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EXCEPTIONAL SEQUENCES OVER GRADED
COHEN-MACAULAY RINGS

TOKUJI ARAYA

1. INTRODUCTION

The concept of exceptional sequences was developed by Gorodentsev
and Rudakov in [3] and generalized by Bondal in [1]. It is a crucial tool
to classify exceptional modules over hereditary algebras and exceptional
sheaves over weighted projective lines. In fact, let A be the category of
finitely generated modules over a hereditary algebras or the category of
coherent sheaves over a weighted projective line and let £ be an exceptional
sequence in A. Then the length of £ is smaller than or equal to the rank
n of the Grotherndieck group of A and £ is called a complete exceptional
sequence if the length of £ is equal to n. It is known that any exceptional
sequence can be enlarged to a complete exceptional sequence ([2, Lemma 1],
[5, Lemma 3.1.3] ) and the braid group B,, on n strings acts transitively on
the set of complete exceptional sequences ([2], [5, Theorem 3.3.1]). Fixing
a complete exceptional sequence &, for any exceptional object X € A we
can find an element ¢ € B, such that X belongs to ¢€. Hence we are
able to classify exceptional objects in A by a fixed complete exceptional
sequence £ with the action of the braid group B,,.

In this paper, we shall consider exceptional sequences in the category
of finitely generated graded modules over a graded ring. To compare with
above cases, exceptional sequences for graded modules may have infinite
length. Moreover the braid group B on infinite strings acts on the set of ex-
ceptional sequences of infinite length, but the action may not be transitive.
Therefore we have to consider the following condition for the exceptional
sequence & to classify exceptional modules;

(1) For any exceptional module E, there exists an element 0 € G =
Z x (B x Z*) such that E belongs to the sequence o€.

If an exceptional sequence & satisfies the condition (1), we call it a

generating exceptional sequence, and if there exists a generating exceptional
sequence &, then we can classify exceptional modules by £ with the action
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of G. But it is not easy to show the existence of generating exceptional
sequences. So we consider the following conditions;

(2) We assume that any indecomposable maximal Cohen-Macaulay
module is an exceptional module. The exceptional sequence £ of infinite
length is called an MCM generating exceptional sequence if, for any inde-
composable maximal Cohen-Macaulay module F, there exists an element
o € G such that F belongs to the sequence o€.

(3) An exceptional sequence £ of infinite length is called a mazimal
exceptional sequence if there is no exceptional module that can be added

into £ as an exceptional sequence, i.e. put & = (-, Ej_1, Fy, Eipq,- ),
and for any exceptional module E and integer n, the sequence of excep-
tional modules (- -+, Ey—1, Ep, E, Ey 1, Epyo, - -+ ) is not an exceptional se-
quence.

If there exists an MCM generating exceptional sequence & =
(---,FB;i_1,FE;,E;iy1,--+), one can see that £ generates ®°(modR) as a
triangulated category, i.e.®P(mod R) is the smallest triangulated full sub-
category containing all E;. In this sense, to investigate ®P(modR), one
needs to find an MCM generating exceptional sequence. In this paper, we
shall show the following theorems as main results.

Theorem 3.1. If R is a one dimensional N-graded Gorenstein ring
of finite Cohen-Macaulay representation type, then there exists an MCM
generating exceptional sequence.

Theorem 4.1. Any MCM generating exceptional sequence is mazi-
mal.

Corollary 4.2. Any generating exceptional sequence is mazximal.

Acknowledgenemt. The author thanks to Professor Yuji Yoshino
for his great help in writing this paper.

2. NOTATIONS AND DEFINITIONS

Let R = ®R,, be an N-graded Cohen-Macaulay ring and assume that
Ry = k be a field. We denote by mod R the category of finitely generated
graded R-modules whose morphisms are graded R-homomorphisms that
preserve degrees. We also denote by CM R the full subcategory of mod R
consisting of all maximal Cohen-Macaulay modules and by ®P(mod R) the
derived category of mod R consisting of all bounded complexes.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 41/issl/4
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For a complex E* € ®"(mod R), we write as E™ the graded R-module
in the m-th position in the complex. Hence E is of the form;

RN Em—l — E™ Em+1 ..

