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K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES
OF SPACES

Iwao YOSHIOKA

1. INTRODUCTION AND DEFINITIONS

In 1966, Arhangel’skii [1] introduced the concepts of symmetrizable spaces
and he showed that a Th-space is metrizable if, and only if, it has a compat-
ible symmetric d satisfying condition (A): d(F, K)>0 for any disjoint closed
subset F' and compact subset K. Also, Arhangel’sk\ili gave the class of spaces
with a compatible symmetric d satisfying condition (K): d(H, K)>0 for any
disjoint compact subsets H and K, and he conjectured that every sym-
metrizable space has a compatible symmetric satisfying condition (K). After
that, in 1975, Martin [26] presented the question on whether every regular
semimetrizable space is K-semimetrizable (i.e. it has a compatible semimet-
ric satisfying condition (K)) , or if every Moore space is K-semimetrizable.
In 1979, Burke [6] gave a negative answer that there exists a separable Moore
space which is not K-semimetrizable.

Lee [22] defined the class of c-stratifiable spaces which contains the classes
of spaces with a regular GGs-diagonal and of ~, Ts-spaces. He proved that a
space X is K-semimetrizable if, and only if, X is c-stratifiable semimetriz-
able if, and only if, X is regular c-stratifiable, first countable and 3. On the
other hand, in [31], we introduced the concepts of strong a-ness and showed
that every strongly a, wM-space is metrizable. The properties of strongly
a-spaces were also studied in the same paper.

In this note, we study the relations among c-stratifiable spaces, strongly a-
spaces, K-semimetrizable spaces, developable spaces and Nagata spaces, and
the conditions for spaces to be K-semimetrizable or full K-semimetrizable.

We prove that a space X is K-semimetrizable if, and only if, it is a ¢
stratifiable ¢, B-space. We also show that a space X is full K-semimetrizable
if, and only if, it is a w6, (-space with a regular Gs-diagonal, which is a
slight generalization of [32; Theorem 2]. We also show that a space X is
Nagata if, and only if, it is K-semimetrizable wcc if, and only if, it is regular
semimetrizable wce. Moreover, for metrizations of wM-spaces, we have that
every wM-space with a G-diagonal is metrizable.

In §2, we study the relations between c-stratifiable spaces and strongly a-
spaces. Also, we consider the conditions for spaces to be strongly « or
c-stratifiable. In particular, we show that in the realm of c-stratifiable
spaces, wlN-spaces are Nagata, g-spaces are first countable, wcce-spaces are
k-semistratifiable and wA-spaces are developable.
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In §3, we study the class of K-semimetrizable spaces. First, we show
that a space X is K-semimetrizable if, and only if, it is c-stratifiable g,
B. Secondly, we prove that in the class of pseudocompact spaces or lo-
cally connected rim-compact spaces, developable K-semimetrizable spaces
are equivalent to c-stratifiable §-spaces (or K-semimetrizable spaces), and
every metacompact p-space with a Gs-diagonal is a K-semimetrizable Moore
space.

In §4, for the class of w6, wce-spaces which contains the class of wM-
spaces, we show that every w6, wce-space with a G§-diagonal is metrizable
and every c-stratifiable wf, wce-space is metrizable.

Throughout this paper, we assume that all spaces are Ty, but paracom-
pactness is assumed to be To. We denote a sequence {z,|n € N} by {z,}
and the set of natural numbers by N. Finally, we refer the reader to [9] for
undefined terms.

Definition 1.1. A g-function on a space X with a topology 7 is a map
g : Nx X — 7 such that g(n,z) = g,(z) is an open neighbourhood of x for
every z € X and each n € N and we denote the map g by ({g,(x)}|x € X).
For a subset A of X, we put g,(A) = U{gn(x)|z € A}.

A point p in X is called a cluster point of a sequence {x,} C X if any
open neighbourhood of p contains x,, for infinitely many n’s.

For a space X, we now consider the following conditions on a g-function

({gn(2)} |z € X).
(A) If gn(z) Ngn(xn) # 0 (n > 1), then x is a cluster point of {z,,}.
(B) If gn(x) Ngn(zn) #0 (n > 1), then {z,} has a cluster point.
(C) If z € gn(xy) (n > 1), then z is a cluster point of {z,}.
(D) If € gp(xy) (n > 1), then {z,} has a cluster point.
(E) If yn, € gn(xn) (n > 1) and {y,} has a cluster point, then {z,} has a
cluster point.
(F) If z, € g,
) If Y € gn
H) If y, € gn(p), Tn € gn(yn) (n > 1), then {z,} has a cluster point.

(G
(
(D) If yp € gn(p), Tn,p € gn(yn) (n > 1), then p is a cluster point of {z,}.
(
(

(x) (n > 1), then {x,} has a cluster point.

(p), n € gn(yn) (n > 1), then p is a cluster point of {x,}.
J) If yn € gn(p), T, p € gn(yn) (n > 1), then {x,} has a cluster point.
K) If z,,p € gn(yn) (n > 1), then p is a cluster point of {z,}.

(L) If 2y, p € gn(yn) (n > 1), then {z,} has a cluster point.

In the above conditions (A)-(L), we can assume that g,+1(x) C g,(x) for
every x € X and each n € N.
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Definition 1.2. A space with a g-function satisfying (A) is called a Nagata
space [15] (Nagata spaces were first defined by Ceder [7]) and a space with
a g-function satisfying (B) is called a wN-space [18]. In this case the g-
function is called a Nagata- function (a wN-function, respectively).

Definition 1.3. A space X is called a semistratifiable (-, wee (=weak
contraconvergent)-, q-, v-, wy-, 6-, wh-) space if X has a g-function satis-
fying (C) ( (D), (E), (F), (G), (H), (I), (J), respectively). (See [17], [18] and
[31])

The following result is not difficult to see.

Proposition 1.4. [31; Theorem 3.5] A space X is wN if, and only if, it is
q and wcc.

Definition 1.5. A space X is called stratifiable [3] (equivalently, Ms [7])
if X has a g-function that satisfies (C) and if x ¢ g¢,,(F) for some m € N,
whenever F' is closed and x ¢ F. The class of k-semistratifiable spaces
introduced by Lutzer [24] can be characterized by the following conditions
[12, 31]. A space X is k-semistratifiable if, and only if, X has a g-function
({gn(z)}x € X) such that g,,(F) N K = () for some m € N, whenever F is
closed, K is compact and FNK = (), if, and only if, in the class of Th-spaces,
X has a g-function ({g,(z)}|x € X) such that whenever y,, € gn(x,) (n > 1)
and {y,} — vy, then {z,} — y.

