Mathematical Journal of Okayama University

Volume 14, Issue 1

1969 November 1969

Article 15

Continuity of additive functionals

Osamu Katsumata*

Shozo Koshi[†]

*Okayama University †Okayama University

Copyright ©1969 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

CONTINUITY OF ADDITIVE FUNCTIONALS

OSAMU KATSUMATA AND SHOZO KOSHI

1. Let *E* be a measure space with positive finite measure μ , and *S* be the space of all essentially finite measurble functions on *E*. A set *X* of *S* will be called *normal* if $x \in X$, $|x| \ge |y|$ imply $y \in X$.

In the following, we assume X is a normal sublattice of S. A functional T defined on X is called additive if $x, y \in X$; $|x| \cap |y| = 0$ imply T(x+y) = T(x) + T(y).

For the integral representation of T, the continuity condition is important.

Recently, L. Drewnowski and W. Orlicz have proved that if T is (uc_{∞}) and (uac), then T can be represented by f(r, t) such that

$$T(x) = \int_{E} f(x(t), t) d\mu$$

where f(0, t) = 0 a. e., f(r, t) satisfies the generalized Carathéodory conditions and f(x(t), t) is integrable on E for each $x \in X$. [1]

In this note, we shall prove that the continuity conditions of Drewnowski and Orlicz (cf. also Friedman and Katz [2]) is replaced by apparently weaker condition: order continuity. Here we do not assume any "uniform" property.

The proof of Theorem 7 in [4] is not sufficient, so the assumption of Theorem must be replaced by order-continuity instead of (CIII) (semicontinuity).

A sequence $x_n \in X(n=1, 2, \dots)$ is order-convergent to $x \in X$, if there exists $y \in X$, $|x_n| \leq y$ and $x_n(t) \rightarrow x(t) a$. e. in E.

2. For an additive functional T on X, we shall consider the following conditions:

 (uc_{∞}) T is uniformly continuous by $L_{\infty}(\mu)$ -norm (essential supremum norm) on every set $\{y; |y| \leq |x|\}$ with $x \in X, ||x||_{\infty} < \infty$.

(uac) T is uniformly absolutely continuous on every set $\{y; |y| \leq |x|\}$, $x \in X$; that is for each $\epsilon > 0$, there is a positive number $\delta > 0$ such that $|T(yX_{\epsilon})| \leq \epsilon$ for $|y| \leq |x|$ and a measurable set e with $\mu(e) < \delta$ where X_{ϵ} is a characteristic function of e.

(o) If $x_n \in X(n=1, 2, \dots)$ is order-convergent to $x \in X$, then $\lim_{n \to \infty} T(x_n) = T(x)$.

OSAMU KATSUMATA and SHOZO KOSHI

Theorem (0) is equivalent to (uc_{∞}) and (uac).

Proof. Since (uc_{∞}) and (uac) imply (o) obviously, we shall prove the converse.

 $(o) \Rightarrow (uac)$ This can be proved by the same method used in the proof of theorem 1.3 of Drewnowski and Orlicz [1].

 $(o) \Rightarrow (uc_{\infty})$ It is sufficient to prove the case $X = \{x; |x(t)| \leq 1 \ a. e.$ $t \in E\}$. Let denote by Λ the set of all dyadic numbers in [-1, 1] i.e. if $\lambda \in \Lambda$, then $\lambda = m/2^n$ for some integers n(>0), m with $-2^n \leq m \leq 2^n$ and let $h_{\lambda}(t)$ ($\lambda \in \Lambda$) be Radon-Nikodym's derivative of $T(\lambda X_e)$ i.e. $T(\lambda X_e)$ $= \int_{e} h_{\lambda}(t) d\mu$ where X_e is a characteristic function of a measurable set $e \subset$ E. Now we take an arbitrary $\delta > 0$ and fix it for a while. For integers n and $m = -2^n + 1, \dots, 0, 1, \dots, 2^n$, we consider measurable sets:

$$e_{m}^{n} = \{t ; |h_{\lambda} - h_{\mu}|(t) \ge \delta \text{ for some } \lambda, \mu \in A \text{ with } (m-1)/2^{n} \le \lambda, \mu \le m/2^{n}\} \qquad (n = 1, 2, \cdots; m = -2^{n} + 1, \cdots, 0, 1, \cdots, 2^{n})$$

and

84

 $b_n = \bigcup_{m=-2^n+1}^{2^n} e_m^n$. Note that e_m^n is written by $e_m^n = \bigcup_{\lambda,\mu} \{t ; h_\lambda(t) - h_\mu(t) \ge \delta\}$ where $\lambda, \mu (\subseteq \Lambda)$ are countable. By definition of b_n , we have $b_1 \supset b_2 \supset \cdots$ $\supset b_n \supset \cdots$, and let us denote their limit $b = \bigcap_{n=1}^{\infty} b_n$.

