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ON ARTINIAN RINGS OF RIGHT LOCAL TYPE

Dedicated to Professor Hisao Tominaga on his 60th birthday
Takesa SUMIOKA

Let A be an artinian ring with identity. Then A is called of right local
type if any finitely generated indecomposable right A-module is local and a
ring of left colocal type is defined as the dual version. Yoshii [9] and
Tachikawa |8 ] studied finite dimensional algebras of right local type (or
equivalently of left colocal type). In the following theorems, for a module L
| L | denotes the composition length of L, L the top of L and p(A) the set of
primitive idempotents of A.

Theorem A (Tachikawa [8], Yoshii [9]). For a finite dimensional algebra
A with Jacobson radical J, the following conditions (a) ~(c) are equivalent.
(a) A is of right local type.
(b) A is of left colocal type.
(e) (1) A is left serial.
(2) eJ is a serial module (i.e. a direct sum of uniserial modules)
with |eJ | < 2 for each e € p(A).

But in [8] and [9] they essentially used the property “A has the self
duality” (and in [9] there are some mistakes: see the footnote of [8.p. 227]).
On the other hand in [7]. Tachikawa studied artinian rings of left colocal
type (see [6]). Hence in this paper we study artinian rings of right local
type as the dual notion of rings of left colocal type and in particular we prove
the following (see Section 4) :

Theorem B. Let A be an artinian ring with Jacobson radical J. Con-
sider the following conditions:
(a) A is of right local type.
(b) A is of left colocal type.
(¢) (1) A is left serial.
(2) e is serial with |eJ| =2 for any e € p(A).
(d) (1) A is left serial.
(2) J is serial as a right A-module.
(3) If eJ is not homogeneous, then IZI = 2, where e € p(A).
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(4) If U is a uniserial left A-module with |U| = 2, then [D,(U) :
D(U)], = 2.
Then it holds the following (i) and(ii) (see Section 4 for the definition
[(D(U): DU)], and the condition (D)).
(i) (a) implies (d) and under the condition (D) (d) implies (a).
(ii) (a) and (b) are satisfied if and only if so are (¢) and (D).

In Section 3 we give necessary and sufficient conditions for a left serial
ring A to have the right serial Jacobson radical. Moreover, in Section 5 we
give a simple proof of [6, Example 3] using the dual assertion to one obtained
by Asashiba.

Throughout this paper A is a left and right artinian ring with identity. J
is the Jacobson radical of A and all modules are finitely generated unitary
right A-modules (except for Section 5) unless otherwise stated. We call a
module M serial if M is a direct sum of uniserial modules, and call an element
a of A right local (resp. local) if a = af (resp. a = eaf) for some e, f €
p(A). For a module M and a subset I of A we use the following notations
(refer [6] for the other definitions and notations) :

M: the top of M(i.e. M= M/MJ).

Soc(M) : the socle of M.

| M | : the composition length of M.

p(A ) : the set of primitive idempotents of A.

teJ7f) = eJ"f\eJ™'f, where r is an integer = 0 and e and f are
idempotents of A.

loc(I') (resp. loc'(I)): the set of local (resp. right local) elements in I.

(D: D'],(resp. [D: D'],): the dimension of the left (resp. right) vector
space D over D', where D is a division ring and D’ is a division subring of D.

The author has useful communication (in particular for Proposition 1.3
and Lemma 1.4) with Doctor H. Asashiba. In [2] Baba and Harada have

independently obtained the same results as some ones in Section 2.

1. Preliminaries. Let M; be a module and T; its submodule; i =1, 2.
If a homomorphism 8: T,— T, has some extension map ¢: M,>M, (i.e. ¢(a)
=6(a) for any @ € T,), then 8 is called (M,, M,)-extendible. On the other
hand 8 is called (M,. M;)-maximal if 8 is not (M,", M,)-extendible for any
submodule M, with T, & M,’ C M,.

Let (), a,)": T>M, & M, be a monomorphism with a monomorphism q,
(where (a1, a2) " denotes the transposed matrix of (o, ,)) and put T; = Im a..
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Clearly we have the map 8: T,— T, with fa, = a,. Then we say that [a), a, |
is extendible (resp. [ai, a.] is maximal) provided 8 is (M, M,)-extendible
(resp. (M,. M,)-maximal). The following lemma is immediate from [6, Lemma

1.2 (1)] (see |6, Remark 1]).

Lemma 1.1. Let0 > T-25M, & M, » M- 0 be an exact sequence of
modules with @ = (ay, )" and a, a monomorphism. If (e, a.) is extendible .
then M = (M/Im ov) ® M,. In case a; is also a monomorphism, the con-
verse holds.

Let M be a module and S a non-empty subset of M. If S == 0 (resp.
S =0). we put d\(S) = maxin| S C MJ™ (resp. d\(S) = o) and we call
dy(S) the depth of S in M. In particular for M = A, we simply denote d,{S)
by d(S) and call d(S) the depth of S(cf. [3,p. 76| for the definition of
“depth”).

We define a linear order " < " for the set Z X Z{(where Z is the set of
integers) by the following :

(r.s) <@, s)if(l) r<+ or{2)r=1rand s = s".

For a local module L with a simple submodule S. we call (L, S) a
local-simple set. We denote the isomorphism class of S by C(S). Then for
a local-simple set (L, S) we define its degree deg{ L. S) by setting deg(L, S)
= (C(S).d,(S). "L|) and give a partial order “ < " to the set {deg(L. S)
|(L. S) is a local-simple set} as follows:

deg(L.S) = deg(L'.S’) if C(S) = C(S’) and (d,(S).| L) <{(d.(S"),
|L']).

