
spaces, K-semimetrizable spaces, developable spaces and Nagata spaces, and
the conditions for spaces to be K-semimetrizable or full K-semimetrizable.

We prove that a space X is K-semimetrizable if, and only if, it is a c-
stratifiable q, β-space. We also show that a space X is full K-semimetrizable
if, and only if, it is a wθ, β-space with a regular Gδ-diagonal, which is a
slight generalization of [32; Theorem 2]. We also show that a space X is
Nagata if, and only if, it is K-semimetrizable wcc if, and only if, it is regular
semimetrizable wcc. Moreover, for metrizations of wM -spaces, we have that
every wM -space with a G∗

δ -diagonal is metrizable.
In §2, we study the relations between c-stratifiable spaces and strongly α-

spaces. Also, we consider the conditions for spaces to be strongly α or
c-stratifiable. In particular, we show that in the realm of c-stratifiable
spaces, wN -spaces are Nagata, q-spaces are first countable, wcc-spaces are
k-semistratifiable and w∆-spaces are developable.
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178 I. YOSHIOKA

In §3, we study the class of K-semimetrizable spaces. First, we show
that a space X is K-semimetrizable if, and only if, it is c-stratifiable q,
β. Secondly, we prove that in the class of pseudocompact spaces or lo-
cally connected rim-compact spaces, developable K-semimetrizable spaces
are equivalent to c-stratifiable β-spaces (or K-semimetrizable spaces), and
every metacompact p-space with a Gδ-diagonal is a K-semimetrizable Moore
space.

In §4, for the class of wθ, wcc-spaces which contains the class of wM -
spaces, we show that every wθ, wcc-space with a G∗

δ -diagonal is metrizable
and every c-stratifiable wθ, wcc-space is metrizable.

Throughout this paper, we assume that all spaces are T1, but paracom-

pactness is assumed to be T2. We denote a sequence {xn|n ∈ N} by {xn}
and the set of natural numbers by N. Finally, we refer the reader to [9] for
undefined terms.

Definition 1.1. A g-function on a space X with a topology T is a map
g : N×X −→ T such that g(n, x) = gn(x) is an open neighbourhood of x for
every x ∈ X and each n ∈ N and we denote the map g by ({gn(x)}|x ∈ X).
For a subset A of X, we put gn(A) = ∪{gn(x)|x ∈ A}.

A point p in X is called a cluster point of a sequence {xn} ⊂ X if any
open neighbourhood of p contains xn for infinitely many n’s.

For a space X, we now consider the following conditions on a g-function
({gn(x)}|x ∈ X).

(A) If gn(x) ∩ gn(xn) 6= ∅ (n ≥ 1), then x is a cluster point of {xn}.
(B) If gn(x) ∩ gn(xn) 6= ∅ (n ≥ 1), then {xn} has a cluster point.
(C) If x ∈ gn(xn) (n ≥ 1), then x is a cluster point of {xn}.
(D) If x ∈ gn(xn) (n ≥ 1), then {xn} has a cluster point.
(E) If yn ∈ gn(xn) (n ≥ 1) and {yn} has a cluster point, then {xn} has a

cluster point.
(F) If xn ∈ gn(x) (n ≥ 1), then {xn} has a cluster point.
(G) If yn ∈ gn(p), xn ∈ gn(yn) (n ≥ 1), then p is a cluster point of {xn}.
(H) If yn ∈ gn(p), xn ∈ gn(yn) (n ≥ 1), then {xn} has a cluster point.
(I) If yn ∈ gn(p), xn, p ∈ gn(yn) (n ≥ 1), then p is a cluster point of {xn}.
(J) If yn ∈ gn(p), xn, p ∈ gn(yn) (n ≥ 1), then {xn} has a cluster point.
(K) If xn, p ∈ gn(yn) (n ≥ 1), then p is a cluster point of {xn}.
(L) If xn, p ∈ gn(yn) (n ≥ 1), then {xn} has a cluster point.
In the above conditions (A)-(L), we can assume that gn+1(x) ⊂ gn(x) for

every x ∈ X and each n ∈ N.
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K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES 179

Definition 1.2. A space with a g-function satisfying (A) is called a Nagata
space [15] (Nagata spaces were first defined by Ceder [7]) and a space with
a g-function satisfying (B) is called a wN -space [18]. In this case the g-
function is called a Nagata-function (a wN -function, respectively).

Definition 1.3. A space X is called a semistratifiable (β-, wcc (=weak
contraconvergent)-, q-, γ-, wγ-, θ-, wθ-) space if X has a g-function satis-
fying (C) ( (D), (E), (F), (G), (H), (I), (J), respectively). (See [17], [18] and
[31])

The following result is not difficult to see.

Proposition 1.4. [31; Theorem 3.5] A space X is wN if, and only if, it is

q and wcc.

Definition 1.5. A space X is called stratifiable [3] (equivalently, M3 [7])

if X has a g-function that satisfies (C) and if x /∈ gm(F ) for some m ∈ N,
whenever F is closed and x /∈ F . The class of k-semistratifiable spaces
introduced by Lutzer [24] can be characterized by the following conditions
[12, 31]. A space X is k-semistratifiable if, and only if, X has a g-function
({gn(x)}|x ∈ X) such that gm(F ) ∩ K = ∅ for some m ∈ N, whenever F is
closed, K is compact and F ∩K = ∅, if, and only if, in the class of T2-spaces,
X has a g-function ({gn(x)}|x ∈ X) such that whenever yn ∈ gn(xn) (n ≥ 1)
and {yn} −→ y, then {xn} −→ y.

The following implications are known.
Nagata =⇒ stratifiable =⇒ k-semistratifiable =⇒ semistratifiable =⇒ β.
Also, it is known that a Nagata space is equivalent to a first countable

stratifiable space and every stratifiable space is paracompact. Every semis-
tratifiable space X is subparacompact and has a Gδ-diagonal if it is T2 [14;
Theorem 5.11].

2. c-stratifiable spaces and strongly α-spaces

We begin by considering the relations between c-stratifiable spaces and
strongly α-spaces, and the conditions for spaces to be c-stratifiable or
strongly α.

Definition 2.1. A space X is called c-stratifiable [22] (c-semistratifiable

[25]) if X has a g-function such that if x /∈ K, where K is compact, then

x /∈ gm(K) (x /∈ gm(K); in [25], it is assumed that K is closed compact) for
some m ∈ N. A space X is called cs-stratifiable if X has a g-function such
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180 I. YOSHIOKA

that if x /∈ C, where C is the union of a convergent sequence and any one
of its limit points, then x /∈ gm(C) for some m ∈ N. A space X is called
weak c-stratifiable if X has a g-function such that, whenever C and D are
disjoint compact subsets, then gm(C) ∩ D = ∅ for some m ∈ N.

Every stratifiable space or γ, T2-space is c-stratifiable [22], but the Sorgen-
frey line is a paracompact c-stratifiable space which is not semistratifiable.
Also, every c-stratifiable space is cs-stratifiable and weak c-stratifiable [22;
Theorem 1.3], every cs-stratifiable space is T2 and every semistratifiable T2-
space is c-semistratifiable.

