Mathematical Journal of Okayama University

Volume 50, Issue 1

2008 January 2008

Article 10

K-semimetrizabilities and C-stratifiabilities of Spaces

Iwao Yoshioka*

Copyright ©2008 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 50 (2008), 177-199

K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES OF SPACES

IWAO YOSHIOKA

1. INTRODUCTION AND DEFINITIONS

In 1966, Arhangel'skii [1] introduced the concepts of symmetrizable spaces and he showed that a T_2 -space is metrizable if, and only if, it has a compatible symmetric d satisfying condition (A): d(F, K) > 0 for any disjoint closed subset F and compact subset K. Also, Arhangel'skii gave the class of spaces with a compatible symmetric d satisfying condition (K): d(H, K) > 0 for any disjoint compact subsets H and K, and he conjectured that every symmetrizable space has a compatible symmetric satisfying condition (K). After that, in 1975, Martin [26] presented the question on whether every regular semimetrizable space is K-semimetrizable (i.e. it has a compatible semimetric satisfying condition (K)), or if every Moore space is K-semimetrizable. In 1979, Burke [6] gave a negative answer that there exists a separable Moore space which is not K-semimetrizable.

Lee [22] defined the class of c-stratifiable spaces which contains the classes of spaces with a regular G_{δ} -diagonal and of γ , T_2 -spaces. He proved that a space X is K-semimetrizable if, and only if, X is c-stratifiable semimetrizable if, and only if, X is regular c-stratifiable, first countable and β . On the other hand, in [31], we introduced the concepts of strong α -ness and showed that every strongly α , wM-space is metrizable. The properties of strongly α -spaces were also studied in the same paper.

In this note, we study the relations among c-stratifiable spaces, strongly α -spaces, K-semimetrizable spaces, developable spaces and Nagata spaces, and the conditions for spaces to be K-semimetrizable or full K-semimetrizable.

We prove that a space X is K-semimetrizable if, and only if, it is a cstratifiable q, β -space. We also show that a space X is full K-semimetrizable if, and only if, it is a $w\theta$, β -space with a regular G_{δ} -diagonal, which is a slight generalization of [32; Theorem 2]. We also show that a space X is Nagata if, and only if, it is K-semimetrizable wcc if, and only if, it is regular semimetrizable wcc. Moreover, for metrizations of wM-spaces, we have that every wM-space with a G_{δ}^* -diagonal is metrizable.

In §2, we study the relations between c-stratifiable spaces and strongly α -spaces. Also, we consider the conditions for spaces to be strongly α or c-stratifiable. In particular, we show that in the realm of c-stratifiable spaces, wN-spaces are Nagata, q-spaces are first countable, wcc-spaces are k-semistratifiable and $w\Delta$ -spaces are developable.

I. YOSHIOKA

In §3, we study the class of K-semimetrizable spaces. First, we show that a space X is K-semimetrizable if, and only if, it is c-stratifiable q, β . Secondly, we prove that in the class of pseudocompact spaces or locally connected rim-compact spaces, developable K-semimetrizable spaces are equivalent to c-stratifiable β -spaces (or K-semimetrizable spaces), and every metacompact p-space with a G_{δ} -diagonal is a K-semimetrizable Moore space.

In §4, for the class of $w\theta$, wcc-spaces which contains the class of wM-spaces, we show that every $w\theta$, wcc-space with a G^*_{δ} -diagonal is metrizable and every c-stratifiable $w\theta$, wcc-space is metrizable.

Throughout this paper, we assume that all spaces are T_1 , but paracompactness is assumed to be T_2 . We denote a sequence $\{x_n | n \in \mathbb{N}\}$ by $\{x_n\}$ and the set of natural numbers by \mathbb{N} . Finally, we refer the reader to [9] for undefined terms.

Definition 1.1. A *g*-function on a space X with a topology \mathcal{T} is a map $g: \mathbb{N} \times X \longrightarrow \mathcal{T}$ such that $g(n, x) = g_n(x)$ is an open neighbourhood of x for every $x \in X$ and each $n \in \mathbb{N}$ and we denote the map g by $(\{g_n(x)\}|x \in X)$. For a subset A of X, we put $g_n(A) = \bigcup \{g_n(x)|x \in A\}$.

A point p in X is called a *cluster point* of a sequence $\{x_n\} \subset X$ if any open neighbourhood of p contains x_n for infinitely many n's.

For a space X, we now consider the following conditions on a g-function $(\{g_n(x)\}|x \in X).$

(A) If $g_n(x) \cap g_n(x_n) \neq \emptyset$ $(n \ge 1)$, then x is a cluster point of $\{x_n\}$.

(B) If $g_n(x) \cap g_n(x_n) \neq \emptyset$ $(n \ge 1)$, then $\{x_n\}$ has a cluster point.

(C) If $x \in g_n(x_n)$ $(n \ge 1)$, then x is a cluster point of $\{x_n\}$.

(D) If $x \in g_n(x_n)$ $(n \ge 1)$, then $\{x_n\}$ has a cluster point.

(E) If $y_n \in g_n(x_n)$ $(n \ge 1)$ and $\{y_n\}$ has a cluster point, then $\{x_n\}$ has a cluster point.

(F) If $x_n \in g_n(x)$ $(n \ge 1)$, then $\{x_n\}$ has a cluster point.

(G) If $y_n \in g_n(p)$, $x_n \in g_n(y_n)$ $(n \ge 1)$, then p is a cluster point of $\{x_n\}$.

(H) If $y_n \in g_n(p), x_n \in g_n(y_n)$ $(n \ge 1)$, then $\{x_n\}$ has a cluster point.

(I) If $y_n \in g_n(p)$, $x_n, p \in g_n(y_n)$ $(n \ge 1)$, then p is a cluster point of $\{x_n\}$.

(J) If $y_n \in g_n(p)$, $x_n, p \in g_n(y_n)$ $(n \ge 1)$, then $\{x_n\}$ has a cluster point.

(K) If $x_n, p \in g_n(y_n)$ $(n \ge 1)$, then p is a cluster point of $\{x_n\}$.

(L) If $x_n, p \in g_n(y_n)$ $(n \ge 1)$, then $\{x_n\}$ has a cluster point.

In the above conditions (A)-(L), we can assume that $g_{n+1}(x) \subset g_n(x)$ for every $x \in X$ and each $n \in \mathbb{N}$.

Definition 1.2. A space with a g-function satisfying (A) is called a Nagata space [15] (Nagata spaces were first defined by Ceder [7]) and a space with a g-function satisfying (B) is called a wN-space [18]. In this case the g-function is called a Nagata-function (a wN-function, respectively).

Definition 1.3. A space X is called a *semistratifiable* (β -, wcc (=weak contraconvergent)-, q-, γ -, w γ -, θ -, w θ -) space if X has a g-function satisfying (C) ((D), (E), (F), (G), (H), (I), (J), respectively). (See [17], [18] and [31])

The following result is not difficult to see.

Proposition 1.4. [31; Theorem 3.5] A space X is wN if, and only if, it is q and wcc.

Definition 1.5. A space X is called *stratifiable* [3] (equivalently, M_3 [7]) if X has a g-function that satisfies (C) and if $x \notin g_m(F)$ for some $m \in \mathbb{N}$, whenever F is closed and $x \notin F$. The class of k-semistratifiable spaces introduced by Lutzer [24] can be characterized by the following conditions [12, 31]. A space X is k-semistratifiable if, and only if, X has a g-function $(\{g_n(x)\}|x \in X)$ such that $g_m(F) \cap K = \emptyset$ for some $m \in \mathbb{N}$, whenever F is closed, K is compact and $F \cap K = \emptyset$, if, and only if, in the class of T₂-spaces, X has a g-function $(\{g_n(x)\}|x \in X)$ such that whenever $y_n \in g_n(x_n)$ $(n \ge 1)$ and $\{y_n\} \longrightarrow y$, then $\{x_n\} \longrightarrow y$.

The following implications are known.

Nagata \implies stratifiable \implies k-semistratifiable \implies semistratifiable $\implies \beta$. Also, it is known that a Nagata space is equivalent to a first countable stratifiable space and every stratifiable space is paracompact. Every semistratifiable space X is subparacompact and has a G_{δ} -diagonal if it is T_2 [14; Theorem 5.11].

2. *c*-stratifiable spaces and strongly α -spaces

We begin by considering the relations between c-stratifiable spaces and strongly α -spaces, and the conditions for spaces to be c-stratifiable or strongly α .

Definition 2.1. A space X is called *c*-stratifiable [22] (*c*-semistratifiable [25]) if X has a g-function such that if $x \notin K$, where K is compact, then $x \notin \overline{g_m(K)}$ ($x \notin g_m(K)$); in [25], it is assumed that K is closed compact) for some $m \in \mathbb{N}$. A space X is called *cs*-stratifiable if X has a g-function such

I. YOSHIOKA

that if $x \notin C$, where C is the union of a convergent sequence and any one of its limit points, then $x \notin \overline{g_m(C)}$ for some $m \in \mathbb{N}$. A space X is called *weak c-stratifiable* if X has a g-function such that, whenever C and D are disjoint compact subsets, then $g_m(C) \cap D = \emptyset$ for some $m \in \mathbb{N}$.