The following implications are known.

Nagata = stratifiable = k-semistratifiable = semistratifiable = (3.

Also, it is known that a Nagata space is equivalent to a first countable
stratifiable space and every stratifiable space is paracompact. Every semis-
tratifiable space X is subparacompact and has a Gs-diagonal if it is Tb [14;
Theorem 5.11].

2. Cc-STRATIFIABLE SPACES AND STRONGLY «-SPACES

We begin by considering the relations between c-stratifiable spaces and
strongly a-spaces, and the conditions for spaces to be c-stratifiable or
strongly a.

Definition 2.1. A space X is called c-stratifiable [22] (c-semistratifiable
[25]) if X has a g-function such that if x ¢ K, where K is compact, then
¢ gm(K) (z ¢ gm(K); in [25], it is assumed that K is closed compact) for
some m € N. A space X is called cs-stratifiable if X has a g-function such
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that if x ¢ C, where C is the union of a convergent sequence and any one
of its limit points, then = ¢ ¢,,(C) for some m € N. A space X is called
weak c-stratifiable if X has a g-function such that, whenever C' and D are
disjoint compact subsets, then g,,(C) N D = () for some m € N.

Every stratifiable space or ~y, Th-space is c-stratifiable [22], but the Sorgen-
frey line is a paracompact c-stratifiable space which is not semistratifiable.
Also, every c-stratifiable space is cs-stratifiable and weak c-stratifiable [22;
Theorem 1.3], every cs-stratifiable space is T and every semistratifiable T5-

space is c-semistratifiable.

Definition 2.2. A space X is called strongly « [31] (a [17]) if X has a
g-function such that (i) for each n € N, y € g,(x) = gn(y) C gn(z) and

(i) Nnz1gn(z) = {2} (Nn219n () = {7}).

For g-functions in Definitions 2.1 and 2.2, we can assume that g,41(z) C
gn(z) for every x € X and each n € N. Every strongly a-space is also T5.

Theorem 2.3. FEvery cs-stratifiable g-space X or regqular weak
c-stratifiable g-space X is a first countable c-stratifiable space.

Proof. Let g be a ¢ and cs-stratifiable function of a space X. We show
that {g,(z)} is an open neighbourhood base of x for every x € X. Suppose
that x € X and z,, € g,(x) \ U (n > 1) for some open neighbourhood U of z.
Since g is a g-function, {z,} has a cluster point p and p ¢ {z}. Since g is a
cs-stratifiable function, p ¢ g,,(z) D {x;|j > m} > p for some m € N. This
contradiction implies that {g,(z)} is a neighbourhood base of x. To see that
g is a c-stratifiable function, suppose that ¢ K, where K is compact in X,
and € Np>19,(K). Then, there exist sequences {z,} C K and {y,} such
that ¥, € gn(z) N gn(zy). Since K is sequentially compact, {z,,;)} — p for
some point p € K and some subsequence {7} C {%n}, and {y,)} —
for the subsequence {y,;)} C {yn}. Then x & {z,li > 1} U{p} = C,

and hence = ¢ ¢,,(C) for some m € N. Therefore, for some n(j) > m,

Yn(j) & 9m(C) D gn(j)(Tn()) 2 Yn(j)- This contradiction implies that g is
also a c-stratifiable function.

For the second part, we can assume that g is a weak c-stratifiable g-
function satisfying g,+1(z) C gn(z). If x and y are distinct points, then
gm(x) N {y} = 0 for some m € N. Hence, Np>19n(z) = {z}. Suppose that
x € X and z, € go(z)\ U (n > 1) for some open neighbourhood U of z.
Then {z,} has a cluster point p. Hence, p € g,(z) for each n € N. This
contradiction asserts that {g,(z)} is a neighbourhood base of x. Therefore,
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g is a c-stratifiable function by [22; Theorem 1.3].

Theorem 2.4. (1) Every strongly a-space X or k-semistratifiable Ta-space
X is weak c-stratifiable.
(2) Every strongly o, g-space X is c-stratifiable.

Proof. (1): First, let g be a strongly a-function of X. Suppose that there
are disjoint compact subsets C' and D such that z,, € g,(C)ND (n > 1).
Then x,, € gn(yn) for some sequence {y,} C C. Hence {y,} clusters at a
point y € C' and contains a subsequence {y,,(;)} such that y,;) € gi(y). Then
Ln (i) € 9n(s) (yn(z)> - gz(yn(l)) - gz(y)(z > 1)7 and {wn(z)} has a cluster point
x € D. Then for each i € N, x € {z,(;)|lj > i} C gi(y). Therfore z = y,
which is a contradiction. Next, that a k-semistratifiable Ts-space is weak
c-stratifiable follows from the equivalent condition of a k-semistratifiable
space in Definition 1.5.

(2): Let g be a g-function and h be a strongly a-function of a space X.
Here, we can assume that g,(x) C hy(x). For some x € X and some com-
pact subset K, suppose that z ¢ K and € Ny>19,(K). Then there exist
sequences {y,} and {z,} such that y,, € K and z, € gn(x) N gn(yn). Let
y € K be a cluster point of {y,}. Then y,; € gi(y) for some increasing sub-
sequence {n(i)} of N. Also, since z,(;y € gi(7)(i > 1), {z,(;)} has a cluster
point z. Since yniy € hi(y)(@ > 1), 2pa6) € In@) Wn@)) € hi(Yn@)) € hi(y)-
Therefore, {z,(;y|7 > i} C hi(y)(i > 1) and hence, z € h;(y)(i > 1), which
implies that y = 2. Moreover, since z,;) € gi(z) C hi(x)(i > 1), we have

{zn(pyli = i} C hy(z), and hence z € h;(z). Consequently, x = z. This
contradiction implies that ¢ is a c-stratifiable function.

We now study the conditions for spaces to be c-stratifiable or strongly a.

Definition 2.5. A space X is called a wA-space [4] if it has a sequence {G,, }
of open covers such that whenever z,, € st(x,G,) (n > 1), then {z,} has a
cluster point. A space X is called a developable space if it has a sequence
{G.} of open covers such that for each z € X, the sequence {st(x,G,)} is
a neighbourhood base of . A regular developable space is called a Moore
space. These spaces are characterized by g-functions as follows [18]: A space
X is wA (developable) if and only if X has a g-function satisfying (L) ((K),
respectively).
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Definition 2.6. (1) For each k € N, a space X is said to have a Gs(k)-
diagonal if X has a sequence {G,} of open covers such that for any dis-
tinct points x and vy, there exists m € N such that y ¢ st*(z,G,,), where
sthtl(x, Gn) = st(sth(z,Gn)).