For convenience we define deg(L, S) < deg(L’, 0) for any local module
L.

Lemma 1.2. Let(L; S,) be a local-simple set: i =1, 2, and 8: S,
-8, an isomorphism. If 8 is extended to a map ¢: L,— L,, then the follow-
ing hold.

(1) deg(L,. S,) = deg(L,. S,).

(2) In the case d, (S,) = d,,(S,), ¢ is an epimorphism.

(3) In the case deg(L,, S,) = deg(L,, S,). ¢ is an isomorphism.

Proof. (1) and(2). Put n =4d,(S,). Then S, C LJ" so S, = ¢(S,)
C ¢(L,)J" C LJ" Thus we have d,(S,) = d,(S,). If ¢ is not an
epimorphism, then we have ¢(L,) C L,J, for L, is local. Hence S, C
¢(L,)J" C LJ™!', which implies d,,(S,) = n+1. It follows (2) and (1).
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(3) ¢is an epimorphism by (2) and we have | L,| = |L,|. Thus ¢is an
isomorphism.

Remark 1. Let(L; S,); i =1, 2, be local-simple sets with deg(L,, S,)
= deg(L,, S,). If an isomorphism §: S,— S, is not (L, L,)-extendible,
then §°': S, S, is not (L,, L,)-extendible by the above lemma.

Proposition 1.3. Let A be an artinian ring. Then the following condi-
tions are equivalent.

(1) A is of right local type.

(2) For any local-simple sets (L, S;); i =1, 2, with deg(L,, S,) =
deg(L,. S,). any isomorphism 8: S,= S, is (L,, L,)-extendible.

Proof. (1) = (2). It is immediate from [6, Lemma 2.1].

{2) = (1). Let C be the class of modules which are direct sums of local
modules. Every module is a homomorphic image of a module in C. Hence we
show that C is closed under taking factor modules. In order to do it, as

easily seen, it suffices to show the following : If L = 6119 L;;each L; is a-
local module, i.e. L is in C, and S is a simple submodule of L, then L/S

is also in C. Let L = té L; and S be as above and @ = (a1, .... an)": S—

L, @ --- & L, the inclusion map and put S; = o;(S). If we pick out j such
that deg(L,, S,) < deg(L,, S,) forany i =1, ..., n, then [a,, e;] is extend-
ible; i =1, ..., n. Therefore |a;, e, ] is extendible where e, : S—> @ L, is

i*j

the map induced from a: S— éél L, andby Lemma 1.1, L/S is in C.

Remark 2. For any local-simple sets (L., S;) ; i =1, 2. with §; =
S,., we have deg(L,, S,) < deg(L,. S,) or deg(L,, S,) = deg(L,, S.).
Hence Proposition 1.3 implies the following: An artinian ring is of right
local type if and only if for any monomorphism (a;. @)’ : S=>L, @ L. (a1, ;]
or [@,. o] is extendible. This proposition was independently proved by

H. Asashiba.

Let L; be a local module satisfying the following condition ( i ) for each
i=1.2,3:

(1) |ZJ| =1, LJ* = U, ® U,, where U,(i=1,2) are simple
modules.

(2) LJ=V,®V, ® V,, where V, (i =1, 2, 3) are simple modules
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with V, £ V,.

(3) LJJ =W, @ W, & W,, where W, (i =1, 2) are simple modules
and W, is a uniserial module with |W, | = 2.

Then the local module L, induces local-simple sets (L;, S;) and (L,", S;")
with a canonical isomorphism 8, : S,/ —=S," for each i = 1, 2, 3 as follows
(see the diagram below) :

(1') L' = LIJ/U21 S]’ = (Ul @ Uz)/Uz (; Ul): Lln = le S/ = U,

(2') Ly = L,/Vs, Si' =(V,®Vy)/Vo(=V,): L, = L,/ V,. S, =
(Vi @ V,)/V, (= V),

(3") Ly = Ly/WiJ, Sy’ = (W, ®@ W J)/WJ(=W,) : L," = L/W,,
Sy =(W, & W,)/W, (= W,),
and §,: S/ =S, (i =1.2, 3) are canonical isomorphisms.

As easily seen it holds

(1") d,,(S,) < d,.(S,”) and the uniserial module L," can not be
embedded in L,".

(2", 3") deg(L;, S;') = deg(L,". S,") and L; &£ L, for each i = 2. 3.

Hence §; is not (L;, L,")-extendible for each i = 1, 2, 3 (see Lemma
1.2). -
For each i =1, 2, 3, we say a module L is of type-i if L is a local
module which has the same form as the above L;. Now summarizing the above

Lemma 1.4. If there exisis a module L; of type-i, then L, induces
local-simple sets (L;, S;). (L;". S,") and an isomorphism 6, : S;/—S," such
that 8 is not (L;. L,")-extendible and

(1) d,,(8,) < d,-(S\") (in the case i =1).

(2) deg{L;. S;') = deg(L;". S;") (in the case i = 2, 3).

Remark 3. The assertion for i = 3 in the above lemma was communi-
cated by H. Asashiba. He has independently given results [1, Lemmas 1.4
and 1.7] which include Lemma 1.4. We represent the above modules
L, L/, S/ etc. and the isomorphisms §,: S;/=S," as the following diagrams :

(1) L, Ly Ly
¢
Sy
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(2) L L,y

A A AN

2'
L
/I\ ’

Lemma 1.5. If A is of right local type, then A is left serial.

Proof. Let u; € (e J""'f) (es.f € plA)): i =1,2 for r =2, and a; :
fA-e;A/e.J" the monomorphism such that afx+ fJ) = ux+eJ” for each x+
fl e fA. By Remark 2 and [6, Lemma 1.4] @, € A%, or @, € Air, where
U, = w;+Jf € J7Uf/J"f. This shows the left A-module Af is uniserial.