Definition 2.2. A space X is called strongly α [31] (α [17]) if X has a
g-function such that (i) for each n ∈ N, y ∈ gn(x) =⇒ gn(y) ⊂ gn(x) and

(ii) ∩n≥1gn(x) = {x} (∩n≥1gn(x) = {x}).

For g-functions in Definitions 2.1 and 2.2, we can assume that gn+1(x) ⊂
gn(x) for every x ∈ X and each n ∈ N. Every strongly α-space is also T2.

Theorem 2.3. Every cs-stratifiable q-space X or regular weak

c-stratifiable q-space X is a first countable c-stratifiable space.

Proof. Let g be a q and cs-stratifiable function of a space X. We show
that {gn(x)} is an open neighbourhood base of x for every x ∈ X. Suppose
that x ∈ X and xn ∈ gn(x) \ U (n ≥ 1) for some open neighbourhood U of x.
Since g is a q-function, {xn} has a cluster point p and p /∈ {x}. Since g is a

cs-stratifiable function, p /∈ gm(x) ⊃ {xj |j ≥ m} 3 p for some m ∈ N. This
contradiction implies that {gn(x)} is a neighbourhood base of x. To see that
g is a c-stratifiable function, suppose that x /∈ K, where K is compact in X,
and x ∈ ∩n≥1gn(K). Then, there exist sequences {xn} ⊂ K and {yn} such
that yn ∈ gn(x) ∩ gn(xn). Since K is sequentially compact, {xn(i)} −→ p for
some point p ∈ K and some subsequence {xn(i)} ⊂ {xn}, and {yn(i)} −→ x
for the subsequence {yn(i)} ⊂ {yn}. Then x /∈ {xn(i)|i ≥ 1} ∪ {p} = C,

and hence x /∈ gm(C) for some m ∈ N. Therefore, for some n(j) ≥ m,

yn(j) /∈ gm(C) ⊃ gn(j)(xn(j)) 3 yn(j). This contradiction implies that g is
also a c-stratifiable function.

For the second part, we can assume that g is a weak c-stratifiable q-
function satisfying gn+1(x) ⊂ gn(x). If x and y are distinct points, then

gm(x) ∩ {y} = ∅ for some m ∈ N. Hence, ∩n≥1gn(x) = {x}. Suppose that
x ∈ X and xn ∈ gn(x) \ U (n ≥ 1) for some open neighbourhood U of x.

Then {xn} has a cluster point p. Hence, p ∈ gn(x) for each n ∈ N. This
contradiction asserts that {gn(x)} is a neighbourhood base of x. Therefore,
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K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES 181

g is a c-stratifiable function by [22; Theorem 1.3].

Theorem 2.4. (1) Every strongly α-space X or k-semistratifiable T2-space

X is weak c-stratifiable.
(2) Every strongly α, q-space X is c-stratifiable.

Proof. (1): First, let g be a strongly α-function of X. Suppose that there
are disjoint compact subsets C and D such that xn ∈ gn(C) ∩ D (n ≥ 1).
Then xn ∈ gn(yn) for some sequence {yn} ⊂ C. Hence {yn} clusters at a
point y ∈ C and contains a subsequence {yn(i)} such that yn(i) ∈ gi(y). Then
xn(i) ∈ gn(i)(yn(i)) ⊂ gi(yn(i)) ⊂ gi(y)(i ≥ 1), and {xn(i)} has a cluster point

x ∈ D. Then for each i ∈ N, x ∈ {xn(j)|j ≥ i} ⊂ gi(y). Therfore x = y,
which is a contradiction. Next, that a k-semistratifiable T2-space is weak
c-stratifiable follows from the equivalent condition of a k-semistratifiable
space in Definition 1.5.

(2): Let g be a q-function and h be a strongly α-function of a space X.
Here, we can assume that gn(x) ⊂ hn(x). For some x ∈ X and some com-

pact subset K, suppose that x /∈ K and x ∈ ∩n≥1gn(K). Then there exist
sequences {yn} and {zn} such that yn ∈ K and zn ∈ gn(x) ∩ gn(yn). Let
y ∈ K be a cluster point of {yn}. Then yn(i) ∈ gi(y) for some increasing sub-
sequence {n(i)} of N. Also, since zn(i) ∈ gi(x)(i ≥ 1), {zn(i)} has a cluster
point z. Since yn(i) ∈ hi(y)(i ≥ 1), zn(i) ∈ gn(i)(yn(i)) ⊂ hi(yn(i)) ⊂ hi(y).

Therefore, {zn(j)|j ≥ i} ⊂ hi(y)(i ≥ 1) and hence, z ∈ hi(y)(i ≥ 1), which
implies that y = z. Moreover, since zn(i) ∈ gi(x) ⊂ hi(x)(i ≥ 1), we have

{zn(j)|j ≥ i} ⊂ hi(x), and hence z ∈ hi(x). Consequently, x = z. This
contradiction implies that g is a c-stratifiable function.

We now study the conditions for spaces to be c-stratifiable or strongly α.

Definition 2.5. A space X is called a w∆-space [4] if it has a sequence {Gn}
of open covers such that whenever xn ∈ st(x,Gn) (n ≥ 1), then {xn} has a
cluster point. A space X is called a developable space if it has a sequence
{Gn} of open covers such that for each x ∈ X, the sequence {st(x,Gn)} is
a neighbourhood base of x. A regular developable space is called a Moore
space. These spaces are characterized by g-functions as follows [18]: A space
X is w∆ (developable) if and only if X has a g-function satisfying (L) ((K),
respectively).
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182 I. YOSHIOKA

Definition 2.6. (1) For each k ∈ N, a space X is said to have a Gδ(k)-
diagonal if X has a sequence {Gn} of open covers such that for any dis-
tinct points x and y, there exists m ∈ N such that y /∈ stk(x,Gm), where
stk+1(x,Gm) = st(stk(x,Gm)).

(2) A sequence {Gn} of open covers of a space X is said to satisfy the
3-link property [32] (equivalently, it is a Gδ(3)-diagonal sequence) if it is
true that for any distinct points x and y, there exists m ∈ N such that no
member of Gm intersects both st(x,Gm) and st(y,Gm).

(3) A space X is said to have a regular Gδ-diagonal [32] if there is a
sequence {Gn} of open covers of X such that if x and y are distinct points
of X, then there are an integer m and open neighbourhoods U and V of x
and y, respectively, such that no member of Gm intersects both U and V .

(4) A space X is said to have a G∗
δ -diagonal if X has a sequence {Gn}

of open covers such that whenever x 6= y, there exists m ∈ N that satisfies
y /∈ st(x,Gm).

It is easily seen that for a sequence G = {Gn} of open covers of a space
X, G is Gδ(2)-diagonal if, and only if, whenever x 6= y, there exists m ∈ N

satisfying x /∈ st(p,Gm) or y /∈ st(p,Gm) for every p ∈ X (this property is
called strong Gδ-diagonal in [31]).