Every stratifiable space or γ , T_2 -space is *c*-stratifiable [22], but the Sorgenfrey line is a paracompact *c*-stratifiable space which is not semistratifiable. Also, every *c*-stratifiable space is *cs*-stratifiable and weak *c*-stratifiable [22; Theorem 1.3], every *cs*-stratifiable space is T_2 and every semistratifiable T_2 space is *c*-semistratifiable.

Definition 2.2. A space X is called *strongly* α [31] (α [17]) if X has a g-function such that (i) for each $n \in \mathbb{N}$, $y \in g_n(x) \Longrightarrow g_n(y) \subset g_n(x)$ and (ii) $\bigcap_{n \ge 1} \overline{g_n(x)} = \{x\}$ ($\bigcap_{n \ge 1} g_n(x) = \{x\}$).

For g-functions in Definitions 2.1 and 2.2, we can assume that $g_{n+1}(x) \subset g_n(x)$ for every $x \in X$ and each $n \in \mathbb{N}$. Every strongly α -space is also T_2 .

Theorem 2.3. Every cs-stratifiable q-space X or regular weak c-stratifiable q-space X is a first countable c-stratifiable space.

Proof. Let g be a q and cs-stratifiable function of a space X. We show that $\{g_n(x)\}$ is an open neighbourhood base of x for every $x \in X$. Suppose that $x \in X$ and $x_n \in g_n(x) \setminus U$ $(n \ge 1)$ for some open neighbourhood U of x. Since g is a q-function, $\{x_n\}$ has a cluster point p and $p \notin \{x\}$. Since g is a cs-stratifiable function, $p \notin \overline{g_m(x)} \supset \overline{\{x_j | j \ge m\}} \ni p$ for some $m \in \mathbb{N}$. This contradiction implies that $\{g_n(x)\}$ is a neighbourhood base of x. To see that g is a c-stratifiable function, suppose that $x \notin K$, where K is compact in X, and $x \in \bigcap_{n\ge 1} \overline{g_n(K)}$. Then, there exist sequences $\{x_n\} \subset K$ and $\{y_n\}$ such that $y_n \in g_n(x) \cap g_n(x_n)$. Since K is sequentially compact, $\{x_{n(i)}\} \longrightarrow p$ for some point $p \in K$ and some subsequence $\{x_{n(i)}\} \subset \{x_n\}$, and $\{y_{n(i)}\} \longrightarrow x$ for the subsequence $\{y_{n(i)}\} \subset \{y_n\}$. Then $x \notin \{x_{n(i)} | i \ge 1\} \cup \{p\} = C$, and hence $x \notin \overline{g_m(C)}$ for some $m \in \mathbb{N}$. Therefore, for some $n(j) \ge m$, $y_{n(j)} \notin \overline{g_m(C)} \supset g_{n(j)}(x_{n(j)}) \ni y_{n(j)}$. This contradiction implies that g is also a c-stratifiable function.

For the second part, we can assume that g is a weak c-stratifiable qfunction satisfying $\overline{g_{n+1}(x)} \subset g_n(x)$. If x and y are distinct points, then $g_m(x) \cap \{y\} = \emptyset$ for some $m \in \mathbb{N}$. Hence, $\bigcap_{n \ge 1} \overline{g_n(x)} = \{x\}$. Suppose that $x \in X$ and $x_n \in g_n(x) \setminus U$ $(n \ge 1)$ for some open neighbourhood U of x. Then $\{x_n\}$ has a cluster point p. Hence, $p \in \overline{g_n(x)}$ for each $n \in \mathbb{N}$. This contradiction asserts that $\{g_n(x)\}$ is a neighbourhood base of x. Therefore,

180

K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES

g is a c-stratifiable function by [22; Theorem 1.3].

Theorem 2.4. (1) Every strongly α -space X or k-semistratifiable T_2 -space X is weak c-stratifiable.

(2) Every strongly α , q-space X is c-stratifiable.

Proof. (1): First, let g be a strongly α -function of X. Suppose that there are disjoint compact subsets C and D such that $x_n \in g_n(C) \cap D$ $(n \ge 1)$. Then $x_n \in g_n(y_n)$ for some sequence $\{y_n\} \subset C$. Hence $\{y_n\}$ clusters at a point $y \in C$ and contains a subsequence $\{y_{n(i)}\}$ such that $y_{n(i)} \in g_i(y)$. Then $x_{n(i)} \in g_{n(i)}(y_{n(i)}) \subset g_i(y_{n(i)}) \subset g_i(y)(i \ge 1)$, and $\{x_{n(i)}\}$ has a cluster point $x \in D$. Then for each $i \in \mathbb{N}$, $x \in \overline{\{x_{n(j)} | j \ge i\}} \subset \overline{g_i(y)}$. Therfore x = y, which is a contradiction. Next, that a k-semistratifiable T_2 -space is weak c-stratifiable follows from the equivalent condition of a k-semistratifiable space in Definition 1.5.

(2): Let g be a q-function and h be a strongly α -function of a space X. Here, we can assume that $g_n(x) \subset h_n(x)$. For some $x \in X$ and some compact subset K, suppose that $x \notin K$ and $x \in \bigcap_{n \geq 1} \overline{g_n(K)}$. Then there exist sequences $\{y_n\}$ and $\{z_n\}$ such that $y_n \in K$ and $z_n \in g_n(x) \cap g_n(y_n)$. Let $y \in K$ be a cluster point of $\{y_n\}$. Then $y_{n(i)} \in g_i(y)$ for some increasing subsequence $\{n(i)\}$ of N. Also, since $z_{n(i)} \in g_i(x) (i \geq 1), \{z_{n(i)}\}$ has a cluster point z. Since $y_{n(i)} \in h_i(y) (i \geq 1), z_{n(i)} \in g_{n(i)}(y_{n(i)}) \subset h_i(y_{n(i)}) \subset h_i(y)$. Therefore, $\{z_{n(j)} | j \geq i\} \subset h_i(y) (i \geq 1)$ and hence, $z \in \overline{h_i(y)} (i \geq 1)$, which implies that y = z. Moreover, since $z_{n(i)} \in g_i(x) \subset h_i(x) (i \geq 1)$, we have $\{z_{n(j)} | j \geq i\} \subset h_i(x)$, and hence $z \in \overline{h_i(x)}$. Consequently, x = z. This contradiction implies that g is a c-stratifiable function.

We now study the conditions for spaces to be c-stratifiable or strongly α .

Definition 2.5. A space X is called a $w\Delta$ -space [4] if it has a sequence $\{\mathcal{G}_n\}$ of open covers such that whenever $x_n \in st(x, \mathcal{G}_n)$ $(n \ge 1)$, then $\{x_n\}$ has a cluster point. A space X is called a *developable* space if it has a sequence $\{\mathcal{G}_n\}$ of open covers such that for each $x \in X$, the sequence $\{st(x, \mathcal{G}_n)\}$ is a neighbourhood base of x. A regular developable space is called a *Moore* space. These spaces are characterized by g-functions as follows [18]: A space X is $w\Delta$ (*developable*) if and only if X has a g-function satisfying (L) ((K), respectively).

181

I. YOSHIOKA

Definition 2.6. (1) For each $k \in \mathbb{N}$, a space X is said to have a $G_{\delta}(k)$ diagonal if X has a sequence $\{\mathcal{G}_n\}$ of open covers such that for any distinct points x and y, there exists $m \in \mathbb{N}$ such that $y \notin st^k(x, \mathcal{G}_m)$, where $st^{k+1}(x, \mathcal{G}_m) = st(st^k(x, \mathcal{G}_m))$.

(2) A sequence $\{\mathcal{G}_n\}$ of open covers of a space X is said to satisfy the 3-link property [32] (equivalently, it is a $G_{\delta}(3)$ -diagonal sequence) if it is true that for any distinct points x and y, there exists $m \in \mathbb{N}$ such that no member of \mathcal{G}_m intersects both $st(x, \mathcal{G}_m)$ and $st(y, \mathcal{G}_m)$.

(3) A space X is said to have a regular G_{δ} -diagonal [32] if there is a sequence $\{\mathcal{G}_n\}$ of open covers of X such that if x and y are distinct points of X, then there are an integer m and open neighbourhoods U and V of x and y, respectively, such that no member of \mathcal{G}_m intersects both U and V.

(4) A space X is said to have a G_{δ}^* -diagonal if X has a sequence $\{\mathcal{G}_n\}$ of open covers such that whenever $x \neq y$, there exists $m \in \mathbb{N}$ that satisfies $y \notin \overline{st(x, \mathcal{G}_m)}$.