(3)

2. Left serial rings. In this section we prove some results for left
serial rings which are used later.

If u is a right local element with u = uf (f € p(A)), then uA is a local
right A-module with A = fA, and conversely if L is a local module with
L = fA, then we can take such a right local element u as a generator of L.
Hence for every local module L. we always take such a generator, and
moreover for a several local modules L; (i = 1,...,n) with L, = ﬁ we take
generators u; = u;f on a common primitive idempotent f. Let a = ae and
b = bf be elements in A; e.f € p(A). If we say that ¢ is a local element
with @ = bc, then we mean ¢ = fce, and in a similar case we take such
elements. The following lemma is obvious.

Lemma 2.1. Let u and v be elements of A.

(1) If Au D Av (resp. Au = Av), then there exists an epimorphism
(resp. isomorphism) a: uA—vA which is a left multiplication map by some
element a of A.

(2) If Au and Av are submodules of a uniserial left ideal of A with d(u)
< d(v) (resp. d(u) = d(v)), then it holds Au D Av (resp. Au= Av).

Remark 4. Let A be left serial. If L, and L, are local right ideals
with L, = L, and d(L,) = d(L,), then L, = L, by Lemma 2.1. As a
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generalization of this assertion we have (2) in Lemma 2.2,

Lemma 2.2. Let A be a left serial ring.

(1) If (L., S;) are local-simple sets (i =1.2) with S, = S, and d;,(S,)
=d,(S;) =7, then L, = L,.

(2) Let u; € loc'(A) with d(u,) = d(u,). If uJ” (i =1,2) have simple
submodules S; such that S, = S, for some r =2 0, then u,A = u,A.

Proof. (1) Let L, = e, A(i =1,2) and S, = S, = fA where e,, f €
p(A). Then we have an epimorphism ¢, : e;,A— L, for each i. Since S; C
LJ = ¢(eJ”) and S; € LJ™' = ¢leJ™"), there exists a local element
x; = e;x.f with d(x;}) = r. Hence Ae,x, f = Ae,x, f. which implies Ae, =
Ae,, l.e. e,A = e,A.

(2) is immediate from (1) and Remark 4.

The following lemma is a slight modification of [6, Lemma 4.1].

Lemma 2.3. Let A be a left serial ring, M a direct summand of the
right ideal J” for an integer r 2 0. Let u,,...,u, be right local elements such
that u, € M and d(u;) = r for each i = 1,...,n, and denote by @ the residue
class of a in M/MJ for any a € M. Then the following hold.

(DIM=mA® - ®WA, then M= uw,A® - & uyA.

(2) If mA,....u,A are independent, then M = mA @ --- ® u,A @ WA
@D - ® v, A with some right local elements v, inM; i =1,..., m.

Proof. (1) The canonical epimorphism o : J™ = J/J™"' induces the
isomorphism M = ¢(M), and so M = %A ® .- ® %A if and only if o(M) =
olu)A @ - @ o(uy)A. Hence if M = wA @ -+ ® WA, then wA....,unA
are independent by [6, Lemma 4.1] and M = ©;A & --- @ u,A. for MJ is
small in M. (2) It is clear from semi-simplicity of M.

Let M be a direct summand of the right module J" and L a submodule of
M. Then L is a submodule of MJ® which is a direct summand of J*°, and
d(L) = dMJ®) = r+s, where s = dy(L). Hence it suffices to assume
d(L) = d(M) when we consider such a submodule L of M. As an immediate
consequence of the above lemma we have

Corollary 2.4. Let A /M and r be as in Lemma 2.3 and L; (i = 1,2)

local submodules of M with d(L,) = d(L,) = r.
(1) L, is a direct summand of M.
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(2)IfL, NL, =0 and M= L, & N for a module N, then M =
L, ® N, in particular L, = L,.

Lemma 2.5. Let A be a left serial ring and M a direct summand of the
right ideal J* for an integer r 2 0. If w is a right local element in M with
d(w) = s, then there exists a right local element u in M such that d(u) = r
and w € uJ®.

Proof. Let w= wf; f € p(A). Since J°f is a uniserial left A-module,
we have J°f = Aa for some a € #(eJ°f) ; e € p(A). Hence w € MJ°f =
Ma, and so w = ua € wJ° for some u = ue € M. Then d{u) = r is clear,
for w & JT,

Lemma 2.6. Let u and v be elements of A. Then the following condi-
tions hold.

(1) dlu+v) = minld(u), dv)}.

(2) If d(u) < d(v), then dlu+v) = d(u).

3IJ =M O M, uc M andv € M, for some integer r = 0 and
some modules M, and M,, then d(u+v) = mintd{u), d{v)}.

Proof. (1) and (2) are clear.
(3) f u+v € J™*°, then u+v € MJ* & M,J5. Hence u € M,JS C J™*S

and similarly v € J™*5,

Lemma 2.7. Let A be a left serial ring, u € H{J"e) and v € t(eJ°f),
where e, f € p(A). Then it holds Auv = J™°f. In particular

(1) Ifuv %0, thenuwv € H(J™°f)(i.e. dluv) = d(u) +d(v)).

(2) Ifuv =0, thenuv' =0 for any v’ € J7e and v’ € eJ*f.

Proof. Since A is left serial, w € {J"g) if and only if Aw =J"g *+0
for any g € p(A). Thus it follows from Au = J”e and Av = J°f that Auv =
J™v = J™°f. The other assertions are immediate from this.