We note that for properties of a sequence {Gn} of open covers of a space
X, the following implications hold:

3-link property ⇒ regular Gδ-diagonal ⇒ G∗
δ -diagonal ⇒ Gδ-diagonal and

3-link property ⇒ Gδ(2)-diagonal = strong Gδ-diagonal ⇒ G∗
δ -diagonal.

In the realm of paracompact spaces, these properties are all equivalent.
Every Nagata space is paracompact and has a Gδ-diagonal. Every devel-
opable T2-space has a Gδ(2)-diagonal and every regular semistraifiable space
has a G∗

δ -diagonal [14, 17]. On the other hand, the space Ψ in Example 4.5
is a Moore space which does not have a regular Gδ-diagonal.

Definition 2.7. (1) A space X is called orthocompact if every open cover
of X has an open refinement V such that ∩W = ∩{W |W ∈ W} is open for
every W ⊂ V.

(2) A space X is called submetrizable if there is a continuous one-to-one
map from X onto a metric space.

It is well known that the following implications hold:
metacompact spaces =⇒ orthocompact spaces, and
stratifiable spaces =⇒ paracompact spaces with a Gδ-diagonal [3, 29] =⇒

submetrizable spaces .

Theorem 2.8. (1) Every space X with a regular Gδ-diagonal is c-stratifiable.

6
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K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES 183

(2) Every orthocompact space X with a G∗
δ-diagonal, or orthocompact reg-

ular space X with a Gδ-diagonal is strongly α.
(3) Every orthocompact developable T2-space X is strongly α and c-strati-

fiable.

(4) Every orthocompact regular c-semistratifiable β-space X is strongly α.
(5) Every submetrizable space X is strongly α and c-stratifiable.

Proof. (1) is proved in [22; Proposition 3.2].
(2): Let X be a regular space and let {Gn} be a Gδ-diagonal sequence

of X. Then for each n ∈ N, Gn has an open refinement Hn such that
{H |H ∈ Hn} is a refinement of Gn and ∩W is open for every W ⊂ Hn.
Therefore, in both cases, we may assume that there exists a sequence {Hn}
of open covers such that

(i) for each n ∈ N, ∩W is open for every W ⊂ Hn, and
(ii) for distinct points x and y, there is an m ∈ N such that x ∈ H ⊂ H

and y /∈ H for some H ∈ Hm.
Here, for any x ∈ X and each n ∈ N, we put hn(x) = ∩{H ∈ Hn|x ∈ H}.

Then the g-function ({hn(x)}|x ∈ X) satisfies the conditions of Definition
2.2.

(3): Since every developable T2-space has a G∗
δ -diagonal, X is a strongly

α from (2) and it is c-stratifiable from Theorem 2.4.
(4): Since every regular c-semistratifiable β-space is semistratifiable [25;

Theorem 3], it has a Gδ-diagonal. Hence X is strongly α from (2).
(5): Let f : X −→ M be a continuous one-to-one onto map, where M

is a metric space. By (3), M is strongly α and c-stratifiable. Therefore (5)
follows from the following fact:

Let f : X −→ Y be a continuous one-to-one onto map. If h is a strongly

α-function (c-stratifiable function) of Y, then ({gn(x)}|x ∈ X), where

gn(x) = f−1[hn(f(x))], is a strongly α-function (c-stratifiable function,
respectively) of X.

We note that every metacompact regular semistratifiable q-space is strong-
ly α and hence it is c-stratifiable. Also, every regular k-semistratifiable q-
space is Nagata [31], and hence it is strongly α, c-stratifiable. On the other
hand, the separable Moore space X in Example 4.6 is neither strongly α nor
c-stratifiable.

The following question arises naturally from (4) of the above Theorem.

Question 2.9. Is every paracompact (or metacompact regular) c-semi-
stratifiable q-space, c-stratifiable ?

7
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184 I. YOSHIOKA

Theorem 2.10. For a cs-stratifiable space X, the following implications

hold:

(1) β =⇒ semistratifiable, (2) wcc =⇒ k-semistratifiable, (3) wN =⇒
Nagata, (4) wθ =⇒ θ, (5) wγ =⇒ γ and (6) w∆ =⇒ developable.

Proof. (1): Let g be a cs-stratifiable and β-function of X and let x ∈
gn(xn) (n ≥ 1). For any subsequence {xn(i)} of {xn}, {xn(i)} has a clus-
ter point since x ∈ gi(xn(i))(i ≥ 1). Let p be a cluster point of {xn}
and p 6= x. Then {xn} contains a subsequence S = {xn(j)} such that
xn(j) ∈ gj(p) \ {x}(j ≥ 1). Since {xn(k)|k ≥ j} ⊂ gj(p)(j ≥ 1) and

{p} = ∩j≥1gj(p), p is the only cluster point of S. Hence S converges to

p. Since x /∈ C = S ∪ {p}, x /∈ gm(C) for some m ∈ N. But, for some
n(k) ≥ m, x ∈ gn(k)(xn(k)) ⊂ gm(C). This contradiction implies that x = p
is a cluster point of {xn}.

(2): Let g be a cs-stratifiable, wcc-function satisfying {x} = ∩n≥1gn(x)
for every x ∈ X. Since X is a T2-space, it is enough to show that g satisfies
the k-semistratifiable condition of Definition 1.5. Let yn ∈ gn(xn) (n ≥
1) and {yn} −→ y. First, we show that {xn} contains a subsequence
which converges to y. Indeed, for any subsequence {xn(i)} of {xn}, yn(i) ∈
gn(i)(xn(i)) ⊂ gi(xn(i))(i ≥ 1) and {yn(i)} −→ y, hence {xn(i)} has a clus-
ter point. Let p be a cluster point of {xn}. It is easily seen that there
exists a subsequence S = {xn(i)} of {xn} such that xn(i) ∈ gi(p). Since

{xn(j)|j ≥ i} ⊂ gi(p) for each i ∈ N, p is a unique cluster point of S. Hence
S converges to p. If p 6= y, then y /∈ {xn(i)|i ≥ m}∪{p} = C for some m ∈ N.

Therefore y /∈ gn(k)(C) for some k ≥ m. This contradiction asserts that S
converges to y. Next, if {xn} does not converge to y, then we have an open
neighbourhood W of y and a subsequence {xn(i)} such that {xn(i)}∩W = ∅.
Then since yn(i) ∈ gn(i)(xn(i)) ⊂ gi(xn(i))(i ≥ 1) and {yn(i)} −→ y, {xn(i)}
contains a subsequence which converges to y. This contradiction implies
that {xn} −→ y.

(3): Since X is q and wcc, by Theorem 2.3 and (2) of this theorem, there
is a g-function g such that, whenever yn ∈ gn(xn) (n ≥ 1) and {yn} −→ y,
then {xn} −→ y, and {gn(x)} is a neighbourhood base of x. To see that g
is a Nagata function, let yn ∈ gn(x) ∩ gn(xn) (n ≥ 1). Then {yn} −→ x.
Hence {xn} −→ x.