It is easily seen that for a sequence $\mathcal{G} = \{\mathcal{G}_n\}$ of open covers of a space X, \mathcal{G} is $G_{\delta}(2)$ -diagonal if, and only if, whenever $x \neq y$, there exists $m \in \mathbb{N}$ satisfying $x \notin st(p, \mathcal{G}_m)$ or $y \notin st(p, \mathcal{G}_m)$ for every $p \in X$ (this property is called *strong* G_{δ} -diagonal in [31]).

We note that for properties of a sequence $\{\mathcal{G}_n\}$ of open covers of a space X, the following implications hold:

3-link property \Rightarrow regular G_{δ} -diagonal \Rightarrow G_{δ}^* -diagonal \Rightarrow G_{δ} -diagonal and 3-link property \Rightarrow $G_{\delta}(2)$ -diagonal = strong G_{δ} -diagonal \Rightarrow G_{δ}^* -diagonal.

In the realm of paracompact spaces, these properties are all equivalent. Every Nagata space is paracompact and has a G_{δ} -diagonal. Every developable T_2 -space has a $G_{\delta}(2)$ -diagonal and every regular semistraifiable space has a G_{δ}^* -diagonal [14, 17]. On the other hand, the space Ψ in Example 4.5 is a Moore space which does not have a regular G_{δ} -diagonal.

Definition 2.7. (1) A space X is called *orthocompact* if every open cover of X has an open refinement \mathcal{V} such that $\cap \mathcal{W} = \cap \{W | W \in \mathcal{W}\}$ is open for every $\mathcal{W} \subset \mathcal{V}$.

(2) A space X is called *submetrizable* if there is a continuous one-to-one map from X onto a metric space.

It is well known that the following implications hold:

metacompact spaces \implies orthocompact spaces, and

stratifiable spaces \implies paracompact spaces with a G_{δ} -diagonal [3, 29] \implies submetrizable spaces.

Theorem 2.8. (1) Every space X with a regular G_{δ} -diagonal is c-stratifiable.

(2) Every orthocompact space X with a G^*_{δ} -diagonal, or orthocompact regular space X with a G_{δ} -diagonal is strongly α .

(3) Every orthocompact developable T_2 -space X is strongly α and c-stratifiable.

(4) Every orthocompact regular c-semistratifiable β -space X is strongly α .

(5) Every submetrizable space X is strongly α and c-stratifiable.

Proof. (1) is proved in [22; Proposition 3.2].

(2): Let X be a regular space and let $\{\mathcal{G}_n\}$ be a G_{δ} -diagonal sequence of X. Then for each $n \in \mathbb{N}$, \mathcal{G}_n has an open refinement \mathcal{H}_n such that $\{\overline{H}|H \in \mathcal{H}_n\}$ is a refinement of \mathcal{G}_n and $\cap \mathcal{W}$ is open for every $\mathcal{W} \subset \mathcal{H}_n$. Therefore, in both cases, we may assume that there exists a sequence $\{\mathcal{H}_n\}$ of open covers such that

(i) for each $n \in \mathbb{N}$, $\cap \mathcal{W}$ is open for every $\mathcal{W} \subset \mathcal{H}_n$, and

(ii) for distinct points x and y, there is an $m \in \mathbb{N}$ such that $x \in H \subset \overline{H}$ and $y \notin \overline{H}$ for some $H \in \mathcal{H}_m$.

Here, for any $x \in X$ and each $n \in \mathbb{N}$, we put $h_n(x) = \bigcap \{H \in \mathcal{H}_n | x \in H\}$. Then the *g*-function $(\{h_n(x)\} | x \in X)$ satisfies the conditions of Definition 2.2.

(3): Since every developable T_2 -space has a G^*_{δ} -diagonal, X is a strongly α from (2) and it is c-stratifiable from Theorem 2.4.

(4): Since every regular *c*-semistratifiable β -space is semistratifiable [25; Theorem 3], it has a G_{δ} -diagonal. Hence X is strongly α from (2).

(5): Let $f : X \longrightarrow M$ be a continuous one-to-one onto map, where M is a metric space. By (3), M is strongly α and c-stratifiable. Therefore (5) follows from the following fact:

Let $f: X \longrightarrow Y$ be a continuous one-to-one onto map. If h is a strongly α -function (c-stratifiable function) of Y, then $(\{g_n(x)\}|x \in X)$, where $g_n(x) = f^{-1}[h_n(f(x))]$, is a strongly α -function (c-stratifiable function, respectively) of X.

We note that every metacompact regular semistratifiable q-space is strongly α and hence it is c-stratifiable. Also, every regular k-semistratifiable qspace is Nagata [31], and hence it is strongly α , c-stratifiable. On the other hand, the separable Moore space X in Example 4.6 is neither strongly α nor c-stratifiable.

The following question arises naturally from (4) of the above Theorem.

Question 2.9. Is every paracompact (or metacompact regular) c-semistratifiable q-space, c-stratifiable ?

I. YOSHIOKA

Theorem 2.10. For a cs-stratifiable space X, the following implications hold:

(1) $\beta \Longrightarrow semistratifiable$, (2) $wcc \Longrightarrow k$ -semistratifiable, (3) $wN \Longrightarrow Nagata$, (4) $w\theta \Longrightarrow \theta$, (5) $w\gamma \Longrightarrow \gamma$ and (6) $w\Delta \Longrightarrow developable$.

Proof. (1): Let g be a cs-stratifiable and β -function of X and let $x \in g_n(x_n)$ $(n \geq 1)$. For any subsequence $\{x_{n(i)}\}$ of $\{x_n\}, \{x_{n(i)}\}$ has a cluster point since $x \in g_i(x_{n(i)})(i \geq 1)$. Let p be a cluster point of $\{x_n\}$ and $p \neq x$. Then $\{x_n\}$ contains a subsequence $S = \{x_{n(j)}\}$ such that $x_{n(j)} \in g_j(p) \setminus \{x\}(j \geq 1)$. Since $\{x_{n(k)}|k \geq j\} \subset g_j(p)(j \geq 1)$ and $\{p\} = \bigcap_{j\geq 1}\overline{g_j(p)}, p$ is the only cluster point of S. Hence S converges to p. Since $x \notin C = S \cup \{p\}, x \notin \overline{g_m(C)}$ for some $m \in \mathbb{N}$. But, for some $n(k) \geq m, x \in g_{n(k)}(x_{n(k)}) \subset g_m(C)$. This contradiction implies that x = p is a cluster point of $\{x_n\}$.

(2): Let g be a cs-stratifiable, wcc-function satisfying $\{x\} = \bigcap_{n \ge 1} g_n(x)$ for every $x \in X$. Since X is a T₂-space, it is enough to show that g satisfies the k-semistratifiable condition of Definition 1.5. Let $y_n \in g_n(x_n)$ $(n \geq 1)$ 1) and $\{y_n\} \longrightarrow y$. First, we show that $\{x_n\}$ contains a subsequence which converges to y. Indeed, for any subsequence $\{x_{n(i)}\}\$ of $\{x_n\},\ y_{n(i)}\in$ $g_{n(i)}(x_{n(i)}) \subset g_i(x_{n(i)}) (i \geq 1)$ and $\{y_{n(i)}\} \longrightarrow y$, hence $\{x_{n(i)}\}$ has a cluster point. Let p be a cluster point of $\{x_n\}$. It is easily seen that there exists a subsequence $S = \{x_{n(i)}\}$ of $\{x_n\}$ such that $x_{n(i)} \in g_i(p)$. Since $\overline{\{x_{n(j)}|j\geq i\}}\subset \overline{g_i(p)}$ for each $i\in\mathbb{N}, p$ is a unique cluster point of S. Hence S converges to p. If $p \neq y$, then $y \notin \{x_{n(i)} | i \geq m\} \cup \{p\} = C$ for some $m \in \mathbb{N}$. Therefore $y \notin g_{n(k)}(C)$ for some $k \geq m$. This contradiction asserts that S converges to y. Next, if $\{x_n\}$ does not converge to y, then we have an open neighbourhood W of y and a subsequence $\{x_{n(i)}\}$ such that $\{x_{n(i)}\} \cap W = \emptyset$. Then since $y_{n(i)} \in g_{n(i)}(x_{n(i)}) \subset g_i(x_{n(i)}) (i \ge 1)$ and $\{y_{n(i)}\} \longrightarrow y, \{x_{n(i)}\}$ contains a subsequence which converges to y. This contradiction implies that $\{x_n\} \longrightarrow y$.

(3): Since X is q and wcc, by Theorem 2.3 and (2) of this theorem, there is a g-function g such that, whenever $y_n \in g_n(x_n)$ $(n \ge 1)$ and $\{y_n\} \longrightarrow y$, then $\{x_n\} \longrightarrow y$, and $\{g_n(x)\}$ is a neighbourhood base of x. To see that g is a Nagata function, let $y_n \in g_n(x) \cap g_n(x_n)$ $(n \ge 1)$. Then $\{y_n\} \longrightarrow x$. Hence $\{x_n\} \longrightarrow x$.