Corollary 2.8. Let A be a left serial ring and assume eJ” = M,
@ - & M, for an integer r = 1, where each M, is a right ideal and e €
p(A). Then for any element a € A, it holds aeJ” = aM, ® --- & aM,.

Proof. We may clearly assume that a = @e and n = 2. If ax;+.-- +ax,
=0 and ax; &= 0 for some j (1 < j = n), where x;, = ex; € M, (i =
1,...,n), then we have a(x,f+  +x,f) = ax,f+ - +ax,f = 0 and ax,f +
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0 for some f € p(A). But by (3) in Lemma 2.6, d(x, f+---+x,f) < d(a,f).
This is a contradiction by (2) in Lemma 2.7.

3. Left serial rings with right serial Jacobson radicals. The following
lemma is immediate from Corollary 2.4 and Lemma 2.2.

Lemma 3.1. Let A be a left serial ring, and M a serial direct
summand of the right module J.

(1) Any local submodule of M is uniserial.

(2) If u and v are right local elements of M such that d(u) = d(v) and
w = v £0 for some integer r = 0, then uA = vA.

Lemma 3.2. Let A be a left serial ring such that the right ideal J is
serial, and let eJ = w,A ® -« ® u,A (n = 2) with local elements u; ; e €
p(A).

(1) Ifac Jand au, =0, thenau; = 0 for any i = 2,...,n.

(2) If u,A = u,A, then Ju; = 0. Therefore it holds JeJ = O in the case
wA = w,A for each i = 2,...,n.

(3) Assume wA = wA. If wJ' = JA; f € p(A), then it holds
J7Hf =0 (ie. r=|Jfl). In particular w,J° = u,JS (= u,J¥) *+ 0

implies s = s,

Proof. (1) We may assume a = ae. By Corollary 2.8 aeJ = au, A
@D - D au,A. But by Lemma 3.1 ceA is uniserial and so is aeJ. It
follows (1).

(2) If mA = wA = fA. we may assume u; = u,f for some f € p(4) ; i
=1,2. Then Au, = Au, = Jf. Suppose Ju, = 0. Then au, = 0 for some
local element a of A, so au, & 0 by (2) of Lemma 2.7. This is a contradic-
tion to (1).

(3) We have J™*'f = Ju,J7"'f = 0 by (2) since J'f = Au,J"'f.

Lemma 3.3. Let A be a left serial ring, M a direct summand of J,,
and I a submodule of M. If M is serial, then there exist right local elements
Upseney Uy Such that M = v, A ® --- ® upd and I = w,J7 @ --- @ u, J™ for
some integers Ty,....1p = 0.

Proof. Assume I = 0. Then we have IC MJ" and I € MJ™" for some
r = 0, and we can choose a right local element w in I such that w & MJ™',
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It is immediate from Lemma 2.5 and Corollary 2.4 that M = uA @ L and
wA = uJ” for some u € loc’'(A) and some right module L. It follows I = uJ"
@(LNI)from [ CM"=u" @& LJTCu & L. Since L is a direct
summand of M, we can apply the same argument to L and (L N I). Hence by
iterating this, our assertion is verified.

Lemma 3.4. Let A be a left serial ring, M a direct summand of J,,
and I and K submodules of M with a simple module K/I. If M is serial, then
there exist right local elements u,,..., u, such that M = v, A ® .-+ ® w,A,
K=uJ""®uwJ?® . --@uJ"and [ = uJ" & uJ” & -+ @ uyJ™

Jor some integers ry,...,7p.

Proof. By Lemma 3.3 there exist u; € loc’(A) (i = 1,...,n) such that
M=u,A® - B uA I=u4J" D - ® uJ™". We may assume r; =1 and
uJ™ '3 0. Since K/I is simple and in particular K/I C Soc(M/I), we have
KCuJ" ' ® . & uJ"" and K= vA+1 for some right local element
v = u,x, 4+ +unx, where x; € loc(J™"'). By exchanging the indices i, we
may assume that ux; € I (i.e. d(x;) = r;—1) if and only if i € {1,...,m}.
Put v = ux, - Fupxy, M =u,AD - DuA, I'=uw,J" @ oo @ u,J™
and K' = v'A+I. Considering M'.T and K’ instead of M,I and K respectively,

n
we may assume u;x; € Iforany i; 1 =< i< n, since K=K & ( @ u,J").
1

i=m+
If d(x;) < d(x;) for any i, say j = 1, then x; is in the uniserial module Ax;,,
so x; = ax, for a; € loc(A) where i = 2,...,n. Putting ¥ = u, +u,a,+---+
Un@n, we have d(u) = 1 and v = uyox, +-- +unxy = (U4 a5+ +una,) 2,

n
= ux,. If uyy+u,y,4+-+uny, = 0 for some y; € A, then u,y,+ 2 u,(a,y,
=2

+v,) =0, sou,y, =0 and by Lemma 2.7 uy, = 0. This shows M = ud &
A @ - @ uzA. Since v = w,x, 4+ +ux, = ux, and d{x;) = r,—1 for
any i(1=i<n), wehave I=u,J" ® -+ @ 0™ = ux,d & -+ B upxnJ
= uxyd D ux,d B - D upxy = " O w,J”? D - D uyJ " and K = vA+
I=ux,A+I=u/"""' @ u,J”? @ --- @ u,J"™".