(2) A sequence {G,} of open covers of a space X is said to satisfy the
3-link property [32] (equivalently, it is a Gs(3)-diagonal sequence) if it is
true that for any distinct points x and y, there exists m € N such that no
member of G,, intersects both st(x,G,,) and st(y,Gn,).

(3) A space X is said to have a regular Gs-diagonal [32] if there is a
sequence {G,} of open covers of X such that if x and y are distinct points
of X, then there are an integer m and open neighbourhoods U and V of z
and vy, respectively, such that no member of G,, intersects both U and V.

(4) A space X is said to have a G-diagonal if X has a sequence {G,}
of open covers such that whenever x # y, there exists m € N that satisfies
y & st(z,Gpm).

It is easily seen that for a sequence G = {G,,} of open covers of a space
X, G is Gg(2)-diagonal if, and only if, whenever x # y, there exists m € N
satisfying x ¢ st(p,Gm) or y ¢ st(p,Gnm) for every p € X (this property is
called strong Gs-diagonal in [31]).

We note that for properties of a sequence {G,,} of open covers of a space
X, the following implications hold:

3-link property = regular Gs-diagonal = G-diagonal = G'5-diagonal and

3-link property = G5(2)-diagonal = strong Gs-diagonal = Gj-diagonal.

In the realm of paracompact spaces, these properties are all equivalent.
Every Nagata space is paracompact and has a Gs-diagonal. Every devel-
opable Th-space has a Gs(2)-diagonal and every regular semistraifiable space
has a G-diagonal [14, 17]. On the other hand, the space ¥ in Example 4.5
is a Moore space which does not have a regular Gs-diagonal.

Definition 2.7. (1) A space X is called orthocompact if every open cover
of X has an open refinement V such that "W = N{W|W € W} is open for
every W C V.

(2) A space X is called submetrizable if there is a continuous one-to-one
map from X onto a metric space.

It is well known that the following implications hold:
metacompact spaces = orthocompact spaces, and
stratifiable spaces = paracompact spaces with a Gs-diagonal [3, 29] =

submetrizable spaces .

Theorem 2.8. (1) Every space X with a reqular G s-diagonal is c-stratifiable.
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(2) Every orthocompact space X with a G-diagonal, or orthocompact reg-
ular space X with a Gg-diagonal is strongly o.

(3) Every orthocompact developable Ta-space X is strongly o and c-strati-
fiable.

(4) Every orthocompact reqular c-semistratifiable 3-space X is strongly .

(5) Every submetrizable space X is strongly o and c-stratifiable.

Proof. (1) is proved in [22; Proposition 3.2].

(2): Let X be a regular space and let {G,} be a Gs-diagonal sequence
of X. Then for each n € N, G, has an open refinement H, such that
{H|H € H,} is a refinement of G,, and NW is open for every W C H,,.
Therefore, in both cases, we may assume that there exists a sequence {H,,}
of open covers such that

(i) for each n € N, NW is open for every W C H,,, and

(ii) for distinct points 2 and vy, there is an m € N such that x € H C H
and y ¢ H for some H € H,p,.

Here, for any = € X and each n € N, we put h,(z) = N{H € H,|z € H}.
Then the g-function ({h,(z)}|z € X) satisfies the conditions of Definition
2.2.

(3): Since every developable T»-space has a G-diagonal, X is a strongly
a from (2) and it is ¢-stratifiable from Theorem 2.4.

(4): Since every regular c-semistratifiable G-space is semistratifiable [25;
Theorem 3], it has a Gs-diagonal. Hence X is strongly « from (2).

(5): Let f: X — M be a continuous one-to-one onto map, where M
is a metric space. By (3), M is strongly « and c-stratifiable. Therefore (5)
follows from the following fact:

Let f : X — Y be a continuous one-to-one onto map. If h is a strongly
a-function (c-stratifiable function) of Y, then ({gn(z)}z € X), where
gn(x) = fHha(f(2))], is a strongly a-function (c-stratifiable function,
respectively) of X.

We note that every metacompact regular semistratifiable g-space is strong-
ly o and hence it is c-stratifiable. Also, every regular k-semistratifiable ¢-
space is Nagata [31], and hence it is strongly «, c-stratifiable. On the other
hand, the separable Moore space X in Example 4.6 is neither strongly « nor
c-stratifiable.

The following question arises naturally from (4) of the above Theorem.

Question 2.9. Is every paracompact (or metacompact regular) c-semi-
stratifiable ¢g-space, c-stratifiable ?
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Theorem 2.10. For a cs-stratifiable space X, the following implications
hold:

(1) B = semistratifiable, (2) wec = k-semistratifiable, (3) wN =
Nagata, (4) wd = 0, (5) wy = 7 and (6) wA = developable.

Proof. (1): Let g be a cs-stratifiable and [-function of X and let z €
gn(rpn) (n > 1). For any subsequence {x,} of {n}, {zn@)} has a clus-
ter point since x € gi(wp;))(@ > 1). Let p be a cluster point of {x,}
and p # x. Then {x,} contains a subsequence S = {z,;)} such that
Tni) € 95) \{z}(G = 1). Since {z,plk = j} C g;(p)(j = 1) and
{p} = Nj>19;(p), p is the only cluster point of S. Hence S converges to
p. Since ¢ ¢ C'=SU{p}, x ¢ gn(C) for some m € N. But, for some
n(k) > m, x € gn)(Tnk)) C gm(C). This contradiction implies that = = p
is a cluster point of {z,}.

(2): Let g be a cs-stratifiable, wee-function satisfying {z} = Ny>19n ()
for every x € X. Since X is a Th-space, it is enough to show that g satisfies
the k-semistratifiable condition of Definition 1.5. Let y,, € gn(x,) (n >
1) and {y,} — y. First, we show that {z,} contains a subsequence
which converges to y. Indeed, for any subsequence {z,(;)} of {zn}, yn@) €
In(i) (xn(z)) - gl(ajn(z))(Z = 1) and {yn(z)} — y, hence {xn(z)} has a clus-
ter point. Let p be a cluster point of {z,}. It is easily seen that there
exists a subsequence S = {z,;} of {z,} such that z,; € gi(p). Since

{Tp)li > i} C gi(p) for each i € N, p is a unique cluster point of S. Hence
S converges to p. If p # y, then y & {z,3)|i > m}U{p} = C for some m € N.