On the other hand, the degree n part of E* as graded R-modules is
denoted by (E),, that is a complex of k-vector spaces;

_>(Em—1)n_>(Em)n_>(Em+1)n_>

In such a meaning we have two kind of shifted complexes of E* by
r € Z. One is E[r] that is the complex whose m-th position E[r]™ is
E™™ and the other is E'(r) that is the complex whose degree n part
(E'(7))n as graded R-modules is (E');yp.

Since End(X") = H*(RHom(X", X*)) is finite-dimensional over k for
any X' € ©P(modR), it is easy to see that the category ®°(modR) is
a Krull-Schmidt category, i.e. any complexes in ®”(modR) are uniquely
decomposed into direct sums of indecomposable complexes.

In this paper, we are mostly interested in exceptional complexes that
are defined in the following definition. Compare with the definitions in [1]
and [3].

Definition 2.1. For a complex E° € ®”(modR), E is called ez-
ceptional if RHom(E', E) is isomorphic to k. A sequence of exceptional
complexes € = (--- ,E;_1,E;,Ej41,--+) (which may be of infinite length)
is called an exceptional sequence if RHom(E';, E';) = 0 for i > j.

Note that every exceptional complex E’ is indecomposable, since
End(E") = k. However, there are lots of indecomposable complexes which
are not exceptional.

Example 2.2. 1. Let R = k[z] be a polynomial ring in one vari-
able. Then it is easy to verify that any indecomposable module is ex-
ceptional, and € = (--- , R(—1), R, R(1), R(2),---) is an exceptional
sequence.

2. Let R be a one dimensional N-graded Gorenstein ring of finite Cohen-
Macaulay representation type, then one can check that any indecom-
posable maximal Cohen-Macaulay module is exceptional, because one
knows the structures of such modules (c.f.[6], or see proposition 3.2).

3. To contrast the above, let R = k[z,y]/(y?) with the degree of x
(resp. y) is one. Then the graded maximal Cohen-Macaulay module
M = R/(y) is indecomposable, but not exceptional.
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As in this example, one sees that there are numbers of exceptional
modules.

Definition 2.3. For complexes E' and F' € ©P(modR), note that
RHom(E', F") is a complex of k-vector spaces and there are canonical mor-
phisms fgp : RHom(E, F')®rE — F and gpr : E — DRHom(E", F") ®
F, where D denotes the k-dual of complexes of k-vector spaces. The left
mutation functor £g : DP(mod R) — DP(mod R) defined by E’ is given in
such a way that, for an object F* € ©®P(modR), £g F' is defined by the
triangle;

RHom(E,F) @, B 25 F — €5 F' — RHom(E', F') @, E'[1].

Dually, the right mutation functor Rg- : ®°(mod R) — DP(mod R) defined
by F" is given by the triangle;
DRHom(E,F) @ F'[-1] — Ry B — E 225 DRHom(E,F') @ F".
Let £ = (- ,E;_1,E,Eit1,--+) be an exceptional sequence of in-
finite length. Then note that the sequences (---,E_1,E 11, RE,,, E,
Eito,---)and (--- ,E_1, L, Eis1,E, Eqo,--+) are again exceptional
sequences. And it is a routine work to show the following equalities.

(2.1) {mEAiH (%E"‘H E) = 9{(9‘{E‘H—2 E‘i+1)(mE‘i+2 E),

Lo (Lo Bire) = Ligy w0 (Lo Eiga).

See also [1] and [3].

Corresponding to such exceptional sequences of infinite length, we
take the braid group B on infinite strings, i.e. B is a group generated by
o; (i € Z), with relations 00,410, = 0110041 for all i and o0 = 0j0;
for |7 —i] > 2. Then one can show that B acts on the set of exceptional
sequences of infinite length by

(2.2) ol = (-, Ei1, B, R B Eriga -0,
o€ =( Ei1, L, By, B Epg ).
for any exceptional sequence £ = (--- ,E;_1,E;,Eiy1,--+). By virtue of

the equations (2.1) this action is well-defined.

On the other hand, the abelian groups Z and Z* = @©°___Ze; that
is a direct sum of Z also act on the set of exceptional sequences of infinite
length by

(23) {nE: ( 7E.i—1+n7E'i+n,E'i+1+n7...)’

eié’ = ( e ,E'i—hE.i[l]aE.iJrl’ o )

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 41/issl/4
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Now let G be the semi direct product Z x (B x Z*°). Then the above
argument shows that G acts on the set of exceptional sequences of infinite
length.

Definition 2.4. Let £ be an exceptional sequence of infinite length.

