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Niederreiter and Lo: Uniform distribution of sequences of algebraic integers

UNIFORM DISTRIBUTION OF SEQUENCES
OF ALGEBRAIC INTEGERS

H. NIEDERREITER*’ and S1u KWONG LO

1. Introduction and summary. The definition of the uniform
distribution of sequences of algebraic integers in a fixed algebraic
number field K was first introduced by Kuipers, Niederreiter, and
Shiue [4]. The concept contains as special cases the notion of uniform
distribution of sequences of Gaussian integers studied in [4] and the
notion of uniform distribution of sequences of rational integers intro-
duced by Niven [10]. In the present paper, we shall establish some
important general facts concerning uniformly distributed sequences of
algebraic integers in K. The measure-theoretic and density-theoretic
aspects of this notion of uniform distribution were studied in [9].

In Section 2, we prove various forms of the Weyl criterion for uni-
form distribution of sequences of algebraic integers in K, based either
on an ideal-theoretic or on a module-theoretic viewpoint. In Section 3,
we discuss the connection between the uniform distribution of sequences
of algebraic integers in K and of sequences of integers in the various
localizations of K. A certain subring of the adéle ring of K is con-
structed as a suitable compactification of the additive group of algebraic
integers in K and is used to establish a number of important properties
of uniformly distributed sequences of algebraic integers in K. In
Section 4, interesting results about the relation between the uniform
distribution of sequences of algebraic integers and of sequences of
rational integers are obtained.

2. Weyl criterion. Let K be a given algebraic number field of
degree k over the field Q of rationals, and let O be the ring of
algebraic integers in K. Let I be a nontrivial integral ideal in O
with counting norm A47I. If ¥=(a,), n=1, 2, -+, is a sequence of
elements in O, then we use A(N, a+ I, ¥) to denote the number of 7,
1<n<N, such that a.=a (mod I). The following two definitions can
be found in [4].

Definition 2.1. Let IC O be a nontrivial integral ideal. Then the
sequence .9 is uniformly distributed modulo I (u.d. mod I) if
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. AN, a+1, ) _ 1
lim N T

for every coset o+ 1 of I.

Definition 2.2. The sequence & is uniformly distributed in O
(u.d. in O0) if % is u.d. mod I for every nontrivial integral ideal
IcoO.

Remark. Uniformly distributed sequences in O have been con-
structed in [9].

Let W= {w,, ***, @} be an integral basis for K over Q. Then
k

every a€0 can be uniquely expressed in the form a= 2 %0, where
{=1

each x; isin Z, the ring of rational integers. If one identifies « with
the lattice point x=(x,, ---, #:) in Z*, the set of all k-dimensional lat-
tice points, then O can be identified with Z* It turns out that, at
least as far as the additive structure is concerned, the discussion of
uniform distribution of sequences in O is equivalent to the discussion
of uniform distribution of sequences in Z* (see [9, Section 2]). For the
latter theory, see [6] and [7]. Because of this equivalence, the defini-
tion of uniform distribution of sequences in O can be viewed as a special
case of a definition of Rubel [11].

We shall write exp (g)=¢""“ for any real number a. The general
criterion for uniform distribution of sequences in Z* is known to be the
Weyl criterion [7, Theorem 2. 2] which, when translated into a criterion
for uniform distribution in O, reads as follows.

Theorem 2.3. (Weyl criterion). Let W= {w,, ***, w:} be an integral
basis for K over Q. Then the sequence ¥ =(a,), n=1, 2, ---, with
=X+ + X, for n=1, where xyEZ for n=1 and j=1, -, k,
tsu.d. tn O if and only if

.
lim 1 3 exp (@8t +@xw) =0
N-eoo N n=1

for all k-tuples (a,, *+, a.) of rationals, not all a, being rational in-

tegers.

1t is desirable to have criteria for the uniform distribution modulo
a single integral ideal I. The following theorem ([2], see also [3,
p. 227]) establishes a foundation for the subsequent discussion in this
section.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/issl/2
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Theorem 2.4. (Eckmann). Let H be a compact abelian group and

H its character group. A sequence (h,), n=1, 2, -, is w.d. in H if
and only if

.1 “—'\X

My &N =0

for each nontrivial X<=H.