(4): Let g be a cs-stratifiable wθ-function of X. Then g is a q-function.
Indeed, let xn ∈ gn(x) (n ≥ 1), then {xn} has a cluster point since x ∈
gn(x), xn, x ∈ gn(x) (n ≥ 1). Therefore, {gn(x)} is a neighbourhood base of
x by Theorem 2.3. Now, suppose that yn ∈ gn(p) and xn, p ∈ gn(yn) (n ≥ 1).
Then {xn} has a cluster point x and {yn} converges to p. If x 6= p, then

8

Mathematical Journal of Okayama University, Vol. 50 [2008], Iss. 1, Art. 10

http://escholarship.lib.okayama-u.ac.jp/mjou/vol50/iss1/10
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x /∈ {yn|n ≥ m} ∪ {p} = C for some m ∈ N. Therefore x /∈ gk(C) for some
k ≥ m. This contradiction implies x = p, and hence g is a θ-function.

(5): Let g be a cs-stratifiable, wγ-function of a space X. Suppose that
yn ∈ gn(p), xn ∈ gn(yn) (n ≥ 1). Then {xn} has a cluster point x, and
{yn} converges to p since g is a q-function. If p 6= x, then x /∈ {yn|n ≥

m} ∪ {p} = C for some m ∈ N. Therefore x /∈ gk(C) for some k ≥ m, which
is a contradiction.

(6): Let g be a cs-stratifiable w∆-function of X. Since g is a β-function,
g is a semistratifiable function. Now, suppose that xn, p ∈ gn(yn) (n ≥ 1).
Then {yn} converges to p and {xn} has a cluster point x. If x 6= p, then

x /∈ {yn|n ≥ m} ∪ {p} = C for some m ∈ N. Hence x /∈ gk(C) for some
k ≥ m. This contradiction implies that the function g satisfies condition (K).

Remark 2.11. (1) In the class of strongly α-spaces, the implications (3)-(6)
in Theorem 2.10 are true by Theorem 2.4, (1) follows from [17; Theorem
5.2] and (2) follows from [31; Proposition 4.7].

(2) In the class of weak c-stratifiable regular spaces, the implications (3)-
(6) in Theorem 2.10 are true by Theorem 2.3. For the implications (1) and
(2), let g be a g-function satisfying the respective conditions. Then, since

∩n≥1gn(x) = {x}, (1) and (2) are also true by a similar argument to the
proof of Theorem 2.10.

The following questions regarding c-stratifiable spaces and strongly α-
spaces are natural.

Question 2.12. When are c-stratifiability and strong α-ness coincident ?

Question 2.13. Is every paracompact first coutable c-stratifiable space
strongly α ?

3. K-semimetrizable spaces

Definition 3.1. Let X be a space. Then a function d : X × X −→ R

is called a semimetric if (i) d(x, y) ≥ 0, (ii) d(x, y) = 0 ⇐⇒ x = y and
(iii) d(x, y) = d(y, x). X is called a semimetrizable space or X has a
compatible semimetric if there exists a semimetric d on X such that for
any subset M ⊂ X, x ∈ M ⇐⇒ d(x,M) = 0, or equivalently, for any
x ∈ X and any open neighbourhood U of x, x ∈ intB(x; ε) ⊂ B(x; ε) ⊂ U
for some ε>0; where B(A; δ) = {y ∈ X|d(A, y) =inf{d(a, y)|a ∈ A}<δ}
for each δ>0 and any subset A ⊂ X and B(x; δ) = B({x}; δ). Then, for
a sequence {xn} in a semimetrizable space (X, d), limn→∞ d(x, xn) = 0
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⇐⇒ {xn} −→ x in X. A semimetrizable space X with a compatible semi-
metric d is K-semimetrizable [26] if d(H,K) =inf{d(x, y)|x ∈ H, y ∈ K}>0
for any disjoint compact subsets H and K. In this situation, d is called a
K-semimetric on X.

It is well known [8] that a space X is semimetrizable if, and only if, it is
a first countable, semistratifiable space.

Definition 3.2. Let (X, d) be a semimetrizable space. For each n ∈ N,
we put Gn = {intB(x; ε)|δB(x; ε)<1/n}, where for subset A of X, δA =
sup{d(x, y)|x, y ∈ A}. The semimetric d is said to be full if Gn is a cover

of X for each n ∈ N, or equivalently, if d satisfies Arhangel’skĭi’s condition
(AN): At each point, there is a neighbourhood of arbitrarily small diameter
[1]. A space X is called full K-semimetrizable if X has a compatible full
K-semimetric.

Zenor investigated spaces with a regular Gδ-diagonal and gave the follow-
ing result.

Theorem 3.3 ([32; Theorem 2]). For a space X, the following conditions

are equivalent.

(1) X has a development satisfying the 3-link property.

(2) X is a w∆-space with a regular Gδ-diagonal.

(3) X has a compatible semimetric d satisfying

(I) If {xn} −→ x and {yn} −→ x, then lim
n→∞

d(xn, yn) = 0, and

(II) If {xn} −→ x, {yn} −→ y and x 6= y, then there exist r>0 and

m ∈ N such that d(xn, yn)>r for each n ≥ m.

In substance, the first part of the following theorem is proved in (1)⇐⇒(3)
of [32; Theorem 2] or [22; Lemma 5.3].

Theorem 3.4. (1) For a space X, the following conditions are equivalent.

(i) X is a developable space.
(ii) X has a compatible full semimetric d.
(iii) X has a compatible semimetric d satisfying (I) of Theorem 3.3.
(2) A space X is developable T2 if, and only if, it is wθ, β and has a

G∗
δ-diagonal.

10

Mathematical Journal of Okayama University, Vol. 50 [2008], Iss. 1, Art. 10

http://escholarship.lib.okayama-u.ac.jp/mjou/vol50/iss1/10



K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES 187

Proof of (2). We only prove the “if” part. Every β-space with a G∗
δ -

diagonal is semistratifiable [17; Theorem 5.2] and every semistratifiable wθ-
space is w∆ [18; Proposition 4.5]. Hence X is developable [17; Theorem 2.5].

For a semimetric space, we have the following characterization. A regular
space X is semimetrizable if, and only if, it is a q, β-space with a G∗

δ -diagonal.
Indeed, let g be a q-function and {Gn} be a G∗

δ -diagonal sequence of a
space X. We put hn(x) = gn(x) ∩ st(x,Gn), then {hn(x)} is a neighbour-
hood base of x. Also, X is semistratifiable from the proof of Theorem 3.4(2).
For the converse implication, see [17].

The following theorem improves the result [11; Proposition 2.7] or [22;
Theorem 5.2] that a space X is K-semimetrizable if, and only if, it is c-
stratifiable and semimetrizable.

Theorem 3.5. For a space X, the following conditions are equivalent.

(1) X is a K-semimetrizable space.

(2) X is a c-stratifiable semimetrizable space.

(3) X is a cs-stratifiable q, β-space.