Let (L;, S;) (i =1, 2) be local-simple sets with L; & S; and assume
#: 8, = S, is an isomorphism. Then by Lemma 3.4, we may assume the
following situationfor i =1, 2:

(Stl) L, = e;,A/I, (e; € p(A)). S, = K,/I, e = w;,A ® N, K, =
x,A® M;and I, = xJ ® M,, where u; € HeJf,) (f; € p(A)), x; = e;x;g €
wA (g € p(A)), M; C N,.
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Under the situation, we have 8(x;+1,) = x,c+1, for some unit element
c in gAg, since 8(S,) = S, is simple. Then x,cA = x,A, so we may assume
the following situation by exchanging x,c with x, :

(St2) 8(x,+1,) = x,+1, for x,+1, € K/, (i =1, 2).

Since e;A is the projective cover of L, for i =1, 2, #is (L,, L,)-
extendible if and only if there exists an element a € e,Ae, such that ax, —x,
€ I, and al, C I,. But if ax, —x, € I,, then ax,J C I,. Hence 8 is (L,,
L,)-extendible if and only if the following condition holds :

(E) There exists an element a € e,Ae; such that ax,—x, € I, and
aM, C L.

Therefore we have the following lemma.

Lemma 3.5. Let A be a left serial ring, (L, S;) (i = 1,2) local-simple
sets with L, &= S, and 8: S, = S, be an isomorphism, and assume the
situations (Stl) and (St2). Then @ is (L,, L,)-extendible if and only if it
holds the condition (E).

Theorem 3.6. For a left serial ring A, the following conditions are
equivalent.

(1) J is serial as a right module.

(2) For any local module L, LJ is serial.

(3) There exist no modules of type-1.

(4) If (L. S)) (i =1, 2) are local-simple sets with d; (S,) < d.(S,)
and S; = S,. then any isomorphism §: S, = S, is (L,, L,)-extendible.

(5) For any uniserial left A-modules U, (i =1, 2) with socles S; and
|U,| = |U,|. any isomorphism §: S, — S, is (U,, U,)-maximal or (U,, U,)-
extendible.

Proof. The equivalence of (1) and (5) follows from [6, Lemma 4.3].
The implication from (4) to (3) is immediate from Lemma 1.4. (1) is a
special case of (2) and the converse is obtained by Lemma 3.3.

(3) = (1). Assume eJ is not serial for some e € p(A). Since e/ is a
direct sum of local modules, there exist a local module K and a module M such
that eJ = K @ M, K/KJ" is uniserial and KJ is not simple for some r = 1.
Thus we have a module L of type-1 as a factor module of KJ""3/KJ™"' (resp.
eA/(KJ? @& M)) in the case r > 1 (resp. in the case r = 1).

(1) =>(4). Let (L. S;) (i =1,2) be as in (4). Then as easily seen
we may assume that (L, S;) (i =1, 2) are fulfilled the situations L; == S,
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(Stl) and (St2) in Lemma 3.5 since d,,(S,) < d,,(S;). Then Ax, and Ax,
are submodules of the uniserial module Ag with d(x,) = d,,(S5,) < d.,(S:) =
d(x,), which implies Jx, D Ax,. Hence there exists an element a € e,Je,
with ax, = x,. Then au,A D ax;A = x,A = 0, and by Lemma 3.2 alM,
(C aN,) = 0. Thus by Lemma 3.5, 8is (L,, L,)-extendible.

4. Artinian rings of right local type. For any ring B with Jacobson
radical J(B), we denote B/J(B) and the residue class b+ J(B) € B/J(B)
by B and b, respectively.

Letv € tlelf); e, f € p(A). Put Di(v) = eAe, Dy(v) = fAfand D, (v)
= {a € ede|lav € vAl, D,(v) =1b € fAfivb € Av}. Then we have a
ring isomorphism ¢: D,'(v) = D,(v) ; ¢(@) — (b) suchthat v = vb; a €
ede and b € fAf (see [8, Section 3] and [4, Section 1] for the definition of
division rings Dy(v) and D;(v); i =1, 2). We identify D, (v) with D,(v)
through the isomorphism ¢: D, (v) — D, (v).

Assume A is left serial. Then it is clear D,(v) = D,(v) and in
particular we have Dy(v) (= D, (v) = D,'(v)) C D\(v). Moreover, putting
U = Af/Jv, we can identify D,(v) and D,(v) with division rings D,(U) and
D,(U) defined in [6], respectively (see [6], Section 3). We quote the
following lemma from [6, Lemma 3.2].

Lemma 4.1. Let A be a left serial ring and v € HeJf) ; e, f € p(A).
Then [Di(v) : Dy(v)]; = n if and only if eJ contains JA" (i.e., the direct sum
of n-copies of fA).

Remark 5. Let A be a left serial ring and e a primitive idempotent of
A. Consider the following conditions :

(1) |eJ| < 2.

(2) |eJ| < 2 provided eJ is not homogeneous.

(3) [D(U) : DLU)]» < 2 for any uniserial left A-module U with | U |
= 2 and Soc(U) = Ae.

Then (1) is satisfied if and only if so are (2) and (3) by Lemma 4.1
(see [6, Lemma 3.2]).

Remark 6. Letv € t(eJf) ;e.f€ p(A). If @ € Dy(v) for an element
a € eAe, then av € vA+J? by the definition of Dy(v). In case A is left
serial, conversely we assume av € vA+J*, i.e., av = vb+c for some b =

bf € Aand ¢ € J°.. Since d(vb) = d(v) and Avb and Av are submodules of a
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uniserial module Af, we have a'v = vb for some a' € ede. Thus (a—a')v =
¢ € J* and so (a—a’) € J. Hence @ = @ € Dy(v). This shows that we
may assume J2 = 0 when we consider [D,(v) : Dy(v)], (or [Dy(v) : Dy(v)];)

for any left serial ring A.

The following lemma is essentially shown in the proof of {6, Example 4 ]
(cf. Examples in Section 5).