Therefore y ¢ gy, 1) (C) for some k > m. This contradiction asserts that S
converges to y. Next, if {z,} does not converge to y, then we have an open
neighbourhood W of y and a subsequence {x,;) } such that {x,; } "W = 0.
Then since Yn(i) € 9n(i) (xn(z)) - gz(xn(z))(z = 1) and {yn(z)} - Y, {xn(z)}
contains a subsequence which converges to y. This contradiction implies
that {z,} — .

(3): Since X is ¢ and wee, by Theorem 2.3 and (2) of this theorem, there
is a g-function g such that, whenever y,, € g,(z,) (n > 1) and {y,} — v,
then {z,} — vy, and {g,(x)} is a neighbourhood base of z. To see that g
is a Nagata function, let y,, € gn(x) Ngn(xy) (n > 1). Then {y,} — =z.
Hence {z,} — =.

(4): Let g be a cs-stratifiable wf-function of X. Then g is a g-function.
Indeed, let z, € gn(x) (n > 1), then {z,} has a cluster point since x €
gn(x), T, x € gn(x) (n > 1). Therefore, {g,(x)} is a neighbourhood base of
x by Theorem 2.3. Now, suppose that y,, € g,(p) and x,,,p € g (yn) (n > 1).
Then {z,} has a cluster point x and {y,} converges to p. If z # p, then
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x & {ynln > m} U{p} = C for some m € N. Therefore x ¢ g;(C) for some
k > m. This contradiction implies x = p, and hence g is a 6-function.

(5): Let g be a cs-stratifiable, wy-function of a space X. Suppose that
Yn € gn(p),Tn € gn(yn) (n > 1). Then {z,} has a cluster point z, and
{yn} converges to p since g is a g-function. If p # x, then = ¢ {y,|n >
m} U{p} = C for some m € N. Therefore = ¢ g (C) for some k > m, which
is a contradiction.

(6): Let g be a cs-stratifiable wA-function of X. Since g is a S-function,
g is a semistratifiable function. Now, suppose that z,,p € gn(y,) (n > 1).
Then {y,} converges to p and {z,} has a cluster point x. If x # p, then
z & {yn|n > m} U {p} = C for some m € N. Hence = ¢ g;(C) for some
k > m. This contradiction implies that the function g satisfies condition (K).

Remark 2.11. (1) In the class of strongly a-spaces, the implications (3)-(6)
in Theorem 2.10 are true by Theorem 2.4, (1) follows from [17; Theorem
5.2] and (2) follows from [31; Proposition 4.7].

(2) In the class of weak c-stratifiable regular spaces, the implications (3)-
(6) in Theorem 2.10 are true by Theorem 2.3. For the implications (1) and
(2), let g be a g-function satisfying the respective conditions. Then, since
Mp>19n(z) = {z}, (1) and (2) are also true by a similar argument to the
proof of Theorem 2.10.

The following questions regarding c-stratifiable spaces and strongly a-
spaces are natural.

Question 2.12. When are c-stratifiability and strong a-ness coincident ?

Question 2.13. Is every paracompact first coutable c-stratifiable space
strongly a 7

3. K-SEMIMETRIZABLE SPACES

Definition 3.1. Let X be a space. Then a function d : X x X — R
is called a semimetric if (i) d(z,y) > 0, (ii) d(z,y) = 0 <= = =y and
(iii) d(z,y) = d(y,z). X is called a semimetrizable space or X has a
compatible semimetric if there exists a semimetric d on X such that for
any subset M C X, v € M <= d(x,M) = 0, or equivalently, for any
x € X and any open neighbourhood U of z, z € intB(x;¢) C B(z;¢) C U
for some €>0; where B(A4;6) = {y € X|d(A,y) =inf{d(a,y)la € A}<d}
for each 6>0 and any subset A C X and B(x;6) = B({z};J). Then, for
a sequence {z,} in a semimetrizable space (X,d), lim, . d(z,z,) = 0
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< {z,} — x in X. A semimetrizable space X with a compatible semi-
metric d is K-semimetrizable [26] if d(H, K) =inf{d(x,y)|x € H,y € K}>0
for any disjoint compact subsets H and K. In this situation, d is called a
K-semimetric on X.

It is well known [8] that a space X is semimetrizable if, and only if, it is
a first countable, semistratifiable space.

Definition 3.2. Let (X, d) be a semimetrizable space. For each n € N,
we put G, = {intB(x;€)|0B(z;€)<1/n}, where for subset A of X, §A =
sup{d(z,y)|z,y € A}. The semimetric d is said to be full if G, is a cover
of X for each n € N, or equivalently, if d satisfies Arhangel’skii’s condition
(AN): At each point, there is a neighbourhood of arbitrarily small diameter
[1]. A space X is called full K-semimetrizable if X has a compatible full
K-semimetric.

Zenor investigated spaces with a regular Gs-diagonal and gave the follow-
ing result.

Theorem 3.3 ([32; Theorem 2|). For a space X, the following conditions
are equivalent.

(1) X has a development satisfying the 3-link property.

(2) X is a wA-space with a reqular Gs-diagonal.

(3) X has a compatible semimetric d satisfying

(I) If {xn,} — x and {y,} — x, then 7}1_}120 d(xpn,yn) =0, and

(I1) If {xn} — z, {yn} — y and = # y, then there exist >0 and
m € N such that d(z,yn)>r for each n > m.

In substance, the first part of the following theorem is proved in (1)<=(3)
of [32; Theorem 2] or [22; Lemma 5.3].

Theorem 3.4. (1) For a space X, the following conditions are equivalent.
(i) X is a developable space.
(ii) X has a compatible full semimetric d.
(iii) X has a compatible semimetric d satisfying (I) of Theorem 3.3.
(2) A space X is developable Ts if, and only if, it is wl, B and has a
G5-diagonal.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 50/iss1/10

10



Y oshioka: K-semimetrizabilities and C-stratifiabilities of Spaces

K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES 187

Proof of (2). We only prove the “if” part. Every (-space with a G-
diagonal is semistratifiable [17; Theorem 5.2] and every semistratifiable w6-
space is wA [18; Proposition 4.5]. Hence X is developable [17; Theorem 2.5].

For a semimetric space, we have the following characterization. A regular
space X is semimetrizable if, and only if, it is a ¢, 8-space with a G'§-diagonal.

Indeed, let g be a g-function and {G,} be a Gj-diagonal sequence of a
space X. We put h,(z) = g,(x) N st(x,G,), then {h,(x)} is a neighbour-
hood base of x. Also, X is semistratifiable from the proof of Theorem 3.4(2).
For the converse implication, see [17].