(4) X has a compatible semimetric d satisfying (II) of Theorem 3.3.

(5) X has a compatible semimetric d such that, x /∈ B(K; 1/m) for some

m ∈ N, whenever x /∈ K and K is compact.

Proof. (1)=⇒(2) is proved in [22; Theorem 5.2] and (2)=⇒(3) is evident.
(3)=⇒(1): Let g be a cs-stratifiable q, β-function of X. Then by The-

orems 2.3 and 2.10, g is a c-stratifiable and semistratifiable function, and
{gn(x)} is an open neighbourhood base of x for every x ∈ X. Now, we define
d(x, x) = 0 and d(x, y) =1/inf{j|x /∈ gj(y) and y /∈ gj(x)} if x 6= y. By [22;
Theorem 5.2], (X, d) is K-semimetrizable.

(1)=⇒(4): Let d be a compatible K-semimetric on X. Suppose that
{xn} −→ x, {yn} −→ y and x 6= y. Since X is T2, for some m ∈ N,
H = {xn|n ≥ m} ∪ {x} and K = {yn|n ≥ m} ∪ {y} are disjoint compact
subsets. Therefore we have that 0<d(H,K) ≤inf{d(xn, yn)|n ≥ m}.

(4)=⇒(5): Suppose that x /∈ K, where K is compact, and x ∈ B(K; 1/n)
for each n ∈ N with respect to the semimetric d satisfying the condition of
(4). Then there exists a sequence {zn} such that

zn ∈ B(K; 1/n) ∩ intB(x; 1/n).

Hence {zn} −→ x. Also d(xn, zn)<1/n for some sequence {xn} ⊂ K.
Then there exist subsequences {xn(i)} ⊂ {xn} and {zn(i)} ⊂ {zn} such
that {xn(i)} −→ p for some p ∈ K and {zn(i)} −→ x. Therefore there exist
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j,m ∈ N such that d(xn(i), zn(i)) ≥ 1/m for each i ≥ j. On the other hand,
d(xn(k), zn(k))<1/n(k) for some n(k) ≥ max{n(j),m}, which is a contradic-
tion.

(5)=⇒(1): Let d be a compatible semimetric satisfying the condition of
(5). If H and K are disjoint compact subsets of X with d(H,K) = 0,
then lim d(xn, yn) = 0 for some sequences {xn} ⊂ H, {yn} ⊂ K. Since X
is first countable, there exist subsequences {xn(i)} ⊂ {xn}, {yn(i)} ⊂ {yn}
and points x ∈ H, y ∈ K satisfying {xn(i)} −→ x, {yn(i)} −→ y. Since

y /∈ B(H; 1/m) for some m ∈ N, we have that B(y; 1/k) ∩ B(H; 1/k) = ∅
for some k ≥ m. This contradicts the fact that d(xn(i), yn(i))<1/k and
d(y, yn(i))<1/k for some n(i) ∈ N.

Remark 3.6. (1) The space Y in Example 4.9 is c-stratifiable β, but not
q, and the Sorgenfrey line is c-stratifiable q, but not β.

(2) The space X in Example 4.6 is Moore (hence, X has a G∗
δ -diagonal),

but not K-semimetrizable, and the Nagata space X in Example 4.9 is K-
semimetrizable, but not Moore.

(3) The space Y in Example 4.9 is stratifiable (hence c-stratifiable) Fréchet
as the perfect image of a Nagata space (hence, K-semimetrizable), but Y is
not semimetrizable (not even q).

Proposition 3.7. Every K-semimetrizable space has a G∗
δ-diagonal.

Proof. By Theorems 2.3 and 3.5, let g be a cs-stratifiable q, β-function
of X such that {gn(x)} is a neighbourhood base of x. For each n ∈ N,
we put Gn = {gn(x)|x ∈ X}. To see that the sequence {Gn} is a G∗

δ -

diagonal, suppose that x 6= y ∈ ∩n≥1st(x,Gn). Then there exist zn ∈
gn(y) ∩ st(x,Gn) (n ≥ 1). Hence {zn} −→ y and x, zn ∈ gn(xn) for some
sequence {xn}. Then {xn} −→ x and y /∈ C = {xn|n ≥ m} ∪ {x} for some

m ∈ N. Hence y /∈ gk(C) for some k ≥ m. This is a contradiction.

The following theorem gives a condition for strong α-ness and
c-stratifiability to be equivalent, and follows directly from Theorems 2.4,
2.8 and 3.5 and Proposition 3.7.

Theorem 3.8. For an orthocompact β, q-space, the following conditions

are equivalent.
(1) X is K-semimetrizable.
(2) X has a G∗

δ-diagonal.
(3) X is strongly α.
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(4) X is cs-stratifiable.

An analogue to Theorem 3.5 for the class of regular spaces follows directly
from Theorem 2.3.

Theorem 3.9. For a regular space X, X is K-semimetrizable if, and only

if, it is weak c-stratifiable q, β.

We next give some partial answers to the question of Burke [6; Question
2] on what minimal topological condition on a Moore space (or semimetric
space) will ensure that the space is K-semimetrizable.

Theorem 3.10. (1) Every T2, orthocompact developable space X is K-

semimetrizable.
(2) Every regular orthocompact semistratifiable q-space (hence, regular

orthocompact semimetrizable space) X is K-semimetrizable.
(3) Every regular orthocompact c-semistratifiable q, β-space X is K-semi-

metrizable.
(4) Every regular k-semistratifiable q-space X is K-semimetrizable.

Proof. Since a developable T2-space has a Gδ(2)-diagonal, (1) follows
from Theorems 2.8 and 3.5. Since every semistratifiable T2-space has a
Gδ-diagonal, (2) follows from Theorems 2.8 and 3.5. For (3), since X is
semistratifiable, (3) follows from (2). (4) follows from Theorems 2.3, 2.4
and 3.5.

Remark 3.11. (1) With regards to (2) of Theorem 3.10, it is already known
[1; page 133] or [22; page 441], that every paracompact semimetrizable space
is K-semimetrizable.

(2) In (2) and (3) of Theorem 3.10, we can not change orthocompactness
to subparacompactness by Example 4.6.

(3) In (4) of Theorem 3.10, we already know that a space is regular k-
semistratifiable q if, and only if, it is Nagata [31; Theorem 2.1]. But, we do
not know whether every T2, k-semistratifiable q-space is c-stratifiable. (If
this answer is affirmative, then every T2, k-semistratifiable q-space is first
countable and Nagata.) The converse of (4) does not hold, because the space
Ψ in Example 4.5 is not k-semistratifiable.

In the following theorem, the equivalence of (1) and (4) is proved in [22;
Theorem 5.4].

13

Yoshioka: K-semimetrizabilities and C-stratifiabilities of Spaces

Produced by The Berkeley Electronic Press, 2008



190 I. YOSHIOKA

Theorem 3.12. For a space X, conditions (1)-(5) are all equivalent and

(5) =⇒ (6) holds.

