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HARMONIC REFLECTIONS ON
SASAKIAN MANIFOLDS

P. BUEKEN and L. VANHECKE

1. Introduction. Local geodesic symmetries on a Riemannian manifold
are local diffeomorphisms which play an important role in the study of
local Riemannian geometry. The properties of these transformations may
be used to define some particular classes of Riemannian spaces. For ex-
ample, it is well-known that a Riemannian manifold is locally symmetric
if and only if all the local geodesic symmetries are isometries. Moreover,
the following result is proved in [5]: A Riemannian manifold is locally
symmetric if and only if all local geodesic symmetries are harmonic maps.
We refer to [14] for other examples.

Local geodesic symmetries are local reflections with respect to a point.
In [13]. [16] this class of transformations has been generalized and the
notion of a local reflection with respect to a submanifold, in particular
with respect to a curve, has been introduced. In [16] T.J. Willmore and
the second author obtained the following results (see also [13]):

Proposition 1. Let o: [a,b] » (M. g) be a topologically embedded
curve in a Riemannian manifold (M,g). If the local reflection ¢, with
respect to o is volume-preserving, then ¢ must be a geodesic. Moreover, a
connected (M,g) is locally symmetric if and only if the reflections ¢, with
respect to all geodesics o are volume-preserving. Finally, (M,g) is a space
of constant curvature if and only if the reflections with respect to all
geodesics are isomelries.

In [15] the following result is proved

Proposition 2. Let o: [a,b] = (M.g) be a topologically embedded
curve in a Riemannian manifold (M,g). If the local reflection ¢, with
respect to o is harmonic, then o is a geodesic. Moreover, a connected
Riemannian manifold is a space of constant curvature if and only if the
local reflections with respect to all geodesics are harmonic.

In the study of contact geometry, the Sasakian manifolds take a very
special place. On these manifolds there are two particular nice and natural
classes of geodesics, namely the integral curves of the characteristic vector
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field and the so-called ¢-geodesics, that is, the geodesics which cut these
integral curves orthogonally. Our main aim is to study here the local
reflections with respect to these geodesics in the particular case that they
are harmonic maps. In this way we find new characterizations of the so-
called locally @-symmetric spaces, the symmetric Sasakian manifolds and
the three-dimensional Sasakian space forms.

2. Sasakian manifolds and locally ¢-symmetric spaces. In this sec-
tion we give some preliminaries about Sasakian manifolds. A smooth man-
ifold M**' is said to be an almost contact manifold if the structural group
of its tangent bundle is reducible to U{n)Xx1. It is well-known that such
a manifold admits a tensor field ¢ of type (1.1), a vector field € and a
one-form 7 satisfying

né =1 ¢ =—-I+7® &
These conditions imply that ¢6 = 0 and 7o ¢ = 0. Moreover. M admits a
Riemannian metric g satisfying

g(pX, ¢Y) =g(XY)—nX)n(Y)

for any tangent vector fields X and Y. This implies p(X) = g(X, ). M
together with these structure tensors (¢, & 7g) is said to be an almost
contact metric manifold.

Further, if these structure tensors satisfy

(1) (Pr @)Y = g(X.Y)§—n(Y)X.

where F denotes the Riemannian connection of g, M is said to be a
Sasakian manifold. This condition (1) implies at once

(2) V,\'E: —¢X

from which it follows that ¢ is a Killing vector field. Hence, the integral
curves of £ are geodesics. Moreover, a geodesic ¥ on a Sasakian manifold
is said to be a ¢-geodesic if 7(y) = 0. It is easy to see that a geodesic
which is orthogonal to & at one point remains orthogonal to &.

Let R denote the Riemann curvature tensor defined by

R.\’)'Z = |.\'.)'|Z_[va VY] Z.
Then, on a Sasakian manifold, we have

(3) Rié= nX)Y—n(Y)X.
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For a Sasakian manifold local symmetry, i.e. VR =0, is a very strong
condition. Indeed we have

Proposition 3 ([10]). A connected locally symmetric Sasakian man-
ifold has constant sectional curvature 1.