For each nontrivial integral ideal I, we will view O/ as a compact
additive group in the discrete topology. We shall be searching for explicit
forms of the characters of O/I,

Let J be a fractional ideal in K. Then J* is defined by

JI*={«€K: Trxola]) Z},

where Tryj, : K——Q is the trace function from K to Q. J* is called
the complementary set of /. We note that J*=0*]J"', (J*)' is called
the different of J, and (O*)! is the different of the field K (see [12,
p. 155]).

& will denote a prime ideal in O, P its corresponding prime
divisor, and v, will te the normalized exponential valuation telonging
to P. As a matter of convenience, we shall often define a character
of O/I as a mapping on O. Of course, we have to verify that the
mapping on O depends on the residue classes mod 7 only.

Theorem 2.5. Let I1CO be a nontrivial integral ideal. Then the
characters of O]I are given by

Xgla)=exp (Tryolad) for a0,
where 3 runs through a complete system of representatives of I*[0O*.

Proof. 1t is evident that X, is a homomorphism from O to the
circle group. Let a be in I. Since S=I*, we have Trg(a)=EZ,
which implies that XJ{a)=1, i.e., X; is trivial on I. Thus, X, can be
viewed as a character of O/I.

We claim that if 7, #.€I* with %, —7.#0* then X,;5X,. Indeed,
there is an «=0 such that Trx (3, —3)a)EZ. So, Xﬁl(a)?éxﬁz(a)_

Since distinct representatives of I*/O* give distinct characters
and the group of characters of O/I is isomorphic to O/ I, the proof will
be complete once we show that the cardinality of I*/O* is /7. Let
{6,, *=*, o.4-;} be a complete system of representatives of O/I. Let
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I=‘ﬁ] P and 0*= n P
Then
*/0*=11 Fu 11 P,

i=1
By the Strong Approximation Theorem [12, p.123], there is a v€K
such that vy (i)=a;—t; for i=1, -, m, and ve(r)=0 for P#P,, *+, Pn.
Now one checks in a straightforward way that {74,, -+, 764} forms a
complete system of representatives for I*/0O* and so we are done.

Corollary 2.6. The sequence ¥=(a,), n=1, 2, «+, in O is u.d.
mod I if and only if

lim — 2 exp (Trz(ax?)=0

N—soo

for all 3€I* with 3&0*.

If W={w, ', v} is an integral basis for K over Q, then every
nontrivial integral ideal I possesses a canonical basis {v,, -, i} of
the form

Vi =Ry, o0 Ry,
Vy=Rypws -+ Ryptv

Y= hipeor

such that ili:Il hy=-4"T and I is a Z-module with basis {v,, :--, v.} (see
[12, p.163]).

If a=(a, -, a) and b=(b,, -+, b;) are two vectors of the Euclidean
space R* then a- b=éa‘bi denotes their standard inner product.

i=1

In the following, we give an alternative formula for the characters of
o/1I.

Theorem 27 Suppose I is an integral ideal with canonical basis
{45 o+ Vi), vi—E_, hyw; for i=1, -+, k, and m is a positive rational in-
teger such that mO\— I. Then the characters of O[I are given by

X(")(a) =exp ((.71 v, ﬁ) o (%, 0 x,,)),

where aa=1x,0,++ %0, =0 and the ktuple j=(,, =~ jx) of rational
integers satisfies the following conditions :

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/issl/2
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(1) (F,, >, jx) is a solution of the system

JibiF g byt e+ 7uhy =0 (mod m)
Joltes+ oo+ 71k =0 (mod m)

jkhkkEO (mOd m)
(2) 0<j<<m for i=1, -, k.

Proof. From character theory, we know that the characters of
0/mO are given by

XNa)= exp( ) (2, --,x,,))

where j=(j,, -, jx) with 0<j.<<m for =1, ---, k, and that the charac-
ters of O/I are those XY which are trivial on I/mO.