(1) X is a full K-semimetrizable space.
(2) X has a development {Gn} such that if K1 and K2 are disjoint compact

subsets, then st(K1,Gm) ∩ K2 = ∅ for some m ∈ N.
(3) X has a development {Gn} such that if p /∈ C, where C is the union of a

convergent sequence and any one point of its limit points, then p /∈ st(C,Gm)
for some m ∈ N.

(4) X satisfies one of the equivalent conditions in Theorem 3.3.
(5) X is a wθ, β-space with a regular Gδ-diagonal.
(6) X is a developable c-stratifiable space.

Proof. (1)=⇒(2): Let d be a compatible full K-semimetric on X. For each
n ∈ N, we put Gn = {intB(x; ε)|δB(x; ε)<1/n}. Then {Gn} is a development
of X since d is a full semimetric. For, suppose that x ∈ X and xn ∈
st(x,Gn) \ U (n ≥ 1) for some open neighbourhood U of x. Then x, xn ∈ Gn

and δGn<1/n for some Gn ∈ Gn, which is a contradiction. Now, suppose
that K1 and K2 are disjoint compact subsets and xn ∈ st(K1,Gn) ∩ K2 for
each n ∈ N. Then yn ∈ Gn ∩ K1 and xn ∈ Gn for some Gn ∈ Gn. Since
δGn<1/n (n ≥ 1), lim

n→∞
d(xn, yn) = 0. This contradicts d(K1,K2)>0.

(2)=⇒(3): Let {Gn} be a development of X satisfying (2). To see that X is
T2. let x 6= y and xn ∈ st(x,Gn) ∩ st(y,Gn) for each n ∈ N. Then {xn} −→ x
and {xn} −→ y. Given any open neighbourhood U of x with y /∈ U , S =
{xn|n ≥ m} ∪ {x} ⊂ U for some m ∈ N. Then st(y,Gk) ∩ S = ∅ for some
k ≥ m. This contradicts {xn} −→ y. Next, suppose that p /∈ K, where K is

compact, and p ∈ ∩n≥1st(K,Gn). Then an ∈ st(p,Gn) ∩ st(K,Gn)(n ≥ 1).
Hence an ∈ st(xn,Gn) for some sequence {xn} in a sequentially compact K,
and {xn} contains a subsequence {xn(i)} converging to some point x ∈ K.
Since X is T2, L = {xn(i)|n(i) ≥ m} ∪ {x} and H = {an(i)|n(i) ≥ m} ∪ {p}
are disjoint for some m ∈ N. Therefore, an(k) ∈ st(L,Gn(k)) ∩ H = ∅ for
some n(k) ≥ m, which leads to a contradiction.

(3)=⇒(4): Let {Gn} be a development of X such that Gn+1 is a refinement
of Gn and satisfies (3). We now show that {Gn} satisfies the 3-link property.
Suppose that x 6= y and for each n ∈ N, there exists Gn ∈ Gn such that xn ∈
Gn ∩ st(x,Gn) and yn ∈ Gn ∩ st(y,Gn). Since {xn} −→ x, {yn} −→ y and

X is T2, y /∈ C = {xn|n ≥ m} ∪ {x} for some m ∈ N. Hence y /∈ st(C,Gk)

for some k ≥ m. Then yl ∈ X \ st(C,Gk) for some l ≥ k and xl ∈ C.
Therefore, yl ∈ Gl ⊂ st(xl,Gl) ⊂ st(C,Gk), which is a contradiction.

(4)=⇒(5): Let X be a w∆-space with a regular Gδ-diagonal. Then X
satisfies condition (5).
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(5)=⇒(1): By Theorem 3.4, X is a developable space with a regular Gδ-
diagonal. Hence there exists a compatible semimetric d on X satisfying (I)
and (II) of (3) in Theorem 3.3. Then d is full by (3)=⇒(1) of [32; Theorem
2]. To see that d is K-semimetric, suppose that d(K,H) = 0 for some dis-
joint compact subsets K and H. Then there are sequences {xn} ⊂ K and
{yn} ⊂ H such that lim

n→∞
d(xn, yn) = 0. On the other hand, since X is a

q-space with a G∗
δ -diagonal, X is first countable. Hence {xn} ({yn}) con-

tains a subsequence {xn(i)} ({yn(i)}) converging to a point x ∈ K (y ∈ H,
respectively). Hence there are k,m ∈ N such that d(xn(i), yn(i)) ≥ 1/m for
each i ≥ k by (II). This is a contradiction. Finally, (5)=⇒(6) follows from
Theorems 2.8 and 3.4.

Remark 3.13. (1) The space Ψ in Example 4.5 is Moore and K-semi
-metrizable, but not full K-semimetrizable.

(2) Every w∆-space is wθ and β. Although the converse is an open prob-
lem [18; Problem 4.10], (4) ⇐⇒ (5) of Theorem 3.12 (or (2) of Theorem 3.4)
may be a slight progress to [32; Theorem 2] ([17; Theorem 2.5], respectively).

(3) The space X in Example 4.8 is T2 metacompact, full K-semi
-metrizable, but not regular.

Question 3.14. Is every normal metacompact, full K-semimetrizable space,
metrizable?

We next investigate conditions for spaces to be developable and K-semi-
metrizable.

Theorem 3.15. Consider the following conditions for a space X.

(1) X is developable and K-semimetrizable.

(2) X is K-semimetrizable wθ.
(3) X is cs-stratifiable wθ and β.
(4) X is strongly α, wθ and β.
(5) X is developable T2.

Then, (1), (2) and (3) are equivalent.
Moreover, if X is orthocompact, then all conditions are equivalent.

Proof : (1)⇒(2) ⇒(3) are evident. For (3)=⇒(1), X is K-semimetrizable
by Theorem 3.5. Since X is semistratifiable and θ by Theorem 2.10, X
is developable [18; Remark 4.8]. (4)=⇒(3) follows from Theorem 2.4, and
(3)=⇒(5) is evident. Moreover, if X is orthocompact, (5)=⇒(4) follows from
Theorem 2.8.
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Martin [26] showed that a locally connected rim-compact T2-space X is
K-semimetrizable if, and only if, it is developable γ.

Definition 3.16. A space X is said to be rim-compact if each point of X
has a neighbourhood base consisting of open subsets with compact bound-
aries. A space X is locally connected if each point of X has a neighbourhood
base consisting of connected open subsets.

We need the following lemma.

Lemma 3.17. (1) Every locally connected rim-compact weak c-stratifiable

(or, cs-stratifiable) space X is a c-stratifiable γ-space.
(2) Every pseudocompact Tychonoff weak c-stratifiable (or, cs-stratifiable)

space X is a c-stratifiable γ-space.