1. We say that an exceptional complex E' is generated by £ if there
exists an element ¢ in G such that E appears in the sequence o€&.

2. & is called a generating exceptional sequence if any exceptional module
is generated by &.

3. £ is called a maximal exceptional sequence if there is no excep-
tional complex that can be added into £ as an exceptional sequence,
ie. put &€ = (- ,E;-1,E4E+1,--+), and for any exceptional
complex E and integer n, the sequence of exceptional complexes
(- En1, En, E E 41, E e, -+ ) is not an exceptional sequence.

4. &€ is called an MCM generating exceptional sequence if any indecom-
posable maximal Cohen-Macaulay module is generated by £.

Note that if an MCM generating exceptional sequence exists, then
every indecomposable maximal Cohen-Macaulay module must be excep-
tional.

Example 2.5. Let R = k[z] be a polynomial ring in one variable.
If M is an indecomposable non-free R-module, then M is of the form
(R/2™R)(m) for some n € N and m € Z, and it has a free resolution of
the form

0— R(m—n)" R(m) — M — 0.

Let £ = (--+ ,Ei—1,E;,E;i11,--+) be an exceptional sequence with E; =
R(7) (Vi € Z). Note that £ already contains all indecomposable free mod-
ules. For a non-free indecomposable module M having the a free resolution
of the above form, one can easily check that a;ll_nam_nﬂam_mrg e Om—1E
contains M. As a consequence, £ is a generating exceptional sequence.

If there is an MOCM generating exceptional sequence & =
(-, Ei-1,Ey,Eq11, ), then one can show that the smallest triangu-
lated full subcategory D that contains all complexes in £ contains all mod-
ules (and therefore all complexes). Indeed for any module M, the n-th
syzygy "M is a maximal Cohen-Macaulay module for n > 0. Hence
D = ®"(modR). Tt is also easy to see that {[E';]}icz is a basis of the
Grotherndieck group of D"(modR). Hence to investigate P (mod R), we
need to study exceptional complexes. In the next section, we shall show
that an MCM generating exceptional sequence can be found for a one
dimensional N-graded Gorenstein ring of finite Cohen-Macaulay represen-
tation type.

Produced by The Berkeley Electronic Press, 1999
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3. ONE DIMENSIONAL N-GRADED (GORENSTEIN RINGS OF FINITE
COHEN-MACAULAY REPRESENTATION TYPE

In this section R = &R,, always denotes a one dimensional N-graded
Gorenstein ring of finite Cohen-Macaulay representation type with Ry = k
being an algebraically closed field of characteristic 0. The aim of this
section is to give a complete proof of the following theorem.

Theorem 3.1. If R is a one dimensional N-graded Gorenstein ring
of finite Cohen-Macaulay representation type, then there exists an MCM
generating exceptional sequence.

To prove this theorem, since R is a one dimensional N-graded Goren-
stein ring of finite Cohen-Macaulay representation type, we may assume R
is isomorphic to one of following types of rings.

(4n) R—k‘[fcy]/(y —I) (n>2

~— —

(Dn) k[, ]/(ﬂfy —at) (n23
(3.1) (Ee) R =klz,y)/(z® +y")

(E7) R =klx,y)/(a +:vy3)

(By) R=klz,yl/(z®+v°)

Moreover the Auslander-Reiten quiver of CM R for each type can
be described as they are shown in Figures (1) — (7) below.In fact, the
Auslander-Reiten quivers of ungraded maximal Cohen-Macaulay modules
over R are shown in [6, page 41-43, 75-83]. However, since we are consider-
ing the category of graded modules, we have to discriminate a module M in
CM R from the shifted module M (n) for n # 0, and hence the Auslander-
Reiten quiver of CM R is obtained by expanding the Auslander-Reiten
quiver of ungraded maximal Cohen-Macaulay modules.

Now we exhibit the Auslander-Reiten quiver of CM R in each case.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 41/issl/4
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Figure(1) : the type of (4,) with n =2m + 1.

Here in Figure (1),

O Xom—ir1(2m —2i+1), m+1<i<2m.
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Figure(2) : the type of (4,) with n = 2m.

Here in Figure (2),

— Cok y ol — Cok m
X; = Coker _atmei _y , X+ = Coker(y £ 2™).

2m

http://escholarship.lib.okayama-u.ac.jp/mjou/vol41/issl/4
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Figure(3) : the type of (D,) with n = 2m.