It is evident that a character of ' O/mO is trivial on I/mO if and
only if it is trivial on v(+mO for 1<<¢<<k. Thus, in order to find all
characters of O/I, one needs to find all X such that XY)(v)=1 for
1< i<k simultaneously. Equivalently, one needs to find all k-tuples
J=0Gy - 7o), 0<j.<m for i=1, -+, k, such that

Jabyy +j2h12+ '“+jkh]kEO (mod m)
jzhzz+ +jkhzlcEO (mod m)

71 =0 (mod m)

Remark. It is suggested to use .#7I for m in the preceding theo-
rem, in view of the fact that the coset identity (A#I)(1+ I)=1I implies
~AIel.

In certain special cases, other types of character formulas can be
given.

Definition 2.8. Let K be an algebraic number field with integral
basis {®,, *-, w:}. Then for every element a=gx,0,+ - + 2w, in K,
we define the projection map L, =1, -, k, by L.ax)=x.

Theorem 2.9. If K=Q(a) with integral basis {1, «, -, "'} and
040 is an algebraic integer in K, then the characters of the additive
group Of00 are given by

X4(8)=exp (Lu(%4/06)),

where 3 and & are algebraic integers in K.

Produced by The Berkeley Electronic Press, 1975
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Proof. It is obvious that X, is a group homomorphism from O to
the circle group. We shall show that X,(¢) depends only on the residue
class of 4 mod 0. If §,=4, (mod 60), then #(6,—4,)/0=2x+ 2.+ -
+ 5! with x, €2, i=1, ---, k. So, L,(#(,—4,)/0)=x. Hence,

xﬂ(ax)
Xs(

We claim that if 3,783, (mod 00), then X, #X,. Indeed, (3,—3.)/0
=a,+a,a+ - +aa*" and at least one of the ¢,=Q\Z. Let m be the
largest index such that ¢,=Q\Z. Then ¢,EZ for m<j<k. Consider

=exp (x)=1.

— B _ - _ e
(*) ¢810I 2wk m=alak m+azak ’"“+--~+ama" ’+am+,a"+---+aka2" m-t

Since @p.a*+ -+ a ™" is an algebraic integer, the total coefficient
b of ! in (*) isin Q\Z, i.e.,

b=L D7 g eq\z.

Thus, X,g;(a""")aéxgz(a"""). Therefore, we have found all characters,
since there are as many as ./ (#0) which are all distinct.

Remark. Theorem 2.9 provides a convenient method to find the
characters of O/00. This theorem applies to many algebraic number
fields, for instance, the quadratic fields. For necessary and sufficient
conditions for Q(e) to possess the integral basis {1, «a, *-*, &'}, the
reader is referred to [12, p. 164].

If O/I is cyclic, then O/I is generated by 1+ (see Theorem
4.2). Let ¢ : 0——>0/I be the natural homomorphism and »:0/II—>
{0, ---, A#7I—1} such that y(r+I)=r for =0, -, #I—1. The chara-
cters of O/ are given by

X,(a)=exp (J—(‘!'—("P—)(Q) for a€0,
AT
where j=0, .-, #T—1. The reader is referred to Theorem 4. 4 for the
characterization of O/I to be cyclic.

Based on the character formula for finite fields [5, p.90], the fol-
lowing assertion is evident. Let & be a prime ideal of O with /&
=" and let ¢ be the natural homomorphism from O to 0/<°. We
write ¢(a)=a. Then the characters of 0/’ are given by

Xz(B)=exp (%IEI (c_rﬁ)"l) for f=0/Z,

=D

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/issl/2
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where a€0/Z.
We shall give a simple application of the results established so far.
The following theorem was shown in [13].

Theorem 2.10. (Zame). Let G be a locally compact abelian group
with countable base. Also, let =&, 7 be countable collections of
closed subgroups of G such that :

(i) finite intersections of elements of U .7 are of compact index;

(ii) for each S5 and TE.S, we have SZT;

(iii) for each TE. .7, there exists a character X of G such that
Xr is trivial on T but is nontrivial on each SE.5”.

Then there is a sequence (g,), n=1,2, -, in G such that (g,) is
u.d. mod S for all S€.%, but not u.d. mod T for T 7.