For this reason T. Takahashi [11] introduced the notion of a locally
¢-symmetric space by requiring that on the Sasakian manifold we have

(VR )xyZ =10

for all vector fields V,X,Y, Z orthogonal to £& This is equivalent to
(PvR)yyzw = 0

for all vector fields V,X,Y,Z, W orthogonal to & We refer to [2],[3],

[10] for several other useful characterizations of these spaces. Here we
restrict to

Proposition 4 ([3]). A Sasakian manifold is locally ¢-symmetric if
and only if

VXR XeXXpX — 0

for all vector fields X orthogonal to &

The simplest examples of locally ¢-symmetric spaces are the so-called
Sasakian space forms. They are defined as follows. A plane section in
ToM*™ ' m & M, is called a ¢-section if it possesses an orthonormal
basis of the form | X, ¢X |, where X € T,M*"" is a vector orthogonal to
¢ at m. The sectional curvature K(X, ¢X) = H(X) = R(X, ¢X. X, ¢X)
is called the associated ¢-sectional curvature. A Sasakian manifold of
constant ¢-sectional curvature ¢ is called a Sasakian space form. Its
curvature tensor is given by

c+3,

(4) RXYZ = 4 !

gX.Z)Y—g(V,Z)X |

+ETH A ) U2 X~ X)(Z2) Y —4(X, Z) Y ) E4+(Y.Z) HX) €

—8(Z,¢Y) pX+g(Z, ¢X)¢Y—28(X, ¢Y) ¢ Z .

Here we have the following useful criterion:
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Proposition 5 ([12]). A connected Sasakian manifold M of dimension
2n+1 > 5 is a Sasakian space form if and only if, for every vector field
X orthogonal to & Ry4xX is collinear with ¢X.

We refer to [1],[17] for more details about contact geometry.
3. Reflections with respect to a curve. Let o: [a,b] = (M,g) be

a smooth embedded curve in a Riemannian manifold (M,g) and denote by
U a tubular neighborhood of o, i.e.

U= |p € M |there exists a unique geodesic y of M through p cutting
o orthogonally|.

Then, for any p € U we may put
p = expoulru), u € Toyo, |ull =1, t € [a,b],

where r = d(p, o(¢)).
The map ¢,: U — U defined by

$o: P = expgp ) P do(p) = expoul —ru)

is a local diffeomorphism and is called a local reflection with respect io o.

To describe the reflection ¢, we use Fermi coordinaies. We use the
treatment developed in [9],[16]. Let obe a unit speed curve (|| = 1)
and let {e;, i =1,...,n}| be an orthonormal basis of T,M such that e, =
o{a). In view of our main results we also suppose that o is a geodesic.
Next, let E, be the unit tangent field & and E,,..., E, the parallel normal
vector fields along o such that

Ea)=e;,, i=2,....n =dim M.

Then, the Fermi coordinates (x',...,x") with respect to 0(a) and (E,,...,E,)
are defined by

n
xl(expam j;?tjEj) = t—ﬂ,,
) no. ) _
xHexpom 2 H7E;) =t 2 < i < n.
i=2
For a vector v € Ty 0 with exp,mv € U we have

v = gxaEa(t) = ru
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I a2
where |u]| =1 and v* = 22, (x%)*.
a=

From this it follows that the local reflection ¢, is given by

$o: (x',x?...,x") e (', —x% ..., —x").
In the next sections we shall express that the local reflection ¢, with
respect to the geodesic ¢ is harmonic. Therefore we need the expressions
of the metric g and the inverse g~' with respect to Fermi coordinates.

Put

o 0
ox' ox

g = g( ), i,j=1,...n.

Then we have, following the methods developed in [8].[9],[16]:
Proposition 6. Let m = o(t) and p = expou(su), |ul =1. We have
(5) gu(P) = 1_‘Sleulu(m)_é_SSVuRlulu(m)+0(34)»
2 , 1 '
gilp) = —5s"Riuu(m) — 75 VuRyuin(m) +0(s"),
1, 1 5 p
gu(P) = ij_’3_5 Ruiuj('m)_?s VuRutuj(m)+0(s )
and
(6) gn(P) = 1+sleulu(m)“I"é_SaVuRlulu(m)+0(s‘)-
2
g”(P) = ?Sleuiu('m)+%33VuRluiu(m)+0(s‘).
g”(P) = 6£j+%szRuiuj(m)+é—33VuRuiuj(m)+O(34)
Jor i,j=2,...,n.