R(—2m +1) R(—2m + 3)
Here in Figure (3),

X1 = Coker(y? + z?™ 1), vV} = Coker(z),
For 2 <1 < 2m,

J
Coker [ ¥ % ) , 1 =27,
a:‘ p—

X; = i
Yy r .
Coker L2m—1—j —y) , 1=25+1,
\
J
Coker 2y 7 , 1=27j,
™M —xy
Y, =

j+1
Coker Qxy_' v , 1 =25+1,
e —zy

For 2m 41 < <4m — 2,
X, = {X2m—2j—1(—2j —1), i=2m+2j+1,
Yom—2i(=2j — 1),  i=2m+2j,
Y, — {Y2m—2j—1(—2j —1), i=2m+2j+1,
Xom—2j(—=2j +1), i=2m+2j,
Xam—1 = X1(=2m +1), Yam-1 = Y1(=2m +1).

Produced by The Berkeley Electronic Press, 1999
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Figure(4) : the type of (D,,) with n =2m + 1.

Here in Figure (4),

X1 = Coker(y? — z%™), Y; = Coker(z),
For 2 <i <2m,

J
Coker vy o ), 1 =27,

2m+1—j
x
X; = N
y o .
Coker L2m— —y> ) 1=2j+1,
y a’ .
Coker L2mA1—j —a:y) . 1=27,
Yi = ,
xy pItl . )
Coker RINCE I b 1 =2j+1,

X4 = Coker(y £ 2™), Y3 = Coker(zy £ ™).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol41/issl/4 10
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Here in Figure (5),
x
X7 = Coker <y3 —yxz> ,
y 0 T
Xy =Coker |z —y2 0
0 = -y
r  y? 0
2 2
_ y© -zt —xy
X3 = Coker 0 0 2
0 0 92
y?
x
X4 = Coker (y2 2
-1),
X6 = Yl( 3),

Produced by The Berkeley Electronic Press, 1999

the type of (Es).

2
Y; = Coker (xg
Y 3

Yy
= Coker | xzy
2
2
2
= Coker %
0
= X3(1),
Y, = Coker
Yo = X1(—1).

91

Yy

22 |,
_y3

0 =xy
—y 0
z P
y2 —1'2
Xa(1),

11
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Figure(6) : the type of (E7).

)

Here in Figure (6),

x? Y T Y
X7 = Coker (:EyQ ) Y1 = Coker w? —a? )
xy? —x? —z?y Y 0 =z
Xy =Coker | zy y*> —2? |, Yo=Coker| -2 zy 0],
22wy xy? 0 —=z y
2 xy oy 0 z y -y O
2 2 2
_ zy* —x* 0 y _ yo —x 0 —y
X3 = Coker 0 0 =z oy | Y3 = Coker 00 $2 2y
0 0 > —z 0 0 ay> —2?
2 x x
X4 = Coker <a:y _52 ) Y, = Coker y2 y
2 -y —xy
=Coker | 2y =z —y?|, Y;= Coker —a:y z? ,
zy? xy  2?
2 g? T
Xg = Coker < , Ys = Coker
Ty —x xy —xz?
X7 = Coker(2? + y?), Y7 = Coker(z).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 41/issl/4
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Figure(7) : the type of (Ejg).

Here in Figure (7),

X7 = Coker (?ji —yx> , Y1 = Coker (; _ZJJEQ> ,
ytoxy® a2? y —y 0
Xy =Coker | =22 y* wxy|, Yo=Coker [0 2 —y],
—xy —a% P z 0 9
y —= 0 Y’
X3 = Coker _ZQ 8 —33{’2 8 )

0 , 2 —y

_ Ty 0
Y3 = Coker 0 —y? —a
v 0y

Produced by The Berkeley Electronic Press, 1999
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yt z? 0 —xzy> 0
-2y 0 —y3 0
X4 = Coker 0 -y —=z 0 v,
—:L‘y2 y3 0 22 0
—y3 0 —y2 Ty —z2
Y — 0
x 0 0
Y, = Coker | —y> 0 —2?
0 —y> 0
0 0 y?
vt oy 2?0 0 =xy
—z2 P xy —x 0 0
2 2 .3
_ —xy° —z¢ y 0 —zy O
X5 = Coker 0 0 0 y -az ,
0 0 0 0 ¢y -z
0 0 0 z 0 ¢
y —x 0 0
0 y> -2 ay
_ z 0 g2 0
Y5 = Coker 0 0 0 i
0 0 0 —z?
0 0 0 —ay?
yt o omy? a? y
Xg = Coker | —2z2 ¢ ay|, Ys = Coker | O
—ay? —a? P 2
xi y2 0 , Ty
_ y> —x —y= 0
X7 = Coker 0 0 . 2 |
0 O y3 —a?
z P
3 2
_ y -
Y7 = Coker 0 0
0 0

ZL‘2 2
Xg = Coker <y3 3—J.CU 5

Yg = Coker (;:') y 2).