Theorem 2.11. Let {I,} and ({J.} be countable collections of
nontrivial ideals in O such that I,.Z ], for m,n=1,2,--- and J} is

principal for n=1,2, ---. Then there exists a sequence in O which is
w.d. mod I, for m=1,2, -, but which, for n=1,2, -, is not u.d.
mod J,.

Proof. Weput &={I,}, m=1,2, -, and I ={J.}, n=12, -,
in Theorem 2. 10. It suffices to check condition (iii) of that theorem.
Take a fixed J,. Since Ji is principal, we have Ji=7rO for some
yEJ*. Then the character X (a)=exp (Trg.o{a¥)), aE0, is trivial on
J.. Suppose X, were trivial on some I.. It follows that r=1I;. Thus,
J*=7OCTI%, which implies I, J. a contradiction.

Corollary 212, If K=Q(a) has the integral basis {1, a, +, &%}
and {I.}, {0.0)} are countable collections of nontrivial tntegral ideals

with I, 0,0 for m,n=1,2, -, then there is a sequence tn O thal is
u.d. mod I, for m=1,2, -, but which, for n=1,2, +-, is not u.d.
mod 6,0.

Proof. Let f be the minimal polynomial of @ over Q. Then
0*=(f"(a))'O (see [12, p.164]). Thus, (6,0)*=(0.f'(a))”'O, which is
principal for =1, 2, ---. The rest follows from Theorem 2. 11.

Theorem 2.13. There exists a sequence in O that is u.d. modulo
all powers of all prime ideals, but not u.d. in O.

Proof. In Theorem 2.11, we take {[,} to be an enumeration of
hd -r . .
all powers of all prime ideals. Let 0*=‘1'I’.?,~ ! with >0 for 1=<i<s

Produced by The Berkeley Electronic Press, 1975
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(s=0 if k=1). Let k& be the class number of K, and let &\5«&; be
two prime ideals that are both distinct from &, .-, &. Put
J=@i@tn Fen
i=1

We note that 7,4 J for m=1, 2, -+ since J is not a power of a prime
ideal, and that J*=J'0*=(£7'&€’;'0*)*, which is principal as the
h-th power of a fractional ideal. Let {J} play the role of the second
collection of ideals in Theorem 2. 11, and the proof is complete.

3. Global and local uniform distribution, We shall use K, to
denote the local completion of an algebraic number field K at the non-
trivial discrete prime divisor P. Let O, be the ring of integers in K,
and r=0 such that vp(r)=1. The fundamental neighborhoods of zero
in K, are given by ‘O, with {€Z. They are simultaneously closed
and open. K, is a second countable locally compact group with respect
to addition and O, is a compact subgroup of K,. Every d=K, has a
unique expansion Bzi at’, rEZ, with a.540 for 4540 and a.=.F
for {=r, where “# i; ra fixed complete system of representatives of
0/ (see [12, p. 35]).

Since O, is a compact group, the definition of uniform distribution
is conventionally given with respect to the Haar measure (see (3,
Chapter 4]). However, we find that the following equivalent definition
is more convenient. The proof of the equivalence is essentially the same
as the proof of Lemma 3. 6.

Definition 3.1. Let A=(4,), n=1,2, -, be a sequence of elements
of Op. Then A is u.d. in O, if A is u.d. mod O, (in the obvious
sense) for all positive integers ¢.

Theorem 3.2, Let W =(a,), n=1,2, -+, be a sequence of algebraic
integers in O. Then for every t=1, % is u.d. mod &' if and only if
& is u.d. mod ©'O,.

Proof. Tor «, €0, we have a=3 (mod ='0;) if and only if ve(x
—3)=>¢t if and only if a=f (mod “Z*). Hence, A(N, 3+.77', &)=A(N,
J3+70p ). So,

9. P I
lim AW, 8+, ) _ o AN, 3+710,, )
A—>oce N N
whenever one of the two limits exists; thus, % is u.d. mod &”* if and
only if . isu.d. mod 7*O,.

AN—oo

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/issl/2
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The following two corollaries are immediate consequences.