Here we have posed Ryiu;(m) = Rur,imurul o(t)), etc.

4. Harmonic reflections. ILet (M,g) and (N.h) be two Riemannian
manifolds with metrics g and A and let f: (M,g) = (N,h) be a smooth
map. Then the covariant differential V(df) is called the second fundamen-
tal form and the tension field of f, denoted by z(f), is the trace of P(df).
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[ is said to be harmonic if (f) = 0.
To express this condition analyticallv, let U C M be a domain with

coordinates (x',...,x™) and V C N a domain with coordinates (y',...,y".
Then f can be locally represented by y* = f*(x',....x"), ea=1,...,n. Fur-
ther we have

azf'f af’Y afa afﬁ
7 ‘?’ — _ _M k

i,j=1,...m and y=1,...,n. Here "I'¥ and *I"}s; respectively, denote
the Christoffel symbols for (M,g) and (N,h) respectively. Hence, f is
harmonic if and only if

(8) T(f) = ”(V(df))u -

For more details about harmonic maps we refer to [6],[7].
From these remarks and from section 3 we now get easily

Proposition 7. The local reflection ¢, with respect to a curve cis a
harmonic map if and only if

(8s)' (p) = 18" 7(d ¢o)11+28"V(d 85)1:+87V(d 85)1,1(p)
(4o)p) = 18" V(d go) V1 +28"V(d ¢o)T:i+8"'V(d ¢o)is1(p)

(9) o

for i.j.k =2,...,n, where

(10) V(d‘ﬁa)h(p) = _Fn(p)+rn(¢a( ))
V(dgs)iilp) = —I'ulp )— I3 a(P)),
P(dgo)idp) = —Tifp)+ T dslp)),
V(d¢a)f1(P) 11(P)+Fn(¢a( ))
P(d¢o)ti(p) = T'Tilp) — I'( o(p)),
P(d¢s)ifp) = Ffj(p)+1“ (¢a(p))

It is worthwile to note that F(d ¢c,)1 7(d ¢,) 5. V(d )t are even functions
and V(d¢o)}y, V(d@s)t,, V(d@,)t: are odd functions.

Using the well-known expression

n a”
Iie) = 5 38" 2B S ),

we can write down, using Proposition 6, power series expansions for the
quantities given in (10). After a detailed computation which we omit here,
we obtain
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Proposition 8. Let o be a geodesic and (x',....x") the system of
Fermi coordinates defined above. Then we have

(11) F§1(¢U(P))—F§1(p) = 0(33)‘
F;1(¢0(p>)+r'{1(p) - é_sz(ViRlulu+ZVuRluli_4V1Rluiu)(m)+0(34):

Yl polp))+ Thilp) = 0(s?),
F{i(¢a(p))— fz(p) = _ZSquij(m)+0(33).
1 dolp))—Tifp) = 2sR;5u(m) +0(s%),

F?j( ¢o(p))+]_"i°j(p) = — é_sz(sVuRikuj—"SVuRuijk—" VkRuiu.i)(m)
+0(s%),
Jor all i,j,k = 2,...,n.

5. The main results. In this section we start with the consideration
of local reflections with respect to the integral curves of the characteristic
vector field & These local reflections coincide with the local ¢-geodesic
symmetries introduced in [11] (see also [2]). Before giving our first
result we state

Lemma 9 ([2],[11]). A Sasakian manifold is locally ¢-symmetric if
and only if the local reflections with respect to the integral curves of the
characteristic vector field & are isometries.

Now we are ready to prove

Theorem 10. A Sasakian manifold is locally ¢-symmetric if and only
if the local reflections with respect to the integral curves of the characteristic
vector field & are harmonic.

Proof. First, let M be a locally ¢-symmetric space. Then the result
follows from Lemma 9 since any isometry is harmonic.