(4): Let g be a cs-stratifiable $w\theta$ -function of X. Then g is a q-function. Indeed, let $x_n \in g_n(x)$ $(n \ge 1)$, then $\{x_n\}$ has a cluster point since $x \in g_n(x), x_n, x \in g_n(x)$ $(n \ge 1)$. Therefore, $\{g_n(x)\}$ is a neighbourhood base of x by Theorem 2.3. Now, suppose that $y_n \in g_n(p)$ and $x_n, p \in g_n(y_n)$ $(n \ge 1)$. Then $\{x_n\}$ has a cluster point x and $\{y_n\}$ converges to p. If $x \ne p$, then

 $x \notin \{y_n | n \ge m\} \cup \{p\} = C$ for some $m \in \mathbb{N}$. Therefore $x \notin \overline{g_k(C)}$ for some $k \ge m$. This contradiction implies x = p, and hence g is a θ -function.

(5): Let g be a cs-stratifiable, $w\gamma$ -function of a space X. Suppose that $y_n \in g_n(p), x_n \in g_n(y_n) \ (n \ge 1)$. Then $\{x_n\}$ has a cluster point x, and $\{y_n\}$ converges to p since g is a q-function. If $p \ne x$, then $x \notin \{y_n | n \ge m\} \cup \{p\} = C$ for some $m \in \mathbb{N}$. Therefore $x \notin \overline{g_k(C)}$ for some $k \ge m$, which is a contradiction.

(6): Let g be a cs-stratifiable $w\Delta$ -function of X. Since g is a β -function, g is a semistratifiable function. Now, suppose that $x_n, p \in g_n(y_n)$ $(n \ge 1)$. Then $\{y_n\}$ converges to p and $\{x_n\}$ has a cluster point x. If $x \ne p$, then $x \notin \{y_n | n \ge m\} \cup \{p\} = C$ for some $m \in \mathbb{N}$. Hence $x \notin \overline{g_k(C)}$ for some $k \ge m$. This contradiction implies that the function g satisfies condition (K).

Remark 2.11. (1) In the class of strongly α -spaces, the implications (3)-(6) in Theorem 2.10 are true by Theorem 2.4, (1) follows from [17; Theorem 5.2] and (2) follows from [31; Proposition 4.7].

(2) In the class of weak c-stratifiable regular spaces, the implications (3)-(6) in Theorem 2.10 are true by Theorem 2.3. For the implications (1) and (2), let g be a g-function satisfying the respective conditions. Then, since $\bigcap_{n\geq 1} \overline{g_n(x)} = \{x\}$, (1) and (2) are also true by a similar argument to the proof of Theorem 2.10.

The following questions regarding c-stratifiable spaces and strongly α -spaces are natural.

Question 2.12. When are *c*-stratifiability and strong α -ness coincident ?

Question 2.13. Is every paracompact first coutable *c*-stratifiable space strongly α ?

3. K-SEMIMETRIZABLE SPACES

Definition 3.1. Let X be a space. Then a function $d : X \times X \longrightarrow \mathbb{R}$ is called a *semimetric* if (i) $d(x,y) \ge 0$, (ii) $d(x,y) = 0 \iff x = y$ and (iii) d(x,y) = d(y,x). X is called a *semimetrizable* space or X has a *compatible semimetric* if there exists a semimetric d on X such that for any subset $M \subset X$, $x \in \overline{M} \iff d(x,M) = 0$, or equivalently, for any $x \in X$ and any open neighbourhood U of $x, x \in \operatorname{int} B(x; \epsilon) \subset B(x; \epsilon) \subset U$ for some $\epsilon > 0$; where $B(A; \delta) = \{y \in X | d(A, y) = \inf\{d(a, y) | a \in A\} < \delta\}$ for each $\delta > 0$ and any subset $A \subset X$ and $B(x; \delta) = B(\{x\}; \delta)$. Then, for a sequence $\{x_n\}$ in a semimetrizable space (X, d), $\lim_{n\to\infty} d(x, x_n) = 0$

I. YOSHIOKA

 $\iff \{x_n\} \longrightarrow x \text{ in } X.$ A semimetrizable space X with a compatible semimetric d is K-semimetrizable [26] if $d(H, K) = \inf\{d(x, y) | x \in H, y \in K\} > 0$ for any disjoint compact subsets H and K. In this situation, d is called a K-semimetric on X.

It is well known [8] that a space X is semimetrizable if, and only if, it is a first countable, semistratifiable space.

Definition 3.2. Let (X, d) be a semimetrizable space. For each $n \in \mathbb{N}$, we put $\mathcal{G}_n = \{ \operatorname{int} B(x; \epsilon) | \delta B(x; \epsilon) < 1/n \}$, where for subset A of X, $\delta A =$ $\sup\{d(x,y)|x,y \in A\}$. The semimetric d is said to be full if \mathcal{G}_n is a cover of X for each $n \in \mathbb{N}$, or equivalently, if d satisfies Arhangel'skii's condition (AN): At each point, there is a neighbourhood of arbitrarily small diameter [1]. A space X is called full K-semimetrizable if X has a compatible full K-semimetric.

Zenor investigated spaces with a regular G_{δ} -diagonal and gave the following result.

Theorem 3.3 ([32; Theorem 2]). For a space X, the following conditions are equivalent.

- (1) X has a development satisfying the 3-link property.
- (2) X is a $w\Delta$ -space with a regular G_{δ} -diagonal.
- (3) X has a compatible semimetric d satisfying

(I) If $\{x_n\} \longrightarrow x$ and $\{y_n\} \longrightarrow x$, then $\lim_{n \to \infty} d(x_n, y_n) = 0$, and (II) If $\{x_n\} \longrightarrow x$, $\{y_n\} \longrightarrow y$ and $x \neq y$, then there exist r > 0 and $m \in \mathbb{N}$ such that $d(x_n, y_n) > r$ for each $n \geq m$.

In substance, the first part of the following theorem is proved in $(1) \iff (3)$ of [32; Theorem 2] or [22; Lemma 5.3].

Theorem 3.4. (1) For a space X, the following conditions are equivalent.

(i) X is a developable space.

(ii) X has a compatible full semimetric d.

(iii) X has a compatible semimetric d satisfying (I) of Theorem 3.3.

(2) A space X is developable T_2 if, and only if, it is $w\theta$, β and has a G^*_{δ} -diagonal.

186

K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES

Proof of (2). We only prove the "if" part. Every β -space with a G_{δ}^* -diagonal is semistratifiable [17; Theorem 5.2] and every semistratifiable $w\theta$ -space is $w\Delta$ [18; Proposition 4.5]. Hence X is developable [17; Theorem 2.5].

For a semimetric space, we have the following characterization. A regular space X is semimetrizable if, and only if, it is a q, β -space with a G^*_{δ} -diagonal.

Indeed, let g be a q-function and $\{\mathcal{G}_n\}$ be a G_{δ}^* -diagonal sequence of a space X. We put $h_n(x) = g_n(x) \cap st(x, \mathcal{G}_n)$, then $\{h_n(x)\}$ is a neighbourhood base of x. Also, X is semistratifiable from the proof of Theorem 3.4(2). For the converse implication, see [17].

The following theorem improves the result [11; Proposition 2.7] or [22; Theorem 5.2] that a space X is K-semimetrizable if, and only if, it is c-stratifiable and semimetrizable.

Theorem 3.5. For a space X, the following conditions are equivalent.

(1) X is a K-semimetrizable space.

- (2) X is a c-stratifiable semimetrizable space.
- (3) X is a cs-stratifiable q, β -space.
- (4) X has a compatible semimetric d satisfying (II) of Theorem 3.3.

(5) X has a compatible semimetric d such that, $x \notin B(K; 1/m)$ for some $m \in \mathbb{N}$, whenever $x \notin K$ and K is compact.

Proof. (1) \Longrightarrow (2) is proved in [22; Theorem 5.2] and (2) \Longrightarrow (3) is evident. (3) \Longrightarrow (1): Let g be a cs-stratifiable q, β -function of X. Then by Theorems 2.3 and 2.10, g is a c-stratifiable and semistratifiable function, and $\{g_n(x)\}$ is an open neighbourhood base of x for every $x \in X$. Now, we define d(x, x) = 0 and $d(x, y) = 1/\inf\{j | x \notin g_j(y) \text{ and } y \notin g_j(x)\}$ if $x \neq y$. By [22; Theorem 5.2], (X, d) is K-semimetrizable.