Proof. (1): First, let g be a weak c-stratifiable function of X. Then, we
can assume that gn(x) is connected for every x ∈ X and each n ∈ N. To
see that X is a γ-space, we use the same method given in the proof of [26;
Theorem 4]. Suppose that K ⊂ W , where K is non-empty compact and W
is open. Then there is an open subset G such that K ⊂ G ⊂ W and the
boundary ∂G of G is compact. Since K ∩∂G = ∅, gm(K)∩∂G = ∅ for some
m ∈ N. Let K = ∪{Kα|α ∈ A}, where Kα is a connected component of
K. Since gm(Kα) is connected for each α ∈ A, gm(K) = ∪α∈Agm(Kα) ⊂ G.
Hence g is a γ-function by [23; Theorem 2.1]. Since X is first countable, g is
a c-stratifiable function by [22; Theorem 1.3]. Next, let g be a cs-stratifiable
function of X. To see that {gn(x)} is a neighbourhood base of x for every
x ∈ X, in the above proof, let K be a single point x. Since {x} ∩ ∂G = ∅

and ∂G is compact, we have that gm(x) ∩ ∂G = ∅ for some m ∈ N. This

asserts that gm(x) ⊂ G, which implies that X is first countable and regular.
Therefore X is c-stratifiable by Theorem 2.3, and hence X is a γ-space.

(2): Let g be a weak c-stratifiable function or a cs-stratifiable func-

tion of X. By regularity of X, we assume that gn+1(x) ⊂ gn(x). Since

∩n≥1gn(x) = {x}, X is first countable by [27; Lemma 2.3]. Hence X is
c-stratifiable by Theorem 2.3 and hence, X is γ by [22; Theorem 4.2].

Theorem 3.18. Let X be a locally connected rim-compact space or a pseu-

docompact Tychonoff space. Then the following conditions are equivalent.

(1) X is developable and K-semimetrizable.
(2) X is K-semimetrizable.
(3) X is T2, developable and γ.
(4) X is weak c-stratifiable and β.
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(5) X is cs-stratifiable and β.

(6) X is T2, γ and β.

Proof. First, we note that every γ, β-space is developable [18; Proposition
4.2]. (1)⇐⇒(4) and (1)⇐⇒(5) follow from Theorem 3.5 and Lemma 3.17.

(1)=⇒(2)=⇒(4) and (1)=⇒(3)=⇒(6) is evident. Since every T2, γ-space
is c-stratifiable, (6)=⇒(5) is true.

By the proof of the above theorem and Theorem 3.5, we have that in the
class of T2, γ-spaces, the following properties are coincident: (1) developable
and K-semimetrizable, (2) K-semimetrizable, (3) developable and (4) β.

The next theorem follows from Theorem 3.10.

Theorem 3.19. For an orthocompact T2-space X, X is developable and K-

semimetrizable if, and only if, it is developable

A Tychonoff space X is called a p-space [2] if in the Stone-C̆ech com-
pactification βX, there is a sequence {Gn} of open covers of X such that
∩n≥1st(x,Gn) ⊂ X for every x ∈ X. Every locally compact T2-space is a
p-space.

Burke [5] showed that there is a locally compact T2-space with a Gδ-
diagonal, which is not w∆. But, it is known that every locally compact
semistratifiable T2-space or every θ-refinable p-space with a Gδ-diagonal is
Moore [8, 21]. Then we have the following result by Theorem 3.10.

Theorem 3.20. For a metacompact p-space X, X is Moore and K-semi

-metrizable if, and only if, it has a Gδ-diagonal.

The next result was studied by Kotake [20] in the class of regular spaces.

Theorem 3.21. For a space X, the following conditions are equivalent.

(1) X is Nagata.
(2) X is K-semimetrizable wcc.
(3) X is cs-stratifiable wN .

(4) X is strongly α, wN .

(5) X is a wN-space with a G∗
δ-diagonal.

(6) X is regular semimetrizable wcc.

Proof. Every Nagata space is stratifiable and first countable, hence it
is c-stratifiable q and β. Therefore (1)=⇒(2) and (2)=⇒(3) follow from
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Proposition 1.4 and Theorem 3.5, and (3)=⇒(1) follows from Theorem 2.10.
(1)=⇒(4) and (4)=⇒(3) follow from Theorems 2.4 and 2.8. Also, (1)=⇒(5)
is evident. To prove (5)=⇒(4), let g be a wN -function and {Gn} be a G∗

δ -
diagonal sequence. Since regularity is not used to show that every β-space
with a G∗

δ -diagonal is semistratifiable [17; Theorem 5.2], X is a subparacom-
pact wN -space. Then X is metacompact by [18; Corollary 3.5]. Hence X is
strongly α by Theorem 2.8. (1)=⇒(6) is evident. Finally, since every reg-
ular semistratifiable space has a G∗

δ -diagonal [14; Theorem 5.11], (6)=⇒(5)
follows from Proposition 1.4.

Regarding Question 2.12, we have the following corollary which follows
from the fact that every wcc-space is β.

Corollary 3.22. For a wN -space, the classes of the following spaces are all

coincident.

(1) Nagata spaces, (2) strongly α-spaces, (3) c-stratifiable spaces, (4) K-
semimetrizable spaces and (5) spaces with a G∗

δ -diagonal.

Remark 3.23. Ceder [7; page 114] asked whether every paracompact
semimetrizable space must be a Nagata space. Heath [16] showed that there
is a paracompact K-semimetrizable cosmic (the continuous image of a sep-
arable metric space) space which is not a stratifiable space (hence, neither
k-semistratifiable [24; Example 4.2] nor wcc). He also posed the follow-
ing problem: What topological condition is necessary for a paracompact
semimetrizable (= K-semimetrizable) space to be an M3-space? As a re-
mark to this problem, one can note that in the class of regular semimetrizable
spaces, Nagata spaces, k-semistratifiable spaces and wcc-spaces are coinci-
dent.

4. Metrizabilities and examples

We begin this section with metrizations of wM -spaces. The concept of
wM -spaces was given by Ishii [19]. Here we define a wM -space by an equiv-
alent condition given by Hodel.

Definition 4.1 [18; Theorem 5.2]. A space X is wM if, and only if, it is
wγ and wN .

The following implications are well known.
An M -space (in the sense of Morita) =⇒ a wM -space =⇒ a w∆-space.
The class of wM -spaces is contained in the class of wθ, wcc-spaces. There-

fore, we consider metrizations for the class of wθ, wcc-spaces. Metrizations
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for this class was studied in [28]. For metrizations of wM -spaces, Martin
[25] proved that every regular c-semistratifiable wM -space is metrizable, and
Ishii [19] proved that every normal wM -space with a G∗

δ -diagonal is metriz-
able. On the other hand, the space Ψ in Example 4.4 is a c-stratifiable
Moore γ-space which is not metrizable.

Theorem 4.2. Let X be a wθ, wcc-space. Then X is metrizable if X satisfies

any one of the following statements.
(1) X is K-semimetrizable.
(2) X is strongly α.

(3) X is cs-stratifiable.

(4) X has a G∗
δ-diagonal.

(5) X is regular c-semistratifiable.

Proof. For all conditions (1)-(5), X is a wN -space by Proposition 1.4.
Hence for (1)-(4), X is a wθ, Nagata space by Theorem 3.21. Therefore,
X is metrizable [30; Theorem 5]. For (5), since every wcc-space is β, X
is regular c-semistratifiable β, hence X is semistratifiable. Then X is wcc
Moore [18; Corollary 4.6], which implies that X is metrizable [31; Corollary
3.6].