(i) Let $\mu(b)=0$ for every $\delta > 0$. For each $\epsilon > 0$, by (uac), there exists $\epsilon' > 0$ such that $|T(yX_{\epsilon})| < \epsilon$ for all $y \in X$ and for $\mu(e) < \epsilon'$. At the same time we see that there is n with $\mu(b_n) < \epsilon'$ such that

$$|h_{\lambda}(t)-h_{\mu}(t)| \leq \varepsilon \text{ for } |\lambda-\mu| \leq 1/2^{n} \text{ with } \lambda, \mu \in A, t \in E \sim b_{n}.$$

This will be seen if we put $\delta = \varepsilon/2$. Let $||x(t) - x'(t)||_{\infty} < 1/2^{n+1}$. By (o) we can find $\lambda_i, \mu_i \in A$ (*i*: finite set) and mutually disjoint measurable sets e_i such that

$$\|\boldsymbol{x} - \sum_{i} \lambda_{i} \boldsymbol{\mathcal{X}}_{e_{i}}\|_{\infty} \leq 1/2^{n+2}, \quad \|\boldsymbol{x}' - \sum_{i} \boldsymbol{\mathcal{U}}_{i} \boldsymbol{\mathcal{X}}_{e_{i}}\|_{\infty} \leq 1/2^{n+2}$$

and

$$|T(x)-T(\sum_{i}\lambda_{i}X_{e_{i}})| < \varepsilon, \quad |T(x')-T(\sum_{i}\mu_{i}X_{e_{i}})| < \varepsilon.$$

We have $|\lambda_i - \mu_i| < 1/2^n$ for each i and

$$|T(\sum_{i}\lambda_{i}\mathcal{X}_{e_{i}})-T(\sum_{i}\mu_{i}\mathcal{X}_{e_{i}})| \leq \sum_{i}\int_{e_{i}\sim b_{n}}|h_{\lambda_{i}}-h_{\mu_{i}}|d\mu|$$

CONTINUITY OF ADDITIVE FUNCTIONALS

$$+ |T(\sum_{i}\lambda_{i}X_{e_{i}}X_{b_{n}})| + |T(\sum_{i}\mu_{i}X_{e_{i}}X_{b_{n}})| \leq \varepsilon\mu(E) + 2\varepsilon.$$

Hence,

$$|T(x) - T(x')| \leq |T(x) - T(\sum_{i} \lambda_i X_{e_i})| + |T(\sum_{i} \lambda_i X_{e_i}) - T(\sum_{i} \mu_i X_{e_i})| + |T(x') - T(\sum_{i} \mu_i X_{e_i})| \leq \varepsilon \mu(E) + 4\varepsilon.$$

 (uc_{∞}) follows from this.

(ii) Let $\mu(b) > 0$ for some $\delta > 0$. It will be shown that this case can not occur. For every *n*, we shall define a partition of *b* by induction, that is

$$b=b_{-2^n+1}^n\bigcup\cdots\bigcup b_{2^n}^n,$$

 $b_m^n(m=-2^n+1, \dots, 2^n)$ are mutually disjoint measurable sets and for every $p \ge n$, $b_m^n \subset e_m^{n,p}$ where $e_m^{n,p} = \{t; t \in e_m^p$, for some m' with $(m-1)/2^n < m'/2^p \le m/2^n\}$. We take a note that the sequence $e_m^{n,p}(p=n, n+1, \dots)$

is monotone decreasing with respect to p and that $\bigcup_{m=-2^{n}+1}^{2} e_{m}^{n,p} = b_{p}$.

Let us define $b_m^1(m=-1, 0, 1, 2)$, at first we put

$$a_m^1 = b \cap e_m^{1,1} \cap e_m^{1,2} \cap \cdots, (m = -1, 0, 1, 2).$$

Then, we have $b = \bigcup_{m=-1}^{2} a_m^1$, since $b \sim \bigcup_{m=-1}^{2} a_m^1 = \bigcap_{m=-1}^{2} \bigcup_{p=1}^{\infty} (b \sim e_m^{1,p}) \subset \bigcup_{p=1}^{\infty} (b \sim e_m^{1,p}) \subset \bigcup_{p=1}^{\infty} (b \sim \bigcup_{p=1}^{2} e_m^{1,p}) = \phi$.