 $(1) \Longrightarrow (4)$: Let d be a compatible K-semimetric on X. Suppose that $\{x_n\} \longrightarrow x, \{y_n\} \longrightarrow y$ and $x \neq y$. Since X is T_2 , for some $m \in \mathbb{N}$, $H = \{x_n | n \geq m\} \cup \{x\}$ and $K = \{y_n | n \geq m\} \cup \{y\}$ are disjoint compact subsets. Therefore we have that $0 < d(H, K) \leq \inf\{d(x_n, y_n) | n \geq m\}$.

(4) \Longrightarrow (5): Suppose that $x \notin K$, where K is compact, and $x \in \overline{B(K; 1/n)}$ for each $n \in \mathbb{N}$ with respect to the semimetric d satisfying the condition of (4). Then there exists a sequence $\{z_n\}$ such that

$$z_n \in B(K; 1/n) \cap \operatorname{int} B(x; 1/n).$$

Hence $\{z_n\} \longrightarrow x$. Also $d(x_n, z_n) < 1/n$ for some sequence $\{x_n\} \subset K$. Then there exist subsequences $\{x_{n(i)}\} \subset \{x_n\}$ and $\{z_{n(i)}\} \subset \{z_n\}$ such that $\{x_{n(i)}\} \longrightarrow p$ for some $p \in K$ and $\{z_{n(i)}\} \longrightarrow x$. Therefore there exist

I. YOSHIOKA

 $j, m \in \mathbb{N}$ such that $d(x_{n(i)}, z_{n(i)}) \ge 1/m$ for each $i \ge j$. On the other hand, $d(x_{n(k)}, z_{n(k)}) < 1/n(k)$ for some $n(k) \ge \max\{n(j), m\}$, which is a contradiction.

 $(5) \Longrightarrow (1)$: Let d be a compatible semimetric satisfying the condition of (5). If H and K are disjoint compact subsets of X with d(H, K) = 0, then $\lim d(x_n, y_n) = 0$ for some sequences $\{x_n\} \subset H, \{y_n\} \subset K$. Since Xis first countable, there exist subsequences $\{x_{n(i)}\} \subset \{x_n\}, \{y_{n(i)}\} \subset \{y_n\}$ and points $x \in H$, $y \in K$ satisfying $\{x_{n(i)}\} \longrightarrow x, \{y_{n(i)}\} \longrightarrow y$. Since $y \notin \overline{B(H; 1/m)}$ for some $m \in \mathbb{N}$, we have that $B(y; 1/k) \cap B(H; 1/k) = \emptyset$ for some $k \ge m$. This contradicts the fact that $d(x_{n(i)}, y_{n(i)}) < 1/k$ and $d(y, y_{n(i)}) < 1/k$ for some $n(i) \in \mathbb{N}$.

Remark 3.6. (1) The space Y in Example 4.9 is c-stratifiable β , but not q, and the Sorgenfrey line is c-stratifiable q, but not β .

(2) The space X in Example 4.6 is Moore (hence, X has a G^*_{δ} -diagonal), but not K-semimetrizable, and the Nagata space X in Example 4.9 is K-semimetrizable, but not Moore.

(3) The space Y in Example 4.9 is stratifiable (hence c-stratifiable) Fréchet as the perfect image of a Nagata space (hence, K-semimetrizable), but Y is not semimetrizable (not even q).

Proposition 3.7. Every K-semimetrizable space has a G^*_{δ} -diagonal.

Proof. By Theorems 2.3 and 3.5, let g be a cs-stratifiable q, β -function of X such that $\{g_n(x)\}$ is a neighbourhood base of x. For each $n \in \mathbb{N}$, we put $\mathcal{G}_n = \{g_n(x) | x \in X\}$. To see that the sequence $\{\mathcal{G}_n\}$ is a G_{δ}^* diagonal, suppose that $x \neq y \in \bigcap_{n \geq 1} \overline{st(x, \mathcal{G}_n)}$. Then there exist $z_n \in$ $g_n(y) \cap st(x, \mathcal{G}_n) \ (n \geq 1)$. Hence $\{z_n\} \longrightarrow y$ and $x, z_n \in g_n(x_n)$ for some sequence $\{x_n\}$. Then $\{x_n\} \longrightarrow x$ and $y \notin C = \{x_n | n \geq m\} \cup \{x\}$ for some $m \in \mathbb{N}$. Hence $y \notin \overline{g_k(C)}$ for some $k \geq m$. This is a contradiction.

The following theorem gives a condition for strong α -ness and c-stratifiability to be equivalent, and follows directly from Theorems 2.4, 2.8 and 3.5 and Proposition 3.7.

Theorem 3.8. For an orthocompact β , q-space, the following conditions are equivalent.

- (1) X is K-semimetrizable.
- (2) X has a G^*_{δ} -diagonal.
- (3) X is strongly α .

189

(4) X is cs-stratifiable.

An analogue to Theorem 3.5 for the class of regular spaces follows directly from Theorem 2.3.

Theorem 3.9. For a regular space X, X is K-semimetrizable if, and only if, it is weak c-stratifiable q, β .

We next give some partial answers to the question of Burke [6; Question 2] on what minimal topological condition on a Moore space (or semimetric space) will ensure that the space is K-semimetrizable.

Theorem 3.10. (1) Every T_2 , orthocompact developable space X is K-semimetrizable.

(2) Every regular orthocompact semistratifiable q-space (hence, regular orthocompact semimetrizable space) X is K-semimetrizable.

(3) Every regular orthocompact c-semistratifiable q, β -space X is K-semimetrizable.

(4) Every regular k-semistratifiable q-space X is K-semimetrizable.

Proof. Since a developable T_2 -space has a $G_{\delta}(2)$ -diagonal, (1) follows from Theorems 2.8 and 3.5. Since every semistratifiable T_2 -space has a G_{δ} -diagonal, (2) follows from Theorems 2.8 and 3.5. For (3), since X is semistratifiable, (3) follows from (2). (4) follows from Theorems 2.3, 2.4 and 3.5.

Remark 3.11. (1) With regards to (2) of Theorem 3.10, it is already known [1; page 133] or [22; page 441], that every paracompact semimetrizable space is K-semimetrizable.

(2) In (2) and (3) of Theorem 3.10, we can not change orthocompactness to subparacompactness by Example 4.6.

(3) In (4) of Theorem 3.10, we already know that a space is regular k-semistratifiable q if, and only if, it is Nagata [31; Theorem 2.1]. But, we do not know whether every T_2 , k-semistratifiable q-space is c-stratifiable. (If this answer is affirmative, then every T_2 , k-semistratifiable q-space is first countable and Nagata.) The converse of (4) does not hold, because the space Ψ in Example 4.5 is not k-semistratifiable.

In the following theorem, the equivalence of (1) and (4) is proved in [22; Theorem 5.4].

I. YOSHIOKA

Theorem 3.12. For a space X, conditions (1)-(5) are all equivalent and $(5) \Longrightarrow (6)$ holds.

(1) X is a full K-semimetrizable space.

(2) X has a development $\{\mathcal{G}_n\}$ such that if K_1 and K_2 are disjoint compact subsets, then $st(K_1, \mathcal{G}_m) \cap K_2 = \emptyset$ for some $m \in \mathbb{N}$.

(3) X has a development $\{\mathcal{G}_n\}$ such that if $p \notin C$, where C is the union of a convergent sequence and any one point of its limit points, then $p \notin \overline{st(C, \mathcal{G}_m)}$ for some $m \in \mathbb{N}$.

(4) X satisfies one of the equivalent conditions in Theorem 3.3.

(5) X is a $w\theta$, β -space with a regular G_{δ} -diagonal.

(6) X is a developable c-stratifiable space.

Proof. (1) \Longrightarrow (2): Let d be a compatible full K-semimetric on X. For each $n \in \mathbb{N}$, we put $\mathcal{G}_n = \{ \operatorname{int} B(x; \epsilon) | \delta B(x; \epsilon) < 1/n \}$. Then $\{\mathcal{G}_n\}$ is a development of X since d is a full semimetric. For, suppose that $x \in X$ and $x_n \in st(x, \mathcal{G}_n) \setminus U$ $(n \geq 1)$ for some open neighbourhood U of x. Then $x, x_n \in G_n$ and $\delta G_n < 1/n$ for some $G_n \in \mathcal{G}_n$, which is a contradiction. Now, suppose that K_1 and K_2 are disjoint compact subsets and $x_n \in st(K_1, \mathcal{G}_n) \cap K_2$ for each $n \in \mathbb{N}$. Then $y_n \in G_n \cap K_1$ and $x_n \in G_n$ for some $G_n \in \mathcal{G}_n$. Since $\delta G_n < 1/n$ $(n \geq 1)$, $\lim_{n \to \infty} d(x_n, y_n) = 0$. This contradicts $d(K_1, K_2) > 0$.