—T
y?
0

0
72

Y
0
Y2

Y

In the rest of this section, R is one of the rings given in (3.1). First,

to prove theorem 3.1 , we need the following proposition.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 41/issl/4

14



Araya: Exceptional Sequences over Graded Cohen-Macaulay Rings

EXCEPTIONAL SEQUENCES 95

Proposition 3.2. Every indecomposable maximal Cohen-Macaulay
module over R is exceptional.

To show this proposition, the following lemma is necessary.

Lemma 3.3. Let I' be the Auslander-Reiten quiver of CM R.Then,
for indecomposable maximal Cohen-Macaulay modules X and Y, the fol-
lowing hold.

1. If there is a non-trivial morphism from X to Y that is not an iso-
morphism, then there is a sequence of irreducible morphisms whose
composite morphism from X to Y is non-trivial. In particular, if
there is no path from [X] to [Y] in I', then we have Hom(X,Y) = 0.

2. There is no cyclic path in T’

3. If £ > 0, there is no path from [X] to [tX(—=0)] in T. If £ > 0, there
is no path from [X] to [X(—¢)] in T.

4. Let T be the Auslander-Reiten translation and let Q™ be the n-th syzygy
functor. If X is non-free, then we have isomorphisms,

X 20X (a), 72X =2 X(-b),
where a and b are non-negative integers that are given as in the fol-
lowing table 1 in each case.

TABLE 1

| type | Aomir | Aom | Dom | Domy1 | Es | Er [ Ex |
a 2m—1|m—1|2m—1 m 5 4|7
b 4 2 2 1 2 1 1

5. If there is no path from [X] to [7Y], then Ext!(Y, X) = 0.

Proof. Just observe the Auslander-Reiten quivers (Figures (1)-(7))
for the proof (2) and (3).

(1) Suppose that there is an f(# 0) € Hom(X,Y) that is not an
isomorphism, and that there is no finite sequence of irreducible morphisms
from X to Y whose composition is non-trivial. We want to have a contra-
diction from these assumptions.

Considering the right almost split map ¢;Z; — Y, we can lift f to
a morphism g : X — §;Z;. Since f # 0, we have a non-trivial morphism
X — Z; — Y for some ¢, where Z; — Y is an irreducible morphism
and X — Z; is not an isomorphism by the assumption. Continuing this
procedure, for any integer n, we have a sequence of irreducible morphisms

Produced by The Berkeley Electronic Press, 1999
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g gn—1 g3 92 g1
Wy, =5 Wy = - =S Wy — W) — Y,

and a non-isomorphism f, : X — W, such that the composition ¢g; -
g2+ Gn - fn # 0. Since there are only a finite number of isomorphism
classes of indecomposable maximal Cohen-Macaulay modules up to degree
shifting, there is a [Z] € T such that, among the set {WW,,|n € N}, there are
infinitely many modules of the form Z(¢)(¢ € Z). Thus we have a sequence
of morphisms

Z(C) M5 Z(l0y) " B 2(0) 2 Z(0) Iy,
(each h; is a composition of irreducible morphisms) and a morphism g, :
X — Z(£y,) such that the composition hy - he---hy - g, # 0. By (3), we
must have /1 >0y > - >0, > -,

Suppose inf{f,,} = —oo. In this case we find a strictly decreasing
subsequence /,,, and Hom(X, Z(¢,,)) # 0. But this contradicts the fact
that @,cz Hom(X, Z(n)) is a finitely generated graded R-module.

Therefore inf{¢,} > —oo, hence ¢, = {41 = lp4o--- for large n.
In this case, since Hom(Z (€,,+1), Z,) = End(Z(¢,,)) is a finite dimensional
k-algebra that is local, if we take an enough large integer v, then any
composition of v non-isomorphisms in End(Z(¢,)) is trivial. Thus hy, -
Pg,yy - he,., =0, which is also a contradiction.