Corollary 3.3. If =(a.), n=1,2, -, is a sequence of algebraic
integers in O, then ¥ is u.d. in Op if and only if ¥ is u.d. mod
P for all t>1.

Corollary 3.4. If Y=(wa,), #=1,2, -, s a u.d. sequence in O,
then ¥ is u. d. in Op for all nontrivial dzscrete prime divisors P.

Let o—Z aet bein O,. We set Sn(8)= Za,r for m=>r and S.(5)
=0 for m<r

Thoorem 3.5. Let A=(5,), n=1,2, -+, be a sequence of elements of
O,. Then A is u.d. in Op if and only if for each m=0, 1, ---, the
sequence (Sn(8.), n=1,2, -, isu.d. mod P in O.

Proof. Let n,,—Z} ant for n=1,2, ---. Since 6,— Sm(d,.)-— ‘2 AniT {
™0, the sequence A is u.d. mod ™*'0, if and only if (S,,.(c?,.))
n=1,2 -, isu.d. mod Z™*! in 0. Consequently, A isu.d. in O if
and only if (S.(6,), #=1,2, -, isu.d. mod &™"in O for m=0,1, -+

Let ¢” denote the Cartesian product & =X0, where P runs
P

through the set of all nontrivial discrete prime divisors of K. Let &
be furnished with the product topology. Then ¢” is a second countable
compact group with respect to coordinatewise addition. ¢” can also be
viewed as a subring of the adéle ring of K. Let ¢ be the Haar measure
on ¢°. Then a s+-u.d. sequence in ¢ is simply said to be u.d. in &
(see [3, Chapter 4]).

For the remainder of this section, we shall assume, unless otherwise
specified, that all the prime ideals in O have been enumerated in some
fixed way, say &, <, ---. For j=>1, let 7,0 such that »',,j(z-,)=1.
By a fundamental neighborhood in ¢, we mean a set V< ¢ of the form

V=;<V,, where V,=0, for all but finitely many j and V, is a coset
=1
of 7/0p, #=1, for those V,705,

Lemma 3.6. A sequence I'=(7,), n=1,2,+, is u.d. in & if and
only tf

im AWV, T)

Nesoo N - ‘u( V)

holds for every fundamental neighborhood V tn (7, where A(N, V, T)
is the number of n, 1<n<N, with i, &V.

Produced by The Berkeley Electronic Press, 1975
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Proof. Evidently, a fundamental neighborhood V in £ is simul-
taneously closed and open. Thus, V is a p-continuity set and the
necessity of the condition follows from [3, Chapter 3, Theorem 1. 2].

To prove sufficiency, let .# be the collection of all fundamental
neightorhoods in ¢7, together with the empty set. Let E<~% be an
open set in ¢, By the regularity of g, for any ¢>0 there exists a
closed set CCE with #(E\C)<e. Let {V,}, V.CE, be an open cover
for C consisting of fundamental neighborhoods. By the compactness of
C, there exists a finite subcover (V,, ', V.}. Then /:(E\!L:JIV,)<5. By
[3, Chapter 3, Exercise 1. 15], the collection of characteristic functions
of elements in # forms a convergence-determining class [3, p.172]
with respect to /2. So, the sufficiency is proved.

Let Z,: O——>0; be the canonical embedding. Then i=>§£p:
O—— 7 is an injective homomorphism which maps O into the “diagonal”’
of . For the purpose of simplicity, when a«=0, we shall use the
symbol « to denote «, #-(a), and i(a). The meaning will be clear from
the context.

We note that every nonzero idealin O can be expressed in the form
I=TZY with 5,20 for j=1, -, 7

=1

Lemma 3.7. Let =0 and let 3+ 1 be a coset of the nonzero integral
ideal I= 1:1.?’” Then aEB+1I if and only if « isin the fundamental
nezghborhood V= ><V in & with V,=5, ATy Op for j=1, -, v and
V;=0¢, for 1>r, where AEO and 3,=7 (rnod P for j=1,

Proof. a€pB+1 is equivalent to a—3€ " for j=1, -+, », which,
in turn, is equivalent to a-—ﬂ,eg‘,’:f for j=1, -, . The latter condi-
tion holds if and only if a——ﬁJEz'j’OPj for j=1, ---, », and this is satisfied
precisely if ¢V,

Theorem 3.8. Let =(a,), n=1,2, -+, be a sequence of elements
of O. Then 7 isu.d. in O if and only if S isu.d. in .