 $(2) \Longrightarrow (3)$: Let $\{\mathcal{G}_n\}$ be a development of X satisfying (2). To see that X is T_2 . let $x \neq y$ and $x_n \in st(x, \mathcal{G}_n) \cap st(y, \mathcal{G}_n)$ for each $n \in \mathbb{N}$. Then $\{x_n\} \longrightarrow x$ and $\{x_n\} \longrightarrow y$. Given any open neighbourhood U of x with $y \notin U$, $S = \{x_n | n \geq m\} \cup \{x\} \subset U$ for some $m \in \mathbb{N}$. Then $st(y, \mathcal{G}_k) \cap S = \emptyset$ for some $k \geq m$. This contradicts $\{x_n\} \longrightarrow y$. Next, suppose that $p \notin K$, where K is compact, and $p \in \bigcap_{n \geq 1} st(K, \mathcal{G}_n)$. Then $a_n \in st(p, \mathcal{G}_n) \cap st(K, \mathcal{G}_n)(n \geq 1)$. Hence $a_n \in st(x_n, \mathcal{G}_n)$ for some sequence $\{x_n\}$ in a sequentially compact K, and $\{x_n\}$ contains a subsequence $\{x_{n(i)}\}$ converging to some point $x \in K$. Since X is T_2 , $L = \{x_{n(i)} | n(i) \geq m\} \cup \{x\}$ and $H = \{a_{n(i)} | n(i) \geq m\} \cup \{p\}$ are disjoint for some $m \in \mathbb{N}$. Therefore, $a_{n(k)} \in st(L, \mathcal{G}_{n(k)}) \cap H = \emptyset$ for some $n(k) \geq m$, which leads to a contradiction.

 $(3) \Longrightarrow (4)$: Let $\{\mathcal{G}_n\}$ be a development of X such that \mathcal{G}_{n+1} is a refinement of \mathcal{G}_n and satisfies (3). We now show that $\{\mathcal{G}_n\}$ satisfies the 3-link property. Suppose that $x \neq y$ and for each $n \in \mathbb{N}$, there exists $G_n \in \mathcal{G}_n$ such that $x_n \in G_n \cap st(x, \mathcal{G}_n)$ and $y_n \in G_n \cap st(y, \mathcal{G}_n)$. Since $\{x_n\} \longrightarrow x, \{y_n\} \longrightarrow y$ and X is $T_2, y \notin C = \{x_n | n \geq m\} \cup \{x\}$ for some $m \in \mathbb{N}$. Hence $y \notin \overline{st(C, \mathcal{G}_k)}$ for some $k \geq m$. Then $y_l \in X \setminus \overline{st(C, \mathcal{G}_k)}$ for some $l \geq k$ and $x_l \in C$. Therefore, $y_l \in G_l \subset st(x_l, \mathcal{G}_l) \subset st(C, \mathcal{G}_k)$, which is a contradiction.

(4) \Longrightarrow (5): Let X be a $w\Delta$ -space with a regular G_{δ} -diagonal. Then X satisfies condition (5).

K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES

 $(5) \Longrightarrow (1)$: By Theorem 3.4, X is a developable space with a regular G_{δ} diagonal. Hence there exists a compatible semimetric d on X satisfying (I) and (II) of (3) in Theorem 3.3. Then d is full by $(3) \Longrightarrow (1)$ of [32; Theorem 2]. To see that d is K-semimetric, suppose that d(K, H) = 0 for some disjoint compact subsets K and H. Then there are sequences $\{x_n\} \subset K$ and $\{y_n\} \subset H$ such that $\lim_{n \to \infty} d(x_n, y_n) = 0$. On the other hand, since X is a q-space with a G_{δ}^* -diagonal, X is first countable. Hence $\{x_n\}$ ($\{y_n\}$) contains a subsequence $\{x_{n(i)}\}$ ($\{y_{n(i)}\}$) converging to a point $x \in K$ ($y \in H$, respectively). Hence there are $k, m \in \mathbb{N}$ such that $d(x_{n(i)}, y_{n(i)}) \ge 1/m$ for each $i \ge k$ by (II). This is a contradiction. Finally, (5) \Longrightarrow (6) follows from Theorems 2.8 and 3.4.

Remark 3.13. (1) The space Ψ in Example 4.5 is Moore and *K*-semi -metrizable, but not full *K*-semimetrizable.

(2) Every $w\Delta$ -space is $w\theta$ and β . Although the converse is an open problem [18; Problem 4.10], (4) \iff (5) of Theorem 3.12 (or (2) of Theorem 3.4) may be a slight progress to [32; Theorem 2] ([17; Theorem 2.5], respectively).

(3) The space X in Example 4.8 is T_2 metacompact, full K-semi -metrizable, but not regular.

Question 3.14. Is every normal metacompact, full *K*-semimetrizable space, metrizable?

We next investigate conditions for spaces to be developable and K-semimetrizable.

Theorem 3.15. Consider the following conditions for a space X.

(1) X is developable and K-semimetrizable.

(2) X is K-semimetrizable $w\theta$.

(3) X is cs-stratifiable $w\theta$ and β .

(4) X is strongly α , $w\theta$ and β .

(5) X is developable T_2 .

Then, (1), (2) and (3) are equivalent.

Moreover, if X is orthocompact, then all conditions are equivalent.

Proof: (1)⇒(2) ⇒(3) are evident. For (3)⇒(1), X is K-semimetrizable by Theorem 3.5. Since X is semistratifiable and θ by Theorem 2.10, X is developable [18; Remark 4.8]. (4)⇒(3) follows from Theorem 2.4, and (3)⇒(5) is evident. Moreover, if X is orthocompact, (5)⇒(4) follows from Theorem 2.8.

I. YOSHIOKA

Martin [26] showed that a locally connected rim-compact T_2 -space X is K-semimetrizable if, and only if, it is developable γ .

Definition 3.16. A space X is said to be *rim-compact* if each point of X has a neighbourhood base consisting of open subsets with compact boundaries. A space X is *locally connected* if each point of X has a neighbourhood base consisting of connected open subsets.

We need the following lemma.

Lemma 3.17. (1) Every locally connected rim-compact weak c-stratifiable (or, cs-stratifiable) space X is a c-stratifiable γ -space.

(2) Every pseudocompact Tychonoff weak c-stratifiable (or, cs-stratifiable) space X is a c-stratifiable γ -space.

Proof. (1): First, let g be a weak c-stratifiable function of X. Then, we can assume that $g_n(x)$ is connected for every $x \in X$ and each $n \in \mathbb{N}$. To see that X is a γ -space, we use the same method given in the proof of [26; Theorem 4]. Suppose that $K \subset W$, where K is non-empty compact and W is open. Then there is an open subset G such that $K \subset G \subset W$ and the boundary ∂G of G is compact. Since $K \cap \partial G = \emptyset$, $g_m(K) \cap \partial G = \emptyset$ for some $m \in \mathbb{N}$. Let $K = \bigcup \{K_\alpha | \alpha \in A\}$, where K_α is a connected component of K. Since $g_m(K_\alpha)$ is connected for each $\alpha \in A$, $g_m(K) = \bigcup_{\alpha \in A} g_m(K_\alpha) \subset G$. Hence g is a γ -function by [23; Theorem 2.1]. Since X is first countable, g is a c-stratifiable function by [22; Theorem 1.3]. Next, let g be a cs-stratifiable function of X. To see that $\{g_n(x)\}$ is a neighbourhood base of x for every $x \in X$, in the above proof, let K be a single point x. Since $\{x\} \cap \partial G = \emptyset$ and ∂G is compact, we have that $\overline{g_m(x)} \cap \partial G = \emptyset$ for some $m \in \mathbb{N}$. This asserts that $\overline{g_m(x)} \subset G$, which implies that X is first countable and regular. Therefore X is c-stratifiable by Theorem 2.3, and hence X is a γ -space.

(2): Let g be a weak c-stratifiable function or a cs-stratifiable function of X. By regularity of X, we assume that $\overline{g_{n+1}(x)} \subset g_n(x)$. Since $\bigcap_{n\geq 1}\overline{g_n(x)} = \{x\}, X$ is first countable by [27; Lemma 2.3]. Hence X is c-stratifiable by Theorem 2.3 and hence, X is γ by [22; Theorem 4.2].

Theorem 3.18. Let X be a locally connected rim-compact space or a pseudocompact Tychonoff space. Then the following conditions are equivalent.

- (1) X is developable and K-semimetrizable.
- (2) X is K-semimetrizable.
- (3) X is T_2 , developable and γ .
- (4) X is weak c-stratifiable and β .

(5) X is cs-stratifiable and β .

(6) X is T_2 , γ and β .

Proof. First, we note that every γ , β -space is developable [18; Proposition 4.2]. (1) \iff (4) and (1) \iff (5) follow from Theorem 3.5 and Lemma 3.17. (1) \implies (2) \implies (4) and (1) \implies (3) \implies (6) is evident. Since every T_2 , γ -space is *c*-stratifiable, (6) \implies (5) is true.

