Mathematical Journal of Okayama University

Volume 27, Issue 1

1985 January 1985

Article 2

On Certain periodic rings

Isao Mogami*

*Okayama University

Copyright ©1985 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 27 (1985), 5-6

ON CERTAIN PERIODIC RINGS

Dedicated to Professor Katsumi Numakura on his 60th birthday

I SAO MOGAMI

Let R be a ring (not necessarily with 1), N the set of nilpotent elements in R, and N* the subset of N consisting of all a with $a^2 = 0$. Let D be the set of right and left zero-divisors in R. Given a positive integer n > 1, we set $E_n = \{x \in R \mid x^n = x\}$; in particular, $E = E_2$. As is well known, if R is periodic then every element x in R can be written in the form x = e+a, where $a \in N$ and $e \in E_n$ for some n.

In this paper, we prove the following theorem, which includes all the results in [1].

Theorem. Let R be a periodic ring with N^* commutative.

(1) Then N coincides with the Jacobson radical of R and $\overline{R} = R/N$ is a subdirect sum of fields.

(2) Let n > 1 be a fixed positive integer. If every element d in D can be written in the form d = e + a, where $a \in N$ and $e \in E_n$, then \overline{R} is either a field or \overline{E}_n .

Proof. (1) Let J be the Jacobson radical of the periodic ring R, which is obviously a nil ideal. First, we claim that every idempotent \bar{e} of $\overline{R} = R/J$ is central. Since J is a nil ideal, we may assume from the beginning that e is an idempotent of R. By hypothesis, $eR(1-e) \cdot (1-e)Re = (1-e)Re \cdot eR(1-e)$, and so eR(1-e)Re = 0 (where 1 is used formally). Hence, by the semiprimeness of \overline{R} , we get $\overline{eR}(1-\overline{e}) = 0$, and therefore $\bar{ex} = \bar{ex}\bar{e}$ for all $x \in R$. Furthermore, $\overline{eR}(1-\overline{e})\overline{R} = 0$ yields $(1-\overline{e})\overline{R}\bar{e} = 0$, and so $\overline{x}\bar{e} = \overline{ex}\bar{e}$ for all $x \in R$. Thus we have seen that \bar{e} is central. Now, it is easy to see that every nilpotent element of \overline{R} generates a nil right ideal. Hence N coincides with J. As is easily seen, for any element $x \in R$ there exists a non-negative integer k such that $x - x^{k+2} \in N$. Hence \overline{R} is a subdirect sum of fields, by Jacobson's commutativity theorem.

(2) Let x be an arbitrary element of R. If $x \in D$ then $x = x^{k+2}$ with some non-negative integer k. Then $e = x^{k+1}$ is a right or left unity of R, and therefore \bar{e} is the unity of the commutative ring \overline{R} and \bar{x} is a unit (see (1)). On the other hand, if $x \in D$ then $\bar{x}^n = \bar{x}$, by hypothesis.

1

I. MOGAMI

In case R = D, it is clear that $\overline{R} = \overline{E}_n$. In what follows, we consider the case that $R \neq D$. Then, by the above claim, \overline{R} has the unity \overline{e} . It suffices therefore to show that if \overline{R} contains a non-unit $\overline{x} \neq 0$ then $\overline{R} = \overline{E}_n$. Actually, by the above claim, $\overline{f} = \overline{x}^{n-1}$ is an idempotent with $\overline{x}\overline{f} = \overline{x}$ and $\overline{R} = \overline{fR} \oplus (\overline{e} - \overline{f})\overline{R}$, so that $\overline{R} = \overline{E}_n$.

Combining the proof of Theorem (2) with [3, Proposition 2], we can easily see the following.

Corollary. Let R be a periodic ring with N^* commutative. If D is included in the subring $\langle E \cup N \rangle$ generated by $E \cup N$, then \overline{R} is either a field or a subdirect sum of finite prime fields.

Remark. Following [2], a ring R is called an I-ring (resp. I'-ring) if every element of R can be written as a product of elements in E (resp. $E \cup N$). Now, let R be a (not necessarily periodic) I'-ring with N^* commutative. Then, the argument employed in the proof of Theorem (1) enables us to see that every idempotent in the factor ring of R modulo its prime radical P is central. If $E \neq 0$, then R/P is an I-ring by [2, Lemma 1]. Hence R/P is a Boolean ring, and N coincides with P. Also, if N is multiplicatively closed (especially, if N is commutative) then N forms an ideal of R.

Acknowledgement. The author is grateful to Prof. H. Tominaga and Prof. Y. Hirano for their helpful suggestions and valuable comments.

References

- H. ABU-KHUZAM and A. YAQUB: Structure of certain periodic rings, Canad. Math. Bull. 28 (1985), 120-123.
- [2] Y. HIRANO and H. KOMATSU: A characterization of Boolean rings (III), Math. J. Okayama Univ. 27 (1985), 33-34.
- [3] Y. HIRANO and H. TOMINAGA: Some remarks on the set of idempotents and the set of elements square zero, Math. J. Okayama Univ. 25 (1983), 133-138.

OKAYAMA UNIVERSITY AND TSUYAMA COLLEGE OF TECHNOLOGY

(Received June 1, 1985)

6