(4) Let wr be the canonical module of R. Then, since R is a Goren-
stein ring, we have wr = R(a) with an integer a which is called the a-
invariant of R. The a-invariants for R are listed in Table 1 . On the other
hand, since 7 is defined as 7X = Hom(Q!(tr X),wg) (c.f.[6]), it can be
seen that 7X = (2'X)(a) as desired. For the second isomorphism in (4),
observe Figure (1)-(7).

(5) Let 0 = X — Z — Y — 0 be an exact sequence. We have only
to show that this is a split exact sequence. Let 0 - 7Y - F - Y — 0
be the Auslander-Reiten sequence ending in Y. From the property of the
Auslander-Reiten sequences we have the following commutative diagram.

O — X — Z —'Y — 0
Il gl |

0O — 7v — E S Y — 0

n+1

Suppose f = 0 in this diagram. Then the morphism ¢ will induce a mor-
phism Y — E which contradicts the fact that 7 is not a split epimorphism.
Therefore f # 0, hence Hom(X,7Y) # 0. It thus follows from (1) that
there must be a path from [X] to [7Y]. O

proof of 3.2. Let X be an indecomposable maximal Cohen-Macaulay
module over R. We have to show RHom (X, X) = k, that is Hom(X, X) = k

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 41/issl/4
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and Ext™(X, X) = 0 for n > 1. First, consider a non-trivial homomorphism
f(#0) € End(X). If f is a non-isomorphism, then by Lemma 3.3 (1) there
is a path from [X] to itself, that contradicts Lemma 3.3 (2). Therefore
every non-zero element of End(X) is an isomorphism, and hence End(X)
is a division ring that is finite over k. Since k is an algebraically closed
field, we have End(X) = k. Second, we prove that Ext™(X,X) = 0 for
n > 1. Note from Lemma 3.3 (4),

TX(=252b— (n—1)a) if nis odd,

(" 1X) = X (—(n—1)a) = {X(—nb —(n—1)a) if n is even
n .

In any case, 7(Q"1X) is isomorphic to either 7X (—/) for some £ > 0
or X (—/) for some ¢ > 0. Since there is no path from [X] to such a module
in T, it follows from Lemma 3.3 (5) that Ext"(X, X) = Ext}(Q" "X, X) =
0.

0

We prepare a lemma to show theorem 3.1.

Lemma 3.4. Under the assumption of theorem 3.1, suppose 0 —
L — @ M — N — 0 is an Auslander-Reiten sequence in CM R where

each M; is an indecomposable maximal Cohen-Macaulay module. Then we
have £xr,, Lar,. -+ Loy, N[—1] =2 L and Ry, Rar,,_, - R, L[1] = N.

Proof. We only prove that £us,, Lar,, , -+ La, N[—1] is isomorphic
to L. (For R, Rar,, o - - R L[1], the proof is completely similar.) We
claim that we can take a triangle @élez@i —N— Ly Ly - Ly N —
@ilefB”[l] for each I. We prove it by induction on [. Since there
is no path from [M;] to [M;(—¢)] and [tM;(—¢)] (i # j,£ > 0) in the
Auslander-Reiten quiver I', we have RHom(M;, M;) = 0 for i # j by
Lemma 3.3.Similarly, we have RHom(M;, N) = Hom(M;, N). We note
that dimg Hom(M;, N) = r; since apply RHom(M;,—) to 0 — L —
@;lle‘@n — N — 0. If [ = 1, the above claim follows from the definition
of the left mutation. So we may assume [ > 2 and we can take the triangle
SIIMP — N — Sy Ly, Ly N — @LZ] M7 [1]. Applying the
functor £y, to this triangle, we get the new triangle;

(3.2)
S, ® 21 M — Lan N — Las Car, Laay - S0 N — Loy &2 M (1),

)

Since RHOIH(M“MJ) = 0 for 2 7& j7 one sees that £Ml @i;% MfBTi o~
@i;%Mi@”. On the other hand, it follows from the definition of £, N
that we can take the following triangle;
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(3.3) M — N — £y, N — M "'[1].
Applying the octahedral axiom for the triangles (3.2) and (3.3), we have

the diagram:
Ml@T;< >< l 1MEB7'1
\ VEMlsMZ v Bt N

Thus we obtain two triangles;

MP" =V — @2 ] MP — M),
V—-N-— /QMI):MZ_I L N — V[1].