The following theorem improves the result [11; Proposition 2.7] or [22;
Theorem 5.2] that a space X is K-semimetrizable if, and only if, it is c-
stratifiable and semimetrizable.

Theorem 3.5. For a space X, the following conditions are equivalent.

(1) X is a K-semimetrizable space.

(2) X is a c-stratifiable semimetrizable space.

(3) X is a cs-stratifiable q, (3-space.

(4) X has a compatible semimetric d satisfying (II) of Theorem 3.3.

(5) X has a compatible semimetric d such that, x ¢ B(K;1/m) for some
m € N, whenever x ¢ K and K is compact.

Proof. (1)==-(2) is proved in [22; Theorem 5.2] and (2)==(3) is evident.

(3)=(1): Let g be a cs-stratifiable ¢, S-function of X. Then by The-
orems 2.3 and 2.10, g is a c-stratifiable and semistratifiable function, and
{gn(x)} is an open neighbourhood base of z for every z € X. Now, we define
d(z,z) = 0 and d(z,y) =1/inf{jlz ¢ g;(y) and y ¢ g;(2)} if z # y. By [22;
Theorem 5.2, (X, d) is K-semimetrizable.

(1)==(4): Let d be a compatible K-semimetric on X. Suppose that
{z,} — x, {yn} — y and = # y. Since X is Ts, for some m € N,
H = {zpjn > m} U {z} and K = {yp|n > m} U {y} are disjoint compact
subsets. Therefore we have that 0<d(H, K) <inf{d(zn,yn)|n > m}.

(4)==(5): Suppose that z ¢ K, where K is compact, and x € B(K;1/n)
for each n € N with respect to the semimetric d satisfying the condition of
(4). Then there exists a sequence {z,} such that

zn € B(K;1/n) NintB(z;1/n).

Hence {z,} — . Also d(zp,z2,)<1/n for some sequence {z,} C K.
Then there exist subsequences {z,;} C {z,} and {z,;} C {z.} such
that {x,;} — p for some p € K and {z,(;y} — =. Therefore there exist
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j,m € N such that d(xy,@y, 2,;)) > 1/m for each i > j. On the other hand,
d(Tp (ks Znk)) <1/n(k) for some n(k) > max{n(j), m}, which is a contradic-
tion.

(5)=-(1): Let d be a compatible semimetric satisfying the condition of
(5). If H and K are disjoint compact subsets of X with d(H,K) = 0,
then lim d(x,,y,) = 0 for some sequences {z,} C H, {y,} C K. Since X
is first countable, there exist subsequences {z,;} C {Zn}, {Unt)} C {¥n}
and points x € H, y € K satisfying {z,;} — 2, {yn@s} — v. Since
y ¢ B(H;1/m) for some m € N, we have that B(y;1/k) N B(H;1/k) =0
for some & > m. This contradicts the fact that d(z,x),yn@))<1/k and
d(Y, Yn(i))<1/k for some n(i) € N.

Remark 3.6. (1) The space Y in Example 4.9 is c¢-stratifiable 3, but not
q, and the Sorgenfrey line is c-stratifiable ¢, but not j3.

(2) The space X in Example 4.6 is Moore (hence, X has a G’;-diagonal),
but not K-semimetrizable, and the Nagata space X in Example 4.9 is K-
semimetrizable, but not Moore.

(3) The space Y in Example 4.9 is stratifiable (hence c-stratifiable) Fréchet
as the perfect image of a Nagata space (hence, K-semimetrizable), but Y is
not semimetrizable (not even g).

Proposition 3.7. Every K-semimetrizable space has a Gs-diagonall.

Proof. By Theorems 2.3 and 3.5, let g be a cs-stratifiable ¢, S-function
of X such that {g,(z)} is a neighbourhood base of x. For each n € N,
we put G, = {gn(x)lx € X}. To see that the sequence {G,} is a Gj}-
diagonal, suppose that © # y € Np>15t(z,G,). Then there exist z, €
gn(y) N st(z,Gy,) (n > 1). Hence {z,} — vy and z,2, € g,(z,) for some
sequence {x,}. Then {z,} — z and y ¢ C = {x,|n > m} U {z} for some
m € N. Hence y ¢ gi(C) for some k > m. This is a contradiction.

The following theorem gives a condition for strong «-ness and
c-stratifiability to be equivalent, and follows directly from Theorems 2.4,
2.8 and 3.5 and Proposition 3.7.

Theorem 3.8. For an orthocompact (3, q-space, the following conditions
are equivalent.

(1) X s K-semimetrizable.

(2) X has a G-diagonal.

(3) X is strongly «.
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(4) X is cs-stratifiable.

An analogue to Theorem 3.5 for the class of regular spaces follows directly
from Theorem 2.3.

Theorem 3.9. For a reqular space X, X is K-semimetrizable if, and only
iof, it is weak c-stratifiable q, (3.

We next give some partial answers to the question of Burke [6; Question
2] on what minimal topological condition on a Moore space (or semimetric
space) will ensure that the space is K-semimetrizable.

Theorem 3.10. (1) Ewery T, orthocompact developable space X is K-
semimetrizable.

(2) Ewvery regular orthocompact semistratifiable g-space (hence, regular
orthocompact semimetrizable space) X is K-semimetrizable.

(3) Every regular orthocompact c-semistratifiable q, B-space X is K-semi-
metrizable.

(4) Every reqular k-semistratifiable q-space X is K-semimetrizable.

Proof. Since a developable Th-space has a Gs(2)-diagonal, (1) follows
from Theorems 2.8 and 3.5. Since every semistratifiable Ts-space has a
Gs-diagonal, (2) follows from Theorems 2.8 and 3.5. For (3), since X is
semistratifiable, (3) follows from (2). (4) follows from Theorems 2.3, 2.4
and 3.5.

Remark 3.11. (1) With regards to (2) of Theorem 3.10, it is already known
[1; page 133] or [22; page 441], that every paracompact semimetrizable space
is K-semimetrizable.

(2) In (2) and (3) of Theorem 3.10, we can not change orthocompactness
to subparacompactness by Example 4.6.

(3) In (4) of Theorem 3.10, we already know that a space is regular k-
semistratifiable ¢ if, and only if, it is Nagata [31; Theorem 2.1]. But, we do
not know whether every T5, k-semistratifiable g-space is c-stratifiable. (If
this answer is affirmative, then every Ts, k-semistratifiable g-space is first
countable and Nagata.) The converse of (4) does not hold, because the space
¥ in Example 4.5 is not k-semistratifiable.