Remark 4.3. In Theorem 4.2, the condition wθ (wcc) can not be weakened
to q (β, respectively). Indeed, the Nagata-space X in Example 4.9 is a q,
wcc-space which satisfies all of the conditions (1)-(5) in Theorem 4.2, but
is not metrizable. Also, the space Ψ in Example 4.5 is a γ, β-space which
satisfies all of the conditions (1)-(5) in Theorem 4.2, but is not metrizable.

The second part (2) of the next theorem is a generarization of Lee’s result
[22] that every pseudocompact Tychonoff stratifiable space is metrizable.

Theorem 4.4. (1) Every locally connected rim-compact k-semistratifiable

space X is metrizable.
(2) Every pseudocompact Tychonoff k-semistratifiable space X is metriz-

able.

Proof. First, we show that if X satisfies the conditions of (1), then X is
a first countable T2-space. Let g be a k-semistratifiable function such that
gn(x) is connected. To see that {gn(x)} is a neighbourhood base of x for
every x ∈ X, suppose that x ∈ U and gn(x) \ U 6= ∅ (n ≥ 1), where U
is open. Then there is an open neighbourhood W of x such that W ⊂ U
and the boundary ∂W is compact. Since gm(x) ∩ ∂W = ∅ for some m ∈ N,
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gm(x) = (gm(x)∩W )∪(gm(x)\W ) is not connected. This contradiction im-
plies that {gn(x)} is a neighbourhood base of x. To see that X is Hausdorff,
let x 6= y and xn ∈ gn(x) ∩ gn(y) (n ≥ 1). Then for any open neighbour-
hood U of x with y /∈ U , K = {xn|n ≥ m} ∪ {x} ⊂ U for some m ∈ N.
Hence gl(y) ∩ K = ∅ for some l ≥ m, which is a contradiction. Next, in
both cases, X is a γ-space by Theorem 2.4 and Lemma 3.17. Also, X is a
wcc-space. Indeed, let g be a k-semistratifiable function such that, when-
ever bn ∈ gn(an) (n ≥ 1) and {bn} −→ b, then {an} −→ b. Now, suppose
that yn ∈ gn(xn) (n ≥ 1) and {yn} has a cluster point y. Since X is first
countable, there exists a subsequence {yn(i)} of {yn} converging to y and
yn(i) ∈ gi(xn(i)) (n ≥ 1). Hence {xn(i)} converges to y, which implies that g
is a wcc-function. Finally, every γ, wcc T2-space is metrizable [31; Corollary
3.6].

We note that Martin [26; Example 3] showed that there exists a locally
connected locally compact K-semimetrizable Moore space X which is not
normal. This space is not wcc by Theorem 3.21.

As regards to Theorem 4.4, (2) is proved in [30; Corollary 4] in a different
way, and as for (1), every locally compact T2 (even sieve-complete regular)
k-semistratifiable is metrizable [30; Theorem 18].

Example 4.5. [22; Example 6.6] The space Ψ in [13; 5I] is Moore and
K-semimetrizable that is not full K-semimetrizable. First, it is known
that Ψ is a locally compact pseudocompact separable Moore c-stratifiable
space that is not metacompact. To see that Ψ is orthocompact, for any
E = {xE

k |k ∈ N} ∈ E , where {xE
k |k ∈ N} is an infinite subsequence of N, we

put B(ωE, n) = {ωE} ∪ {xE
n , xE

n+1, ...}(n ∈ N). Then any open cover G of
Ψ has the refinement H = {{n}|n ∈ N} ∪ {B(ωE , n(E))|E ∈ E}, where for
any E ∈ E , B(ωE, n(E)) ⊂ G for some G ∈ G and some n(E) ∈ N. And
∩W is open for any W ⊂ H. Therefore, Ψ is strongly α by Theorem 2.8.
Then Ψ is K-semimetrizable and γ by Theorem 3.5 and Lemma 3.17. But
Ψ does not have a regular Gδ-diagonal [27; Theorem 2.6], and not wcc from
Theorem 3.21. Hence it is not full K-semimetrizable by Theorem 3.12 and
not k-semistratifiable since every first countable k-semistratifiable space is
wcc.

Example 4.6. [6] Burke constructed the separable Moore (hence, semi-
metrizable) space X which is not K-semimetrizable. Hence, X is a c-
semistratifiable α-space which is neither strongly α nor cs-stratifiable by
Theorems 2.4 and 3.5. Also, X is not metacompact by Theorem 2.8 and not
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γ.

Example 4.7. [18; Example 4.14]. The Sorgenfrey line K is a paracompact
γ-space with a Gδ-diagonal. Hence K is strongly α and c-stratifiable, but
not semistratifiable (not even β [18; Proposition 4.2]).

Example 4.8. [9: Example 5.3.4] There exists a metacompact full K-
semimetrizable space which is neither wcc nor regular.

Indeed, let X be the space of real numbers with the topology generated
by the neighbourhood system {U(x)|x ∈ X}, where U(x) = {Un(x)|n ∈ N}
and

Un(x) =

{

(x − 1/n, x + 1/n) if x 6= 0,

(x − 1/n, x + 1/n) \ {1/k|k ∈ Z \ {0}} if x = 0,

where Z denotes the set of integers. It is well known that X is a metacompact
T2-space which is not regular. For each x ∈ X, we put

Wn(x) =

{

Un(x) \ {0} if x 6= 0,

Un(x) if x = 0.

Let Wn = {Wn(x)|x ∈ X} for each n ∈ N. Then it is easily seen that the
sequence {Wn} is a development satisfying the 3-link property. Therefore,
X is full K-semimetrizable. Then X is strongly α and c-stratifiable by The-
orem 2.8. Also, if X is wcc, then it is metrizable by Theorem 4.2, which is
a contradiction.

Example 4.9. [24; Example 4.3] There exist a first countable stratifiable
space X and a perfect map f from X onto a non-q-space Y . Then X is a
Nagata space (hence, X is K-semimetrizable) which is not wθ [30; Theorem
5] and Y is a stratifiable space which is not q. Then, Y is strongly α and
c-stratifiable but not semimetrizable.

Example 4.10. [10; Example 4.2] A regular full K-semimetrizable space
that is not orthocompact. Let R = {(x, y)|x, y are rational and y>0}. Let
J be the set of irrational numbers and let X = R ∪ (J × {0}). We give
R the usual subspace topology T ∗. For each x ∈ J and each ε>0, let
B(x, ε) = {(x, 0)} ∪ {(x + k, h)||k|<h<ε}. Then T ∗ ∪{B(x, ε)|x ∈ J, ε>0} is
a basis for a topology on X. Then X is a separable Moore space that is not
orthocompact. Also, X has a development satisfying the 3-link property,
hence full K-semimetrizable and c-stratifiable.

But I don’t know whether this space is strongly α.
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