And one sees that V' is isomorphic to @!_; M"" because RHom(M;, M;) =
0 for i # j and hence the first triangle splits. Since 0 — L — @glMi@” —
N — 0 is an Auslander-Reiten sequence, it follows from the construction
of the triangle @ M — N — Ly, L, 1 Ly N — @ MP" (1]
that L must be isomorphic to £, Lar,,, ;- L, N[—1].

U
TABLE 2
[type | £ |

A2m+1 ( < ,R(—2m — 3),R(—4),R(—2m - 1)7R(—2),X2m,X2m,17

. ,XQ,Xl,R(—Qm + 1),R,R(—2m + 3),R(2), . )
Aom, (- ,R(—-2),R(-1), X+, X Xn—1,Xm—2, -, X1,R,R(1),-- )
Dzm ( . ,R(—Qm - 1),R(—2),R(—2m + 1)7X4m—1aX4m—2,

X2 Xl,R R(—2m—|—3), (2) )

Doy || (-, R(—2),R(—1), X+, X, Xom,Xom—1,,X1,R,R(1),R(2), )
By (- ,R(-5),R(—2),R(-3), XG,X5,X4,X3,X2 X1,R,R(—1),R(2), )
Ey (- ,R(-2),R(-1),X7,X6,X5,X4,X35,X2,X1,R,R(1),R(2), - -)
by (- ,R(—2),R(—1),Xs,X7,X6,X5,X4,X3,X2,X1,R,R(1),R(2), - )
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proof of 3.1. We take the sequence & = (- ,E_1, E;, E)i+1,--+)
in each case as in the above table 2 in which we consider the module R
is set in the 0-th position in &, i.e. Ey = R. We shall prove that & is
actually an MCM generating exceptional sequence in each case. It follows
from Lemma 3.3 and Proposition 3.2, one can see that the sequence & is
an exceptional sequence. So we prove that & is MCM generating. The
proof is actually a matter of computation. First of all we put 0,0’ € G as
follows:

The type of (A2m+1); oc=2- (J,QmU,Qerl N '0,2)(600',10',2)(6,10720',3) cee
(672m+1072m072m71)(0—72m0'72m+1 e 0'72)

The type of (Aom); 0 = 1 - (0—mo10—m - 0-2)(ego-10_2)(e_10_20_3) -
(6—m+30—m+20—m+1)(e—m+20-—m+10'—7n0'—m—1)(e—m—i-lo'—mo'—m,—l)(e—m+la—7rL)

The type of (ng), O'/ =1- (Jf4m+1074m+2 N '073)(600',10',2)(600,10',20',3)
(e—20_30_4)(e—30_40_5) - (e—am+30—4m+20—am+1)(€—am+20—4m+1)
o = 1 - (ego_1)(e0o0—10-2)(€—10_20_3) " (€—4m+50—4m+40—am+3)(€—am+4

!
O _4m+30 —4m+20 —4m+1 ) (e—4m+30-—47n+20'—4’m+1 ) (U—4m+3a—4m+4 01 )U

The type of (Dam+1); 0" =1-(0—2m—20_2m—1---0-3)(e00—_10_2)(€00_10_20_3)
(672073074)(673074075) T (672m+2072m+10—72m)(672m+1072m0—72m71072m72)
(672m072m71072m72)(672m0—72m71)

o = (e—10-2)(e—10_20_3)(e—20-30_4) - (e—2m+20—2m+10—2m)(€—2m+10—2m
U—277l—10—277l—2)(6—277LU—27’)’L—1U—277L—2)(6—277LU—27’)’L—1)0-/

The type of (E’(;)7 o =1- (0',60',50',4073072)(600',10',2)(671072073)(672073
0740',5)(6740',50',6)(675076)(6,30',4)

o = 1- (ego-1)(e0o_10-2)(e_10_20_30_4)(e_30_40_5)(e_40_50_¢)(e—20_3)
(0_50_40_30_90_1)0’

The type of (Er); 0/ =1 (0_70_60_50_40_30_3)(epo_10_2)(e_10_20_3)(e_2
0,30',40',5)(6740',5076)(6750',60',7)(6,60,7)(673074)

g = (6,1072)(6,10,2073)(6,20730740,5)(6740',50,6)(6,50',60',7)(6760',7)
(e_30_4)0’