Conversely, suppose that the local reflections with respect to the in-
tegral curves of § are harmonic. We use the techniques described in Section
3 and Section 4 with m = o(t) € M*™' and 4(t) = & In this case it
follows easily from the formulas (1), (2), (3) that

Rlulu(m) =1, Rluiu(m) =0,
Rluij(m) =0, VuRlulu(m') =0
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for i,j = 2....,2n+1 and u orthogonal to £ at m. Hence, from (6),
g'(p) = 1+s"+0(s"),
£'p) = 15 PuRuualm) +0(s")
and from (11)
' ¢o(p))—Tidp) = 0(s?).

Further, we see from this and the second condition (9) that if ¢, is har-
monic, the vanishing of the coefficient of s* gives

2n+1

(12) Zl VuRui-uj(3VuRikuj+3VuRuijk+ VkRuiuj) = O

Li=2
for all k =2,...,2n+1 and all points m € M. Taking Ex(t) = u, (12)
yields

"Z—:z (VuRuiuj)z =0

L

for all u orthogonal to £& Hence

(13) VuRu[uj =0
and since ¢u is orthogonal to £ by putting E;(i) = E{t) = ¢u in (13)
we get

VuRu¢uu¢u = 0.
Now the desired result follows from Proposition 4.

Next, we consider local reflections with respect to ¢-geodesics. We
prove

Theorem 11. Let M be a Sasakian manifold of dimension > 5. Then
M has constant curvature 1 if and only if the local reflections with respect
to all ¢-geodesics are harmonic.

Proof. 1f M is a space of constant curvature, then the local reflec-
tions with respect to any geodesic are harmonic (Proposition 2). In fact
the reflections are isometries (Proposition 1).

Conversely, let o be a ¢-geodesic, m = o(t) and u a unit vector
orthogonal to &(¢). Proceeding in the same way as before we now see

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 30/iss1/18



Bueken and Vanhecke: Harmonic reflections on Sasakian manifolds

HARMONIC REFLECTIONS ON SASAKIAN MANIFOLDS 195

after some calculation that the vanishing of the coefficient of s in the
second condition (9) leads to

2n+1

(14) Z RluiuRluik =0

£=2

for all u orthogonal to &(¢) and all £ = 2,....2n+1. Taking again u =
E(t). (14) yields

(15) Rluiu = 0.
Since the ¢-geodesic o is arbitrary we get from (15) that
(16) Rvuru =0

for all v orthogonal to the characteristic vector field £ and all u,x ortho-
gonal to v. So (16) implies at once that R,4,u must be collinear with
¢u for all u orthogonal to & Hence. Proposition 5 implies that M is a
Sasakian space form. Finally, for v orthogonal to u,x and £ (4) and
(16) imply

(17) 0 = Ruuew = —le—D)alu. pv)g(z. gu).

Since dim M > 5, we can choose v orthogonal to £ and x orthogonal to
&v.¢v. By taking u = ¢v+ ¢x, (17) yields ¢ = 1. This completes the
proof.

For three-dimensional manifolds we need

Lemma 12 ([4]). Let M be a three-dimensional Sasakian space form.
Then the local reflection with respect to any ¢-geodesic is an isometry.
We prove

Theorem 13. A ihree-dimensional Sasakian manifold is a Sasakian

space form if and only if the local reflections with respect to all ¢-geodesics
are harmonic.

Proof. First, suppose M is a Sasakian space form. Then the result
follows from Lemma 12.

Conversely, let o be a ¢-geodesic as in Theorem 11. Since dim M =
3. (14) is automatically satisfied. So we compute again the coefficient of
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s* in the second condition (9). This gives

4VuR1ulu(ViR1u1u+zvuRluli_4V1Rluiu)
27k 1
_jk2='2 VuRujuk(3VuRkiuj+3VuRukji+ ViRukuj) = 0.

Taking again v = E,(t) we get
2n+1
12(VuRlulu)2+5 jkz_z (VuRujuk)z = 0-

So
(18) VuRlulu =0

for all u orthogonal to E,(t) = &(t). Since this must be true for all ¢-
geodesics, we get from (18)

VuRu¢uu¢u =0

for all u orthogonal to & Hence M is locally ¢-symmetric (Proposition
4). This implies that M has constant scalar curvature and so M is a
Sasakian space form.
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