In the following theorem, the equivalence of (1) and (4) is proved in [22;
Theorem 5.4].
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Theorem 3.12. For a space X, conditions (1)-(5) are all equivalent and
(5) = (6) holds.

(1) X is a full K-semimetrizable space.

(2) X has a development {G,} such that if K1 and Ky are disjoint compact
subsets, then st(K1,Gm) N Ko =0 for some m € N.

(3) X has a development {G,} such that if p ¢ C, where C is the union of a
convergent sequence and any one point of its limit points, then p ¢ st(C,G,)
for some m € N.

(4) X satisfies one of the equivalent conditions in Theorem 3.3.

(5) X is a wl, B-space with a reqular Gs-diagonal.

(6) X is a developable c-stratifiable space.

Proof. (1)==(2): Let d be a compatible full K-semimetric on X. For each
n € N, we put G,, = {intB(z;¢€)|[0B(x;¢)<1/n}. Then {G,} is a development
of X since d is a full semimetric. For, suppose that x € X and z, €
st(x,Gn) \ U (n > 1) for some open neighbourhood U of x. Then z,x, € G,
and 0G,<1/n for some G,, € G,, which is a contradiction. Now, suppose
that K; and K are disjoint compact subsets and x,, € st(K1y,G,) N Ky for
each n € N. Then vy, € G, N K; and z,, € G, for some G, € G,. Since
0G,<1/n (n > 1), nh—>120 d(xp,yn) = 0. This contradicts d(K7, K2)>0.

(2)==(3): Let {G,,} be adevelopment of X satisfying (2). To see that X is
T5. let x # y and =, € st(z,Gy) N st(y,G,) for each n € N. Then {z,} — =
and {x,} — y. Given any open neighbourhood U of = with y ¢ U, S =
{zn|n > m} U{z} C U for some m € N. Then st(y,Gx) NS = 0 for some
k > m. This contradicts {z,} — y. Next, suppose that p ¢ K, where K is
compact, and p € Np>15t(K,Gy). Then a, € st(p,Gn) Nst(K,Gy)(n > 1).
Hence a,, € st(x,,G,) for some sequence {z,} in a sequentially compact K,
and {z,} contains a subsequence {z,; } converging to some point z € K.
Since X is Tz, L = {wp)|n(i) > m} U {x} and H = {a,)|n(i) > m} U {p}
are disjoint for some m € N. Therefore, a4y € st(L,G,x) N H = for
some n(k) > m, which leads to a contradiction.

(3)=(4): Let {G,,} be a development of X such that G,,1 is a refinement
of G,, and satisfies (3). We now show that {G,,} satisfies the 3-link property.
Suppose that x # y and for each n € N, there exists G,, € G,, such that x,, €
G, Nst(x,G,) and y, € G, N st(y,Gp). Since {zx,} — x, {yn} — vy and
X is Ty, y ¢ C ={xyln>m}U{z} for some m € N. Hence y ¢ st(C,Gy)
for some k > m. Then y; € X\ st(C,Gy) for some | > k and z; € C.
Therefore, y; € Gy C st(x;,G;) C st(C,Gy), which is a contradiction.

(4)=(5): Let X be a wA-space with a regular Gs-diagonal. Then X
satisfies condition (5).
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(5)=-(1): By Theorem 3.4, X is a developable space with a regular G s-
diagonal. Hence there exists a compatible semimetric d on X satisfying (I)
and (II) of (3) in Theorem 3.3. Then d is full by (3)==-(1) of [32; Theorem
2]. To see that d is K-semimetric, suppose that d(K, H) = 0 for some dis-
joint compact subsets K and H. Then there are sequences {z,} C K and
{yn} C H such that nh_)n;() d(Zpn,yn) = 0. On the other hand, since X is a

g-space with a Gj-diagonal, X is first countable. Hence {z,} ({yn}) con-
tains a subsequence {7y} ({¥n@;)}) converging to a point v € K (y € H,
respectively). Hence there are k,m € N such that d(x,;),Yn@)) > 1/m for
each ¢ > k by (II). This is a contradiction. Finally, (5)==-(6) follows from
Theorems 2.8 and 3.4.

Remark 3.13. (1) The space ¥ in Example 4.5 is Moore and K-semi
-metrizable, but not full K-semimetrizable.

(2) Every wA-space is wf and (3. Although the converse is an open prob-
lem [18; Problem 4.10], (4) <= (5) of Theorem 3.12 (or (2) of Theorem 3.4)
may be a slight progress to [32; Theorem 2] ([17; Theorem 2.5], respectively).

(3) The space X in Example 4.8 is T metacompact, full K-semi
-metrizable, but not regular.

Question 3.14. Is every normal metacompact, full K-semimetrizable space,
metrizable?

We next investigate conditions for spaces to be developable and K-semi-
metrizable.

Theorem 3.15. Consider the following conditions for a space X.
(1) X is developable and K-semimetrizable.

2) X is K-semimetrizable wé.

3) X is cs-stratifiable wl and (.

4) X is strongly o, wl and (.

5) X is developable T5.

Then, (1), (2) and (3) are equivalent.

Moreover, if X is orthocompact, then all conditions are equivalent.

Proof: (1)=(2) =(3) are evident. For (3)=(1), X is K-semimetrizable
by Theorem 3.5. Since X is semistratifiable and 6 by Theorem 2.10, X
is developable [18; Remark 4.8]. (4)==-(3) follows from Theorem 2.4, and
(3)==(5) is evident. Moreover, if X is orthocompact, (5)==(4) follows from
Theorem 2.8.
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Martin [26] showed that a locally connected rim-compact Ta-space X is
K-semimetrizable if, and only if, it is developable ~.

Definition 3.16. A space X is said to be rim-compact if each point of X
has a neighbourhood base consisting of open subsets with compact bound-
aries. A space X is locally connected if each point of X has a neighbourhood
base consisting of connected open subsets.

We need the following lemma.

Lemma 3.17. (1) Every locally connected rim-compact weak c-stratifiable
(or, cs-stratifiable) space X is a c-stratifiable ~y-space.

(2) Every pseudocompact Tychonoff weak c-stratifiable (or, cs-stratifiable)
space X is a c-stratifiable vy-space.