Lemma 4.2. Let A be a left serial ring with J* =0, and v € (e)f) ;
e.f € p(A). Then the following are equivalent.
(1) [Dy(v) : Do(w) ], = .

(2) If L, = eA/vA(i=1,...,n) and a = (a,,..., on) 2 VA —>i§é L,isa

monomorphism, then [a,. a;] is extendible for some j, where a; : vA - @
i+ J

L, is the map induced from a.

Proof. Since A is left serial, the map a;: vA = L, is a left multiplication
map by some element b, € ede: a/v) = b,v+vA € L,. Therefore it
suffices to show the following equivalence : by € Dy(v) + Dy(w)by + - +
D,(v)b,_,, where b, = b,+eJe € D,(v) (i.e. bp—(@by+---+8p_1bn-y) €
Dy(v) for some @, € Dy(v): i =1,....n—1) if and only if [a,, an] is extend-
ible. But this is easily seen, since we can identify D,(v) with End(eA/vA).

Proposition 4.3. Let A be an artinian ring of right local type. Then
the following hold :

(1) A is a left serial ring.

(2) J is serial as a right A-module.

(3) If eJ is not homogeneous. then |eJ | < 2. where e € p(A).

(4) If U is a uniserial left A-module with \U| = 2, then [D\(U) :
D(U)], = 2.

Proof. (1) follows from Lemma 1.5. For any local-simple sets (L;, S;)
(i =1,2) with deg(L,. S,) = deg(L,. S,), any isomorphism 8: S, = S, is
(L,. L,)-extendible by Proposition 1.3. Hence (2) follows from Theorem
3.6. Moreover (3) is immediate from Lemma 1.4. Next A/J? is also of
right local type. and so (4) follows from Lemma 4.2.

Proposition 4.4. Let A be an artinian ring with the Jacobson radical J.
If A satisfies the following conditions (1) ~(4), then A is of right local type.
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(1) A is a left serial ring.

(2) J is serial as a right A-module.

(3) |eJ| £2 for any e € p(A).

(4) If U is a uniserial left A-module with |U| = 2, then [D(U) :
Dy(U)], =2.

Proof. Let(L; S;) (i = 1. 2) be local-simple sets with deg(L,, S,) =
deg(L,, S;) and 8: S, — S, an isomorphism. Then it suffices to show that 8
is (L,, L,)-extendible by Proposition 1.3. We assume d,,(S,) = d,,(S;)
since in the other case the assertion is verified by Theorem 3.6. Moreover
we may assume L, = S, (i = 1, 2), and the situations (Stl) and (St2) in
Lemma 3.5. Then we have N; = v;A and M; = y;A for some v,, y; € loc(A)
by (3). Now Ax, and Ax,are submodules of the uniserial left module Ag with
d(x,) = d,,(S,) =d,,(S,) = d(x,). Hence there exists an element a in
e, Ae, such that ax, = x, and d(a) = 0 by (1) in Lemma 2.7. Moreover we
have ;A = e,4 and ;A = 4,4 by Lemma 2.2 and we may assume e, = e,.
Put e = ¢, = e,. It suffices to show the condition (E) by Lemma 3.5. Since
d(x,) = d(x,) i.e., |mA/x,A| = |u,A/x,A | by (1) in Lemma 3.1 and | L, |
= |L,|, we have |v,A/y,A| = |v,A/y,A| i.e.. d(y,) = d(y,). Put r =
d(x,) and s = d(y,). Then u,J” = x,J, v\J5' = y,A and v,J57' C y,A.
If »r<s, then ax, = x, and ay, € eJ° C x,J @ y,A = I,, and (E) is
satisfied. Thus we assume r = s.

Now suppose the condition

(E) cx, —x, € x,J ® v,A and cv, € x,J & v,A for some element ¢ €
ede. (i.e. (E) inthecase ; =x,J P v,A:i=1,2).

Then cx, —x; € (20, ® v,A) N eJ” = (a0 B v, 4) N (w, J7 ' B v, J77 )
=X, BT Cxd B v, A =1 and ¢y, € e, ST CxJE D T C
x,J ® y,A = I, so(E) is satisfied. Thus it suffices only to show (E’), and
so we may assume that I, = x;J ® v;A(i =1, 2), i.e., L, are uniserial.

(i) In the case ;A £ v,A (i.e. u,A £ v, A) : Write av, = u,p++,q
for some p € f,Ah,, q € h,Ah, : where h,, h, € p(A). If p € J, then av, A
= u,pA and d(av,) = d(u,p) = 1. Hence u,A = u,pA = av,A = v,A by
Remark 4, which is a contradiction. Thus we have p € J. If u,p =0, (E’)
is clearly satisfied, for ax, = x, and av, = v,q € I,. Hence we assume u,p
% 0. We have cv, = u,p == 0 for some ¢ € eJe, since Au,p C Jv, (C Ah,).
Then by (1) in Lemma 3.2 cu; = 0 and consequently cx, = 0, for x;A C
u,A. Thus we have (a—c¢)x, = ax, = x, and (a—c)v, = av, —u,p = v,q €

I,.
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(ii) In the case y,A = v,A(i.e. ;A = w,A = v,A = v,A) ;: For some
unit b of eAe, we have bv, = v, and bI, = beJ™ '+ bv,A = eJ™ ' 1,4 = I,
so L, = L,. Thus it suffices to prove our assertion under the condition
Li=1L,, wA = v, A, and J™"' = 0, since L is an A/J " '-module. In this

case our assertion is verified from the following lemma.

Lemma 4.5. Let A be as in the above proposition and eJ = uA ® vA
and uA = vA, where e € p(A) and u, v € loc(A). Put L = eA/vA and
S = Soc(L). Then any isomorphism 8: S = S is (L. L)-extendible.