Hence we define, $b_{-1}^1 = a_{-1}^1$, $b_0^1 = a_0^1 \sim a_{-1}^1$, $b_1^1 = a_1^1 \sim a_0^1 \sim a_{-1}^1$, etc., then by definition $b_m^1 \subset a_m^1 \subset e_m^{1,p}$ for all $p \ge 1$. Assuming we have defined b_m^n , we shall define b_s^{n+1} ; $s = -2^{n+1}+1$, ..., 0, 1, ..., 2^{n+1} . It suffices to define b_{s-1}^{n+1} , b_s^{n+1} of the form s = 2m with some $m \in \{-2^n \div 1, ..., 0, ..., 2^n\}$. We set

$$b_{s}^{n+1} = b_{m}^{n} \cap e_{s}^{n+1,n+1} \cap e_{s}^{n+1,n+2} \cap \cdots,$$

$$b_{s-1}^{n+1} = b_{m}^{n} \sim b_{s}^{n+1}.$$

We must check $b_{s-1}^{n+1} \subset e_{s-1}^{n+1,p}$ for $p \ge n+1$. This will be done, since $t \in b_{s-1}^{n+1} \Rightarrow t \notin b_s^{n+1} \Rightarrow t \notin e_s^{n+1,p}$ for some $p \ge n+1 \Rightarrow t \notin e_s^{n+1,k}$ for all $k \ge p \Rightarrow t \in e_{s-1}^{n+1,k}$ for all $k \ge p \Rightarrow t \in e_{s-1}^{n+1,k}$ for all $p \ge n+1$, since $e_s^{n+1,k} \cup e_{s-1}^{n+1,k} = e_m^{n,k}$ by definition. For n, we define measurable functions $f_n, g_n \in X$ such that

OSAMU KATSUMATA and SHOZO KOSHI

$$f_n(t) = \sum_{m=-2^{n+1}}^{2^n} \frac{m-1}{2^n} \chi_{b_m^n}(t),$$

$$g_n(t) = \sum_{m=-2^{n+1}}^{2^n} \frac{m}{2^n} \chi_{b_m^n}(t).$$

We have by definition $f_n(t) \leq f_{n+1}(t) \leq g_{n+1}(t) \leq g_n(t)$, and $|f_n(t) - g_n(t)| \leq 1/2^n$. Hence, there exists $x \in X$ with $f_n \to x$, $g_n \to x$ (order convergence). For $m = -2^n + 1, \dots, 2^n$, we can decompose b_m^n into

 $\mathbf{b}_{m}^{n} = c_{m,1}^{n} \cup c_{m,2}^{n} \cup \cdots$ (mutually disjoint)

where $c_{m,i}^{n} \subset \{t; h_{\lambda_{m,i}^{n}}^{n}(t) - h_{\mu_{m,i}^{n}}^{n}(t) \geq \delta\}$ for every pair $\lambda_{m,i}^{n}, \mu_{m,i}^{n} \in A$ with $(m-1)/2^{n} \leq \lambda_{m,i}^{n}, \mu_{m,i}^{n} \leq m/2^{n}$, since $b_{m}^{n} \subset e_{m}^{n} = \bigcup_{\lambda,\mu} \{t; h_{\lambda}(t) - h_{\mu}(t) \geq \delta\}$ where $(m-1)/2^{n} \leq \lambda, \mu \leq m/2^{n}$ with $\lambda, \mu \in A$. If we define f_{n}, g_{n} as follows:

$$f'_{n}(t) = \sum_{m=-2^{n}+1}^{2^{n}} \sum_{i} \lambda^{n}_{m,i} \chi_{\mathcal{O}^{n}_{m,i}}(t)$$
$$g'_{n}(t) = \sum_{m=-2^{n}+1}^{2^{n}} \sum_{i} \mu^{n}_{m,i} \chi_{\mathcal{O}^{n}_{m,i}}(t),$$

then $f_n(t) \leq f'_n(t), g'_n(t) \leq g_n(t)$ and

$$T(f'_n) - T(g'_n) \ge \partial_{i'} u(b)$$

with $f'_n \to x$ and $g'_n \to x$ (order convergence). This contradicts to the condition (0).

Remark. In above Theorem, the condition (o) is replaced by the condition that T is continuous by measure convergence.

REFERENCES

- [1] L. DREWNOWSKI and W. ORLICZ: On representation of orthogonally additive functionals, Bull. Acad. Polon. Sci. 17 (1969).
- [2] N. FRIEDMAN and M. KATZ: Additive functionals on Lp-spaces, Canad. J. Math. 18 (1966).
- [4] S. KOSHI: On additive functionals of measurable function spaces, Math. J. Okayama Univ. 13 (1968).

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received October 30, 1969)