The type of (Fg); 0/ = 1-(0_80_70_¢0_50_40_30_2)(epo_10_2)(e_10_20_3)
(6_20'_30_4)(6_30'_40'_5)(6_40_50_60'_7)(6_60'_70_8)(6_70'_8)(6_50'_6)
g = (6_10'_2)(6_10_20_3)(6_20'_30'_4)(6_30_40'_5)(6_40'_50_60_7)(6_60'_7

078)(6770—78)(6750—76)0—/

If R is either a type of (A2m+1),(Dam) or (Eg), then any non-free
indecomposable maximal Cohen-Macaulay module is of the form X, (2t)

Produced by The Berkeley Electronic Press, 1999

19



Mathematical Journal of Okayama University, Vol. 41[1999], Iss. 1, Art. 4

100 TOKUJI ARAYA

or Yy(2t) in Figures (1),(3) or (5). Here putting p = o (resp. p/ =
olo’), we can show by computation using Lemma 3.4 that p&y (resp. p'&p)
contains X(2t) (resp. Y;(2t)) and all free modules. If R is either a type of
(A2m),(Dam+1) (E7) or (Eg), then any non-free indecomposable maximal
Cohen-Macaulay module is of the form X (¢) or Y;(¢) in Figures (2),(4),(6)
or (7). In this case, put p = ot (resp. p' = olo’) and p& (resp. p'&y)
contains Xg(t) (resp. Ys(t)) and all free modules by Lemma 3.4. Hence
in any case, we have shown that any indecomposable maximal Cohen-
Macaulay module is generated by &.
O
We remark that an indecomposable module is not always exceptional
even if there exists an MCM generating exceptional sequence.

Example 3.5. Let R = k[z,y]/(y* —2?%) be an N-graded Gorenstein
ring of finite Cohen-Macaulay representation type (As) and we denote by m
the unique maximal graded ideal of R. We put M = Coker(m(—5) —% m).
Then one can easily check that End(M) = Ext!(M, M) = k. It says that
M is indecomposable but not exceptional. (Of cause, M is not a maximal

Cohen-Macaulay module.)

4. MAXIMALITY OF MCM GENERATING EXCEPTIONAL SEQUENCE

In this section R is general, and not necessarily of finite Cohen-
Macaulay representation type. As a final result of this paper, we shall
prove that the maximality of MCM generating exceptional sequences.

Theorem 4.1. Any MCM generating exceptional sequence is maxi-
mal.

Proof. Let & = (--+ ,E'j_1,E;,Ei41,--+) be an MCM generating
exceptional sequenceand assume that there exist an exceptional complex
E" and integer ¢ such that (--- ,Ey_1,E ¢, E,Ep11,Epi0,---) is an ex-
ceptional sequence. Since £ is MCM generating, there exist integers
11,42, -+ ,1; such that E' belongs to the smallest triangulated full sub-
category A that contains all E;, (j = 1,2,---,%). On the other hand, it
follows that (E,,E4,, - By, E,E; ,,---,E},) is also an exceptional
sequence for some s, and therefore & = (E';;,E4,, -+ ,E,,F) is an ex-
ceptional sequence where F' = Rg-, Rg,, | ---Re,  E. Since F € A,
there are integers 71,72, -+ ,7¢ € Z such that [F'] = Z;:1 r;[E;] in the
Grotherndieck group Ko(A) of A. In such a situation, we claim that
rj = 0 for any j = 1,2,--- ,¢t. We prove this claim by induction on j,
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and we assume r,, = 0 for m < j. We compute the Euler characteris-
tic x([F'], [E,]) = >_(—=1)" dimg H"(RHom(F",E,)) =0 (j = 1,2,--- 1),
since £’ is an exceptional sequence.

On the other hand, since [F] = S _ 7j[E;,.], and since
X([E],[Ey]) = 1 and x([E,], [E;]) = 0 for m > j because of ex-
ceptionality of &', we have

m=1
j—1
= ’I“mX([E zm]7[E lg])-}_TjX([E'ij]’[E.ij])
m=1
+ 3 (EsLEL)
m=j+1

Therefore we show r; =0 (j = 1,2.--- ,t),1i.e. [F'] =0in Ko(A). It follows
that x([F'],[F']) = 0. But it contradicts the fact that RHom(F",F") =
k. O

We can also show the following corollary, whose proof is the same as above.

Corollary 4.2. Any generating exceptional sequence is mazximal.
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