Proof. As in the proof of the above lemma, we may assume S = (x;A+
vA)/vA (i =1, 2), 8(x,4+vA) = x,+ vA and ax, = x,, where x;, a €
loc(A) with x; € wA., d(x;) = r. dla) = 0. Since Soc{aud) = ax,A =
x,A = Soc(uA) and d(au) = d(u), we have eJ = aud @ vA by Corollary
2.4 (more explicitly we can show auA = uA by (3) in Lemma 3.2 and Lemma
2.5). Put u, = u and u, = au (= au,). Since x, € u, A, for some z €
loc(J™') we have x;, = u,2, so x, = ax, = au,z = w,z. Put L' = L/LJ%and
S’ = LJ/LJ? and consider the isomorphism 8 : S' - S with (@) =
au, (= u,), where u; = u,+LJ* € §'. Since L' is a module over the ring
A/JE, 8 is (L, L')-extendible by Lemma 4.2. Hence there exists a unit ¢ in
eAe such that cu, —u, € eJ*+vA and cv € eJ*4+vA. On the other hand d(z)
=7r—1 and eJ™"' = 0. Therefore cx;—x, = (cu,—u,)z € eJ™ ' +0J7™! C
vA. Moreover since d(cv) =1 and cv € u,J ® vA. we have cv € vA by
(3) in Lemma 3.2. Thus §is (L, L)-extendible by Lemma 3.5.

We consider the following condition (D) introduced in [6, Section 3] :

(D) [D/(U) : DLU)], =[D(U) : DLU)], for any uniserial left A-module
Uwith |U| = 2.

If the conditions (b-1, 3, 4) in the following theorem and (D) are
satisfied, then it holds |eJ| < 2 for any e € p(A) (see Remark 5). Thus
by Propositions 4.3 and 4.4 we have

Theorem 4.6. Let A be an artinian ring with the Jacobson radical J.
Consider the following conditions :
(a) A is of right local type.
(b) (1) A is a left serial ring.
(2) J is serial as a right A-module.
(3) If eJ is not homogeneous, then |eJ | < 2. where e € p(A).
(4) If U is a uniserial left A-module with |U| = 2, then [D,(U) :
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D)), < 2.
Then (a) implies(b), and under the condition(D) the converse holds.

Representing [6, Theorem 4.5 ] as the dual version of Theorem 4.6. we
have (see Remark 5)

Theorem 4.7 ([7, Theorem 5.3] and [6,Lemma 4.3]). Let A be an
artinian ring with the Jacobson radical J. Consider the following conditions :
(c) A is of left colocal type.
(d) (1) A is a left serial ring.
(2) J is serial as a right A-module.
(3) If eJ is not homogeneous, then IJI =< 2. where e € p(A).
(4) If U is a uniserial left A-module with |U| = 2, then [D\(U) :
Dy(U)|, = 2.
Then (c) implies (d), and under the condition (D) the converse holds.

We note that in (b) and (d) of the above theorems there is only one
difference between indeces [ and r in [Dy{(U) : D,(U)], and [D(U) : D,(U)]-.
Moreover when (b-4) and (d-4) are satisfied, D,(U') == Dy(U) implies | D,(U)
: DU, = [D(U) : Dy(U)], (= 2). Thus by the theorems above we have

Theorem 4.8. Let A be an artinian ring with the Jacobson radical J.
Consider the following conditions :

(a) A is of right local type.

(b) A is of left colocal type.

(¢) (1) A is left serial.

(2) e is a right serial module with |eJ| < 2 for any primitive

idempotent e of A.

Then the following statements hold.

(i) Under the condition (D), the conditions (a), (b) and (¢) are equiv-
alent.

(i1) (a) and (b) are satisfied if and only if so are (¢) and (D).

5. Some properties on local modules. In this section. all modules are
(finitely generated unitary) left A-modules unless otherwise stated. Any
homomorphism between left A-modules operates on the right.

Let A be of right local type. H. Asashiba showed that there exist no

modules of type-3 (see Remark 3). As easily seen this implies
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Proposition 5.1 (Asashiba). If A is of right local type, then eJ| < 2
for any e € p(A) with eJ® = 0.

Let e € p(A). Then eJ? = 0 if and only if there exists a uniserial
module U such that |U| = 3 and Soc(U) (= J*U) = Ae(i.e. eJig =+ 0 <=
J*(Ag/JPg) = Ae for some g € p(A)). Hence the following conditions (1)
and (2) are equivalent provided the conditions (b-1, 3) in Theorem 4.6 are
fulfilled (see Remark 5).

(1) leJ| < 2 provided eJ? =+ 0.

(2) [Dy(U) : DU)]r = 2 for any uniserial module U with |U| = 3 and
Soc(U) = Ae.

Thus as an immediate consequence of Proposition 5.1, we have
Proposition 5.2. If A is of right local type. then | D,(U) : D(U)], < 2
for any uniserial module U with |U' = 3.

Now we show the dual version to Proposition 5.2. In order to do it. we
consider the dual notions to some ones in Section 1. As the dual notions to

“extension”, “extendible” and “maximal” we define “coextension”, “coextend-

ible” (or “liftable”) and “comaximal™, respectively. That is. for epimorphisms
a;: Ly > K(i=1,2), [ a;] has a coextension ¢: L, » L, (i.e. [, a;]
is coextendible) if and only if @y = ¢a,, and [, @,] is comaximal if and only
if [a;. @ | has no coextension for any submodule N with N & Kera, and the
map @ : L,/N — K which is induced from a,.