Proof. Suppose % is u.d. in &°. Let 3+ 1 be a coset of the
nontrivial integral ideal I and V be the fundamental neighborhood in
¢ constructed in Lemma 3.7. Then, A(N,A3-+1, .v)=A(N,V, %),
and so

. AN B+ ) _ .. AW, V, )
‘lvl_l.g N —}\I_I.E N —"(V)_/[

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/issl/2
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by Lemma 3.6. Thus, & isu.d. in O.
Conversely, suppose &% is u.d. in O. Let V be a fundamental

neighborhood in &, say V= XVJ with V,—ﬁ,+r, O», for j=1, -, »

and V,=0;, for j>7, Where ,9 €0 for j=1, ---, r. By the Chinese
Remainder Theorem, there exists a €0 with A,=8 (mod &) for

j=1, - 7. Then, with I=I12" we have A(N,V,.%)=A(N,p+1,.57)
=1
according to Lemma 3.7. It follows that

. ANV, ) .. ANS+L ) 1
lim N = lim N =M1V

and so % isu.d. in £ by Lemma 3. 6.

Remark. According to a terminology introduced by Berg, Rajago-
palan, and Rubel [1], one may call & the D-compactification of O.

Let < be the algebra generated by the empty set and the cosets
of nonzero ideals of 0. A finitely additive measure v called the Banach-
Buck measure (see [9, Section 4]) can be defined on <. Let v* be the
outer measure which extends v, In [9, Theorem 4. 5] it was proved that
a set A O satisfies v*(A)=1 if and only if A intersects every coset
of every nonzero integral ideal.

Theorem 3.9. Let ACO. Then the elements of A can be arranged
into a u.d. sequence tn O if and only if v*(A)=1.

Proof. 1If the elements of A can be arranged into a u.d. sequence
in O, then v*(A)=1 by [9, Theorem 4. 8].

Conversely, suppose »*(A)=1. Then, by the remark preceding
Theorem 3.9, A intersects every coset of every nonzero integral ideal.
By Lemma 3. 7 and the Chinese Remainder Theorem, A is dense in 7.
By [3, Chapter 3, Theorem 2. 5] (see also [8] for more general results),
the elements of A can be arranged into a u.d. sequence in . An
application of Theorem 3. 8 completes the proof.

Corollary 3.10. The set C of all composite algebraic integers in O
can be arranged into @ u. d. sequence in O.

Proof. In [9, Example 4.6] it was shown that v*(C)=1. Thus,
the corollary follows from Theorem 3. 9.

Remark. For O=2Z, the result of the above corollary was shown
by Niven [10].
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Based on the methods of this section, we give an alternative proof
of Theorem 2. 13 for the case when [K:Q]>2. The case K=Q was
proved by Niven [10]. We shall construct a normed regular Borel
measure 2, on ¢ which is different from the Haar measure g but has
the same projections as # has on each coordinate space Op. Since O is
dense in ¢, it can be arranged into a p,-u. d. sequence %. However,
pt, is different from g, and so % is not u.d. in O. Since p and p,
have the same projection on each Op, % isu.d. in each O, By Corol-
lary 3.3, this means that % is u.d. modulo all powers of all prime
ideals in O.