By the proof of the above theorem and Theorem 3.5, we have that in the class of T_2 , γ -spaces, the following properties are coincident: (1) developable and *K*-semimetrizable, (2) *K*-semimetrizable, (3) developable and (4) β .

The next theorem follows from Theorem 3.10.

Theorem 3.19. For an orthocompact T_2 -space X, X is developable and K-semimetrizable if, and only if, it is developable

A Tychonoff space X is called a *p*-space [2] if in the Stone-Cech compactification βX , there is a sequence $\{\mathcal{G}_n\}$ of open covers of X such that $\bigcap_{n\geq 1} st(x,\mathcal{G}_n) \subset X$ for every $x \in X$. Every locally compact T_2 -space is a *p*-space.

Burke [5] showed that there is a locally compact T_2 -space with a G_{δ} diagonal, which is not $w\Delta$. But, it is known that every locally compact semistratifiable T_2 -space or every θ -refinable *p*-space with a G_{δ} -diagonal is Moore [8, 21]. Then we have the following result by Theorem 3.10.

Theorem 3.20. For a metacompact p-space X, X is Moore and K-semi -metrizable if, and only if, it has a G_{δ} -diagonal.

The next result was studied by Kotake [20] in the class of regular spaces.

Theorem 3.21. For a space X, the following conditions are equivalent.

- (1) X is Nagata.
- (2) X is K-semimetrizable wcc.
- (3) X is cs-stratifiable wN.
- (4) X is strongly α , wN.
- (5) X is a wN-space with a G^*_{δ} -diagonal.
- (6) X is regular semimetrizable wcc.

Proof. Every Nagata space is stratifiable and first countable, hence it is c-stratifiable q and β . Therefore $(1) \Longrightarrow (2)$ and $(2) \Longrightarrow (3)$ follow from

I. YOSHIOKA

Proposition 1.4 and Theorem 3.5, and $(3) \Longrightarrow (1)$ follows from Theorem 2.10. (1) \Longrightarrow (4) and (4) \Longrightarrow (3) follow from Theorems 2.4 and 2.8. Also, (1) \Longrightarrow (5) is evident. To prove (5) \Longrightarrow (4), let g be a wN-function and $\{\mathcal{G}_n\}$ be a G_{δ}^* -diagonal sequence. Since regularity is not used to show that every β -space with a G_{δ}^* -diagonal is semistratifiable [17; Theorem 5.2], X is a subparacompact wN-space. Then X is metacompact by [18; Corollary 3.5]. Hence X is strongly α by Theorem 2.8. (1) \Longrightarrow (6) is evident. Finally, since every regular semistratifiable space has a G_{δ}^* -diagonal [14; Theorem 5.11], (6) \Longrightarrow (5) follows from Proposition 1.4.

Regarding Question 2.12, we have the following corollary which follows from the fact that every *wcc*-space is β .

Corollary 3.22. For a wN-space, the classes of the following spaces are all coincident.

(1) Nagata spaces, (2) strongly α -spaces, (3) *c*-stratifiable spaces, (4) *K*-semimetrizable spaces and (5) spaces with a G_{δ}^* -diagonal.

Remark 3.23. Ceder [7; page 114] asked whether every paracompact semimetrizable space must be a Nagata space. Heath [16] showed that there is a paracompact K-semimetrizable cosmic (the continuous image of a separable metric space) space which is not a stratifiable space (hence, neither k-semistratifiable [24; Example 4.2] nor wcc). He also posed the following problem: What topological condition is necessary for a paracompact semimetrizable (= K-semimetrizable) space to be an M_3 -space? As a remark to this problem, one can note that in the class of regular semimetrizable spaces, Nagata spaces, k-semistratifiable spaces and wcc-spaces are coincident.

4. Metrizabilities and examples

We begin this section with metrizations of wM-spaces. The concept of wM-spaces was given by Ishii [19]. Here we define a wM-space by an equivalent condition given by Hodel.

Definition 4.1 [18; Theorem 5.2]. A space X is wM if, and only if, it is $w\gamma$ and wN.

The following implications are well known.

An *M*-space (in the sense of Morita) \implies a wM-space \implies a $w\Delta$ -space. The class of wM-spaces is contained in the class of $w\theta$, wcc-spaces. Therefore, we consider metrizations for the class of $w\theta$, wcc-spaces. Metrizations

K-SEMIMETRIZABILITIES AND C-STRATIFIABILITIES

for this class was studied in [28]. For metrizations of wM-spaces, Martin [25] proved that every regular *c*-semistratifiable wM-space is metrizable, and Ishii [19] proved that every normal wM-space with a G^*_{δ} -diagonal is metrizable. On the other hand, the space Ψ in Example 4.4 is a *c*-stratifiable Moore γ -space which is not metrizable.

Theorem 4.2. Let X be a $w\theta$, wcc-space. Then X is metrizable if X satisfies any one of the following statements.

- (1) X is K-semimetrizable.
- (2) X is strongly α .
- (3) X is cs-stratifiable.
- (4) X has a G^*_{δ} -diagonal.
- (5) X is regular c-semistratifiable.

Proof. For all conditions (1)-(5), X is a wN-space by Proposition 1.4. Hence for (1)-(4), X is a $w\theta$, Nagata space by Theorem 3.21. Therefore, X is metrizable [30; Theorem 5]. For (5), since every wcc-space is β , X is regular c-semistratifiable β , hence X is semistratifiable. Then X is wcc Moore [18; Corollary 4.6], which implies that X is metrizable [31; Corollary 3.6].

Remark 4.3. In Theorem 4.2, the condition $w\theta$ (*wcc*) can not be weakened to q (β , respectively). Indeed, the Nagata-space X in Example 4.9 is a q, *wcc*-space which satisfies all of the conditions (1)-(5) in Theorem 4.2, but is not metrizable. Also, the space Ψ in Example 4.5 is a γ , β -space which satisfies all of the conditions (1)-(5) in Theorem 4.2, but is not metrizable.

The second part (2) of the next theorem is a generarization of Lee's result [22] that every pseudocompact Tychonoff stratifiable space is metrizable.

Theorem 4.4. (1) Every locally connected rim-compact k-semistratifiable space X is metrizable.

(2) Every pseudocompact Tychonoff k-semistratifiable space X is metrizable.

Proof. First, we show that if X satisfies the conditions of (1), then X is a first countable T_2 -space. Let g be a k-semistratifiable function such that $g_n(x)$ is connected. To see that $\{g_n(x)\}$ is a neighbourhood base of x for every $x \in X$, suppose that $x \in U$ and $g_n(x) \setminus U \neq \emptyset$ $(n \ge 1)$, where U is open. Then there is an open neighbourhood W of x such that $W \subset U$ and the boundary ∂W is compact. Since $g_m(x) \cap \partial W = \emptyset$ for some $m \in \mathbb{N}$,

I. YOSHIOKA

 $g_m(x) = (g_m(x) \cap W) \cup (g_m(x) \setminus \overline{W})$ is not connected. This contradiction implies that $\{g_n(x)\}$ is a neighbourhood base of x. To see that X is Hausdorff, let $x \neq y$ and $x_n \in g_n(x) \cap g_n(y)$ $(n \geq 1)$. Then for any open neighbourhood U of x with $y \notin U$, $K = \{x_n | n \geq m\} \cup \{x\} \subset U$ for some $m \in \mathbb{N}$. Hence $g_l(y) \cap K = \emptyset$ for some $l \geq m$, which is a contradiction. Next, in both cases, X is a γ -space by Theorem 2.4 and Lemma 3.17. Also, X is a wcc-space. Indeed, let g be a k-semistratifiable function such that, whenever $b_n \in g_n(a_n)$ $(n \geq 1)$ and $\{b_n\} \longrightarrow b$, then $\{a_n\} \longrightarrow b$. Now, suppose that $y_n \in g_n(x_n)$ $(n \geq 1)$ and $\{y_n\}$ has a cluster point y. Since X is first countable, there exists a subsequence $\{y_{n(i)}\}$ of $\{y_n\}$ converging to y and $y_{n(i)} \in g_i(x_{n(i)})$ $(n \geq 1)$. Hence $\{x_{n(i)}\}$ converges to y, which implies that g is a wcc-function. Finally, every γ , wcc T_2 -space is metrizable [31; Corollary 3.6].

We note that Martin [26; Example 3] showed that there exists a locally connected locally compact K-semimetrizable Moore space X which is not normal. This space is not wcc by Theorem 3.21.

As regards to Theorem 4.4, (2) is proved in [30; Corollary 4] in a different way, and as for (1), every locally compact T_2 (even sieve-complete regular) k-semistratifiable is metrizable [30; Theorem 18].