Let a;: L, » K be epimorphisms and M = Kera, where o is an
epimorphism ¢ = (@, a;)": Ly ® L, > K. f 8 =(8.B8): M> L, ® L, is
the inclusion map, then we have the exact sequence

(E)0-> ML 1, &L, -% K-o.

Then we should note that £, and B8, are also epimorphisms and the
sequence (E) induces the following exact sequences: 0 > M N L, = L, 4,

K->0and0O->MNL, - YN L; = 0, where {i, ji = 11,2}, The
following lemma is the dual one to [6, LLemma 1.2] but we give a proof for
the sake of readers ((1) in Lemma 5.3 is the dual one to Lemma 1.1 and we

only use it in this paper).

Lemma 5.3. Let0 - M—ﬁ-9 L @ L, % K> 0 be an exact sequence
with epimorphisms @; and an inclusion map B. where ¢ = (. a,)” and B =
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(8. B2). Then the following hold.

(1) [ay. 2] is coextendible if and only if M= L' & (L, N M) for some
module L'. In this case L' = L,.

(2) ley. ;] is comaximal if and only if M= L,.

Proof. (1). Assume [a,, @,] has a coextension ¢. Then putting L' =
Hx, —x¢)|xe Ly}, it holls MC L' ® L,and L C M, so M= L &
(L, N M). Conversely, if M= L' & (L, N M) for some module L then the
epimorphism £, and the projection ¢: M= L' @ (M N L,) = L' induce the
isomorphisms B8, : M/(M N L,) = L, and ¢: M/(MN L;) » L. As easily
seen the composition map ¢ = B,'¢78, is an coextension of [a,, a. ], where
y: L' = Mis the map withxy = —x: 2 € L.

(2) For any submodule N of Ker a, = M N L,, the above exact sequence

—\T
(ah a2)

induces the exact sequence 0 - M/N - L, & (L,/N) K = 0 by
identifying (L, @ N)/N with L,. Then we should note that [a,, @] is
coextendible if and only if M/N= M/N&® (MN L,)/N, and M/N = L, for
some submodule M' of M by (1).

“If" part: Assume M/N = M'/N® (M N L,)/N for some modules N
and M’ as above. Since M/N is a homomorphic image of M. M= L, (i.e. M
= M/N) implies (M N L,)/N=10. so N= Ker a,. This shows [, az] is
comaximal,

“Only if” part : The exact sequence 0 = M N L, > M— L, = 0 induces
the exact sequence 0 = o(MN L,) > M— L, » 0, where 0: M= Mis a
canonical epimorphism. Since M is semi-simple, there exists a submodule M’
of Msuch that M= M +(MN L,) adM N(MN L,) C MJ. Putting N =
M NMN L), M/\IN=M/N& (MnN L,)/N and N C MJ. Hence the
comaximality of [a,, a,] implies M N L, = N (C MJ) and consequently
o(MN L;) =0. Thus we have M= L,.

For a colocal module C and a simple module S which is a component of C,
we call (C, S) a colocal-simple set.

Let M be a module with socle S, @ --- @ S,. Then M is embedded in
E(S,) & ..- & E(S,), where E(S;) is the injective hull of S;. Since M is
finitely generated, we have M C C, @ .-- @ C,, for some finitely generated
submodules C; of E(S;) (i.e. some finitely generated and colocal modules
Ch:i=1.... n. Hence by the dual method to the proof of Proposition1.3

we have
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Proposition 5.4. Let A be an artinian ring. Then the following condi-
tions are equivalent.

(1) A is of left colocal type.

(2) For any colocal-simple sets (C;, S;) ; i = 1,2, and any isomorphism
8: 8, - S,, 0is(C,. C,)-coextendible or 87" is (C,, C,)-coextendible.

Proposition 5.5. If A is of left colocal type. then it holds [D\(U) :
DJU)], = 2 for any uniserial module U with |U| = 3.

Proof. Assume there exists a uniserial module U with |U| = 3 and
[D(U) : D(U)], = 3. Then by [6. Lemma 5.3] we can construct a colocal
module represented by the following diagram (which is a dual one to (3) in
Remark 3).

By the dual method to the proof (in the case i = 3) of Lemma 1.4, there
exists a colocal-simple sets (C,, S;) (i = 1, 2) and an isomorphism 6: S, -
S, which does not satisfy (2) in Proposition 5.4. Therefore A is not of left
colocal type, which is a contradiction. Thus the proof is complete.

Examples . Let D and E(resp. F and G) be division rings such that
E is a subring of Dand [D: E}, =2, o> [D: E], 2 3 (resp. G is a
subring of Fand o> [F: G], 2 3. [F: G], = 2) (see [5] for the existence

of these division rings). Let

E G
EE GG

A, = |- , B, =|--
EEE...E GGG---G
DDD...DD FFF...FF

be subrings of M (D) and M (F), where M,(D) and M,(F) denote the full-
matrix rings over D and F with degree n = 2, respectively. Generally if a
ring A is of right local type (or left colocal type), then so is any factor ring
of A. On the other hand, for integers m = n = 2, A, (resp. B,) is clearly a
factor ring of A, (resp. B,). For any n =2, A, (resp. B,) satisfies (b)
in Theorem 4.6 (resp. (d) in Theorem 4.7) (see [6. Example 3]). In [6,
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Examples 3 and 4] we showed that B, and B, do not satisfy (c) and (a),
respectively (i.e. B, is not of left colocal type and B, is not of right local
type). But it is immediate from Propositions 5.2 (or 5.1).5.5 and Theorems
4.6, 4.7 that A; and B, are not of right local type and A, and B, are not of
left colocal type.
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