Proof. (1): First, let g be a weak c-stratifiable function of X. Then, we
can assume that g,(z) is connected for every z € X and each n € N. To
see that X is a y-space, we use the same method given in the proof of [26;
Theorem 4]. Suppose that K C W, where K is non-empty compact and W
is open. Then there is an open subset G such that K C G C W and the
boundary G of G is compact. Since KNIG = 0, g, (K)NIG = () for some
m € N. Let K = U{K,|a € A}, where K, is a connected component of
K. Since g,,(K,) is connected for each o € A, g, (K) = Ugeagm(Kyo) C G.
Hence g is a y-function by [23; Theorem 2.1]. Since X is first countable, g is
a c-stratifiable function by [22; Theorem 1.3]. Next, let g be a cs-stratifiable
function of X. To see that {g,(x)} is a neighbourhood base of x for every
x € X, in the above proof, let K be a single point . Since {x} NOG = ()
and OG is compact, we have that g,,(x) N 0G = 0 for some m € N. This
asserts that g,,(z) C G, which implies that X is first countable and regular.
Therefore X is c-stratifiable by Theorem 2.3, and hence X is a ~y-space.

(2): Let g be a weak c-stratifiable function or a cs-stratifiable func-
tion of X. By regularity of X, we assume that g,41(z) C gn(z). Since
Mn>19n(z) = {x}, X is first countable by [27; Lemma 2.3]. Hence X is
c-stratifiable by Theorem 2.3 and hence, X is v by [22; Theorem 4.2].

Theorem 3.18. Let X be a locally connected rim-compact space or a pseu-
docompact Tychonoff space. Then the following conditions are equivalent.
(1) X is developable and K-semimetrizable.
(2) X is K-semimetrizable.
(3) X is Ty, developable and ~.
(4) X is weak c-stratifiable and (3.
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(5) X is cs-stratifiable and 3.
(6) X is Ty, v and (.

Proof. First, we note that every -y, -space is developable [18; Proposition
4.2]. (1)<=(4) and (1)«<=(5) follow from Theorem 3.5 and Lemma 3.17.

(1)==(2)=(4) and (1)==(3)==-(6) is evident. Since every T, y-space
is c-stratifiable, (6)==-(5) is true.

By the proof of the above theorem and Theorem 3.5, we have that in the
class of Ty, y-spaces, the following properties are coincident: (1) developable
and K-semimetrizable, (2) K-semimetrizable, (3) developable and (4) (.

The next theorem follows from Theorem 3.10.

Theorem 3.19. For an orthocompact Ts-space X, X is developable and K-
semimetrizable if, and only if, it is developable

A Tychonoff space X is called a p-space [2] if in the Stone-Cech com-
pactification SX, there is a sequence {G,} of open covers of X such that
Np>15t(z,Gn) C X for every © € X. Every locally compact Ta-space is a
p-space.

Burke [5] showed that there is a locally compact Ts-space with a G-
diagonal, which is not wA. But, it is known that every locally compact
semistratifiable Th-space or every #-refinable p-space with a Gs-diagonal is
Moore [8, 21]. Then we have the following result by Theorem 3.10.

Theorem 3.20. For a metacompact p-space X, X is Moore and K-semi
-metrizable if, and only if, it has a Gs-diagonal.

The next result was studied by Kotake [20] in the class of regular spaces.

Theorem 3.21. For a space X, the following conditions are equivalent.
(1) X is Nagata.

(2) X is K-semimetrizable wcc.

(3) X is cs-stratifiable wN.

(4) X s strongly o, wN.

(5) X is a wN-space with a G-diagonal.

(6) X is regular semimetrizable wcc.

Proof. Every Nagata space is stratifiable and first countable, hence it
is c-stratifiable ¢ and 3. Therefore (1)==-(2) and (2)=-(3) follow from
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Proposition 1.4 and Theorem 3.5, and (3)==(1) follows from Theorem 2.10.
(1)==(4) and (4)=(3) follow from Theorems 2.4 and 2.8. Also, (1)==(5)
is evident. To prove (5)==(4), let g be a wN-function and {G,} be a Gj}-
diagonal sequence. Since regularity is not used to show that every [-space
with a Gj-diagonal is semistratifiable [17; Theorem 5.2}, X is a subparacom-
pact wN-space. Then X is metacompact by [18; Corollary 3.5]. Hence X is
strongly a by Theorem 2.8. (1)==(6) is evident. Finally, since every reg-
ular semistratifiable space has a G-diagonal [14; Theorem 5.11}, (6)=(5)
follows from Proposition 1.4.

Regarding Question 2.12, we have the following corollary which follows
from the fact that every wcce-space is .

Corollary 3.22. For a wN -space, the classes of the following spaces are all
coincident.

(1) Nagata spaces, (2) strongly a-spaces, (3) c-stratifiable spaces, (4) K-
semimetrizable spaces and (5) spaces with a Gj-diagonal.

Remark 3.23. Ceder [7; page 114] asked whether every paracompact
semimetrizable space must be a Nagata space. Heath [16] showed that there
is a paracompact K-semimetrizable cosmic (the continuous image of a sep-
arable metric space) space which is not a stratifiable space (hence, neither
k-semistratifiable [24; Example 4.2] nor wee). He also posed the follow-
ing problem: What topological condition is necessary for a paracompact
semimetrizable (= K-semimetrizable) space to be an Ms-space? As a re-
mark to this problem, one can note that in the class of regular semimetrizable
spaces, Nagata spaces, k-semistratifiable spaces and wcc-spaces are coinci-
dent.

4. METRIZABILITIES AND EXAMPLES

We begin this section with metrizations of wM-spaces. The concept of
wM-spaces was given by Ishii [19]. Here we define a wM-space by an equiv-
alent condition given by Hodel.

Definition 4.1 [18; Theorem 5.2]. A space X is wM if, and only if, it is
wy and wN.

The following implications are well known.

An M-space (in the sense of Morita) = a wM-space =—> a wA-space.

The class of wM -spaces is contained in the class of w6, wce-spaces. There-
fore, we consider metrizations for the class of w#, wce-spaces. Metrizations
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for this class was studied in [28]. For metrizations of wM-spaces, Martin
[25] proved that every regular c-semistratifiable wM-space is metrizable, and
Ishii [19] proved that every normal wM -space with a G;-diagonal is metriz-
able. On the other hand, the space ¥ in Example 4.4 is a c-stratifiable
Moore y-space which is not metrizable.

Theorem 4.2. Let X be a wl, wee-space. Then X is metrizable if X satisfies
any one of the following statements.

(1) X is K-semimetrizable.

(2) X is strongly a.

(3) X is cs-stratifiable.
(4) X has a G}-diagonal.
()

X is regular c-semistratifiable.