Example 4.5. [22; Example 6.6] The space Ψ in [13; 5I] is Moore and *K*-semimetrizable that is not full *K*-semimetrizable. First, it is known that Ψ is a locally compact pseudocompact separable Moore *c*-stratifiable space that is not metacompact. To see that Ψ is orthocompact, for any $E = \{x_k^E | k \in \mathbb{N}\} \in \mathcal{E}$, where $\{x_k^E | k \in \mathbb{N}\}$ is an infinite subsequence of \mathbb{N} , we put $B(\omega_E, n) = \{\omega_E\} \cup \{x_n^E, x_{n+1}^E, \ldots\}(n \in \mathbb{N})$. Then any open cover \mathcal{G} of Ψ has the refinement $\mathcal{H} = \{\{n\} | n \in \mathbb{N}\} \cup \{B(\omega_E, n(E)) | E \in \mathcal{E}\}$, where for any $E \in \mathcal{E}$, $B(\omega_E, n(E)) \subset G$ for some $G \in \mathcal{G}$ and some $n(E) \in \mathbb{N}$. And $\cap \mathcal{W}$ is open for any $\mathcal{W} \subset \mathcal{H}$. Therefore, Ψ is strongly α by Theorem 2.8. Then Ψ is *K*-semimetrizable and γ by Theorem 3.5 and Lemma 3.17. But Ψ does not have a regular G_{δ} -diagonal [27; Theorem 2.6], and not *wcc* from Theorem 3.21. Hence it is not full *K*-semimetrizable by Theorem 3.12 and not *k*-semistratifiable since every first countable *k*-semistratifiable space is *wcc*.

Example 4.6. [6] Burke constructed the separable Moore (hence, semimetrizable) space X which is not K-semimetrizable. Hence, X is a csemistratifiable α -space which is neither strongly α nor cs-stratifiable by Theorems 2.4 and 3.5. Also, X is not metacompact by Theorem 2.8 and not

$K\operatorname{-}\mathsf{SEMIMETRIZABILITIES}$ AND $C\operatorname{-}\mathsf{STRATIFIABILITIES}$

197

 γ .

Example 4.7. [18; Example 4.14]. The Sorgenfrey line K is a paracompact γ -space with a G_{δ} -diagonal. Hence K is strongly α and c-stratifiable, but not semistratifiable (not even β [18; Proposition 4.2]).

Example 4.8. [9: Example 5.3.4] There exists a metacompact full K-semimetrizable space which is neither wcc nor regular.

Indeed, let X be the space of real numbers with the topology generated by the neighbourhood system $\{\mathcal{U}(x)|x \in X\}$, where $\mathcal{U}(x) = \{U_n(x)|n \in \mathbb{N}\}$ and

$$U_n(x) = \begin{cases} (x - 1/n, \ x + 1/n) & \text{if } x \neq 0, \\ (x - 1/n, \ x + 1/n) \setminus \{1/k | k \in \mathbb{Z} \setminus \{0\}\} & \text{if } x = 0, \end{cases}$$

where \mathbb{Z} denotes the set of integers. It is well known that X is a metacompact T_2 -space which is not regular. For each $x \in X$, we put

$$W_n(x) = \begin{cases} U_n(x) \setminus \{0\} & \text{if } x \neq 0, \\ U_n(x) & \text{if } x = 0. \end{cases}$$

Let $\mathcal{W}_n = \{W_n(x) | x \in X\}$ for each $n \in \mathbb{N}$. Then it is easily seen that the sequence $\{\mathcal{W}_n\}$ is a development satisfying the 3-link property. Therefore, X is full K-semimetrizable. Then X is strongly α and c-stratifiable by Theorem 2.8. Also, if X is wcc, then it is metrizable by Theorem 4.2, which is a contradiction.

Example 4.9. [24; Example 4.3] There exist a first countable stratifiable space X and a perfect map f from X onto a non-q-space Y. Then X is a Nagata space (hence, X is K-semimetrizable) which is not $w\theta$ [30; Theorem 5] and Y is a stratifiable space which is not q. Then, Y is strongly α and c-stratifiable but not semimetrizable.

Example 4.10. [10; Example 4.2] A regular full K-semimetrizable space that is not orthocompact. Let $R = \{(x, y) | x, y \text{ are rational and } y > 0\}$. Let J be the set of irrational numbers and let $X = R \cup (J \times \{0\})$. We give R the usual subspace topology \mathcal{T}^* . For each $x \in J$ and each $\epsilon > 0$, let $B(x, \epsilon) = \{(x, 0)\} \cup \{(x + k, h) | |k| < h < \epsilon\}$. Then $\mathcal{T}^* \cup \{B(x, \epsilon) | x \in J, \epsilon > 0\}$ is a basis for a topology on X. Then X is a separable Moore space that is not orthocompact. Also, X has a development satisfying the 3-link property, hence full K-semimetrizable and c-stratifiable.

But I don't know whether this space is strongly α .

I. YOSHIOKA

References

- [1] Arhangel'skiĭ A. V, Mappings and spaces, Russian Math. Surveys, 21 (1966), 115-162.
- [2] Arhangel'skii A. V, On a class of spaces containing all metric spaces and all locally bicompact spaces, Amer. Math. Soc. Transl., 92 (1970), 1-39.
- [3] Borges C. J. R, On stratifiable spaces, Pacific J. Math., 17 (1966), 1-16.
- Borges C. J. R, On metrizability of topological spaces, Canad. J. Math., 20 (1968), 795-804.
- [5] Burke D. K, A nondevelopable locally compact Hausdorff space with a G_{δ} -diagonal, General Top. and its Appl., **2** (1972), 287-291.
- [6] Burke D. K, On K-semimetric spaces, Proc. Amer. Math. Soc., 73 (1979), 126-128.
- [7] Ceder. J. G, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-125.
- [8] Creede G. D, Concerning semi-stratifiable spaces, Pacific J. Math., 32 (1970),47-54.
- [9] Engelking R, General Topology, Polish Sci. Publ., Warsaw, 1977.
- [10] Fletcher P and Lindgren W. F, Orthocompactiness and Strong Čech completeness in Moore spaces, Duke Math. J., 39 (1972), 753-766.
- [11] Fletcher P and Lindgren W. F, θ-spaces, General Topology and its Appl., 9 (1978), 139-153.
- [12] Gao Z, On g-function separation, Questions and Answers in Gen. Topology, 4 (1986), 47-56.
- [13] Gillman L and Jerison M, Rings of continuous functions, D. Van Nostrand, Princeton, N.J., 1960.
- [14] Gruenhage G, *Generalized metric spaces*, Chap. 10, in: K. Kunen and J. E. Vaughan, eds., Handbook of set theoretic topology, (North-Holland, Amsterdam).
- [15] Heath R. W, On open mappings and certain spaces satisfying the first countability axiom, Fund. Math., 57 (1965), 91-96.
- [16] Heath R. W, A paracompact semimetric space which is not an M₃-space, Proc. Amer. Math. Soc., 17 (1966), 868-870.
- [17] Hodel R. E, Moore spaces and $w\Delta$ -spaces, Pacific J. Math., **38** (1971), 641-652.
- [18] Hodel R. E, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J., 39 (1972), 253-263.
- [19] Ishii T, On wM-spaces I, II, Proc. Japan Acad., 46 (1970), 5-10, 11-15.
- [20] Kotake Y, On Nagata spaces and wN-spaces, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 12 (1973), 46-48.
- [21] Kullman D. E, Developable spaces and p-spaces, Proc. Amer. Math. Soc., 27 (1971), 154-160.
- [22] Lee K. B, Spaces in which compact are uniformly regular G_{δ} , Pacific J. Math., 81 (1979), 435-446.
- [23] Lindgren W. F and Fletcher P, Locally quasi-uniform spaces with countable bases, Duke Math. J., 41 (1974), 231-240.
- [24] Lutzer J, Semistratifiable and stratifiable spaces, General Top. and its Appl., 1 (1971), 43-48.
- [25] Martin H. W, Metrizability of M-spaces, Canad. J. Math., 25 (1973), 840-841.
- [26] Martin H. W, Local connectedness in developable spaces, Pacific J. Math., 61 (1975), 219-224.
- [27] McArthur W. G, G_{δ} -diagonals and metrization theorems, Pacific J. Math., 44 (1973), 613-617.

- [28] Nitta S and Yoshioka I, Nagata spaces and wN-spaces which are preserved by quasiperfect maps, Houston J. Math., 32 (2006), 1061-1075.
- [29] Okuyama A, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 9 (1967), 236-254.
- [30] Yoshioka I, On the metrizations of γ-spaces and ks-spaces, Questions and Answers in Gen. Topology, 19 (2001), 55-72.
- [31] Yoshioka I, *Closed images of spaces having g-functions*, Topology and its Appl., to appear.
- [32] Zenor P, On spaces with regular G_{δ} -diagonals, Pacific J. Math., 40 (1972), 759-763.

Iwao Yoshioka

139 MITSUYOSHI, KOURYO-CHO, KITA-KATSURAGI, NARA 635-0823, JAPAN *e-mail address*: yoshioka_iwao@ybb.ne.jp

> (Received March 6, 2007) (Revised June 5, 2007)