Proof. For all conditions (1)-(5), X is a wN-space by Proposition 1.4.
Hence for (1)-(4), X is a wf, Nagata space by Theorem 3.21. Therefore,
X is metrizable [30; Theorem 5]. For (5), since every wce-space is 3, X
is regular c-semistratifiable 3, hence X is semistratifiable. Then X is wcc
Moore [18; Corollary 4.6], which implies that X is metrizable [31; Corollary
3.6].

Remark 4.3. In Theorem 4.2, the condition wf (wece) can not be weakened
to q (3, respectively). Indeed, the Nagata-space X in Example 4.9 is a g,
wee-space which satisfies all of the conditions (1)-(5) in Theorem 4.2, but
is not metrizable. Also, the space ¥ in Example 4.5 is a v, §-space which
satisfies all of the conditions (1)-(5) in Theorem 4.2, but is not metrizable.

The second part (2) of the next theorem is a generarization of Lee’s result
[22] that every pseudocompact Tychonoff stratifiable space is metrizable.

Theorem 4.4. (1) Every locally connected rim-compact k-semistratifiable
space X is metrizable.

(2) Every pseudocompact Tychonoff k-semistratifiable space X is metriz-
able.

Proof. First, we show that if X satisfies the conditions of (1), then X is
a first countable Ts-space. Let g be a k-semistratifiable function such that
gn(z) is connected. To see that {g,(z)} is a neighbourhood base of z for
every © € X, suppose that x € U and g,(z) \U # 0 (n > 1), where U
is open. Then there is an open neighbourhood W of x such that W C U
and the boundary OW is compact. Since g,,(z) N OW = () for some m € N,
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G () = (gm (2) "W)U (g (z) \ W) is not connected. This contradiction im-
plies that {g,(x)} is a neighbourhood base of x. To see that X is Hausdorff,
let © # y and =, € gn(x) Ngn(y) (n > 1). Then for any open neighbour-
hood U of z with y ¢ U, K = {x,|n > m} U {z} C U for some m € N.
Hence ¢;(y) N K = ) for some I > m, which is a contradiction. Next, in
both cases, X is a y-space by Theorem 2.4 and Lemma 3.17. Also, X is a
wcee-space. Indeed, let g be a k-semistratifiable function such that, when-
ever b, € gp(a,) (n > 1) and {b,} — b, then {a,} — b. Now, suppose
that y, € gn(zn) (n > 1) and {y,} has a cluster point y. Since X is first
countable, there exists a subsequence {y,;} of {yn} converging to y and
Yn(i) € 9i(Tn@y) (n > 1). Hence {x,;} converges to y, which implies that g
is a wee-function. Finally, every v, wee Th-space is metrizable [31; Corollary
3.6].

We note that Martin [26; Example 3] showed that there exists a locally
connected locally compact K-semimetrizable Moore space X which is not
normal. This space is not wce by Theorem 3.21.

As regards to Theorem 4.4, (2) is proved in [30; Corollary 4] in a different
way, and as for (1), every locally compact T5 (even sieve-complete regular)
k-semistratifiable is metrizable [30; Theorem 18§].

Example 4.5. [22; Example 6.6] The space ¥ in [13; 5I| is Moore and
K-semimetrizable that is not full K-semimetrizable. First, it is known
that WU is a locally compact pseudocompact separable Moore c-stratifiable
space that is not metacompact. To see that W is orthocompact, for any
E = {zF|k € N} € £, where {zF|k € N} is an infinite subsequence of N, we
put B(wg,n) = {wg} U{zF, z¥ ,,..}(n € N). Then any open cover G of
U has the refinement H = {{n}|n € N} U{B(wg,n(E))|E € £}, where for
any F € £, B(wg,n(E)) C G for some G € G and some n(FE) € N. And
MW is open for any W C H. Therefore, ¥ is strongly a by Theorem 2.8.
Then ¥ is K-semimetrizable and v by Theorem 3.5 and Lemma 3.17. But
U does not have a regular Gs-diagonal [27; Theorem 2.6], and not wce from
Theorem 3.21. Hence it is not full K-semimetrizable by Theorem 3.12 and
not k-semistratifiable since every first countable k-semistratifiable space is
wee.

Example 4.6. [6] Burke constructed the separable Moore (hence, semi-
metrizable) space X which is not K-semimetrizable. Hence, X is a c¢-
semistratifiable a-space which is neither strongly « nor cs-stratifiable by
Theorems 2.4 and 3.5. Also, X is not metacompact by Theorem 2.8 and not
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Example 4.7. [18; Example 4.14]. The Sorgenfrey line K is a paracompact
~v-space with a Gs-diagonal. Hence K is strongly a and c-stratifiable, but
not semistratifiable (not even [ [18; Proposition 4.2]).

Example 4.8. [9: Example 5.3.4] There exists a metacompact full K-
semimetrizable space which is neither wce nor regular.

Indeed, let X be the space of real numbers with the topology generated
by the neighbourhood system {U(z)|x € X}, where U(x) = {U,(x)|n € N}
and

U, (z) = {(a:— 1/n, x+1/n) if z # 0,
" (x—1/n, +1/n)\ {1/klk € Z\ {0}} ifz=0,

where Z denotes the set of integers. It is well known that X is a metacompact
Ts-space which is not regular. For each x € X, we put

_ [Ua@)\ (0} it A0,
Walz) = {Un(x) if v =0.

Let W, = {W,,(z)|x € X} for each n € N. Then it is easily seen that the
sequence {W, } is a development satisfying the 3-link property. Therefore,
X is full K-semimetrizable. Then X is strongly « and c-stratifiable by The-
orem 2.8. Also, if X is wce, then it is metrizable by Theorem 4.2, which is
a contradiction.

Example 4.9. [24; Example 4.3] There exist a first countable stratifiable
space X and a perfect map f from X onto a non-g-space Y. Then X is a
Nagata space (hence, X is K-semimetrizable) which is not w6 [30; Theorem
5] and Y is a stratifiable space which is not ¢. Then, Y is strongly « and
c-stratifiable but not semimetrizable.

Example 4.10. [10; Example 4.2] A regular full K-semimetrizable space
that is not orthocompact. Let R = {(z,y)|x,y are rational and y>0}. Let
J be the set of irrational numbers and let X = R U (J x {0}). We give
R the usual subspace topology 7*. For each x € J and each >0, let
B(x,e) = {(z,0)} U{(z+ k, h)||[k|<h<e}. Then T*U{B(x,¢)|z € J,e>0} is
a basis for a topology on X. Then X is a separable Moore space that is not
orthocompact. Also, X has a development satisfying the 3-link property,
hence full K-semimetrizable and c-stratifiable.
But I don’t know whether this space is strongly .
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