For the sake of brevity, we only sketch the construction of #,. By
choosing two prime ideals in O that lie over a rational prime splitting
completely in K, we obtain prime ideals &, and &, with AP,
=A4,=q, say. By a square of degree r in O, XOp, We mean a
Cartesian product of cosets of the form (a+70s)x(3+730p), aE0p,
BEO0p, r a positive rational integer. We label the distinct cosets of
7,05, by a,,+710p1, o, ap+7,0p and the distinct cosets- of ‘QOF2 by
Bi1+7.0p, *+*, Pu+7.0p,. Then (an+7,0p)X(3,,+7.0p) is called a
diagonal square of degree 1 if /=j. Each one of the ¢ diagonal squares
of degree 1 contains ¢ diagonal squares of degree 2 obtained in an
analogous fashion. Similarly, we can construct the diagonal squares of
degree m which are inside the diagonal squares of degree m—1. Let
& be the algebra generated by all the squares in Op XOp,. Define a
set function ¢; from the generators of & to the nonnegative reals by

50; ((a+ f;'OPl) XA+ ""72'01’,)) =q"
if (a+770p) X (8+70p) is a diagonal square of degree n and
@1 ((@+770p) X (3+7305))=0 otherwise.

It can be proved that ¢; can be extended uniquely to a normed regular
Borel measure ¢, on Op XOp,. Evidently, ¢, is distinct from the Haar
measure on Op XOp, but has the same projections on Op, for i=1,2

as the Haar measure. We let ¢, be the Haar measure on XO,, and
=3
set ¢1,=¢, X¢,. Then , is the desired measure.

4, Uniform distribution of algebraic integers and of rational
integers. Since the uniform distribution in Z* and in O are equivalent
(see [9, Section 2]), these two concepts will be used interchangeably in
this section. The following theorem was first proved in [7, Theorem
2. 3] for Z*
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Theorem 4.1, (Niederreiter). Let K be an algebraic number field
with integral basis {wy, ++, @} over Q and let . =(a,), n=1, 2, -,
With = %X,m,-+ -+ Zaco, for n=>1, be a sequence in O. The sequence
& is u.d. in O if and only if for all k-tuples (s,, +*-, sy) of rational
integers with g.c.d. (s, -+, $x)=1, the sequences (¢.,), n=1,2, -, with
O, =8, X+ +spxy for n=>1, areu.d. in Z,

In the discussion to follow later on, one will find that the uniform
distribution of a sequence in O modulo a single ideal I is equivalent to
the uniform distribution mod ../'I of a certain sequence in Z whenever
O/I is cyclic. Here we give the characterization of O/I to be cyclic.

Theorem 4.2. Let K be an algebraic number field with integral
basis {w,, -, .} over Q, let I be a nontrivial integral ideal, and let m
be the smallest positive rational integer in I. The following statements
are equivalent :

(1) OJI iscyclic

(2) there is a sequence X=(x,), n=1,2, -+, of rational integers and
an a=0 such that (%), n=1,2, -+, isu.d. mod I;

(3) m=_VT;

(4) there is a sequence Y=(3.), n=1, 2, -+, of rational integers such

that Y is u.d. mod [I;
(5) w@=d; (mod I) for some d.€Z, for i=1, -, k.

Proof. Assume (1). Then O/I is generated by «+I for some
a=0. Choose X=(na), n=1,2, ---. Then (2) follows.

Assume (2). Then a+ I is a generator of O/I. Since msI, we
have ma=0 (mod I), and so ../"'I divides m. On the other hand,
m<_4"I, and (3) follows.

Assume (3). Then 1+17 is a generator of O/I. Choose Y=(xn),
n=1,2, ---, then (4) is true.

Assume (4). Then each residue class mod I contains a rational
integer, and (5) follows.

Assume (5). Then each coset of I is of the form d- I for some
d=Z, and (1) follows.

Theorem 4.3. Let F be a prime ideal in O with ramtfication index
e and restdue class degree [ over Q.

(1) When e=1, O] F" is cyclic if and only if f=1. In this case,
t can be an arbitrary posttive rational integer.

(2) When e>1, O] F* is cyclic if and only if f=t=1.
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Proof. If a is a real number, we use {e) to denote the smallest
rational integer >>a. Suppose & lies over the rational prime p. Let
n be a positive integer such that n=Z?‘. This is equivalent to v,(n)
>t/e. Thus the smallest positive rational integer m in ' is m=7p%®,
By Theorem 4.2, 0/Z”* is cyclic if and only if #f=<{¢/e) (since ./ ZF"
=p). We consider the equation #f={¢/e) with the unknown ¢ being
a positive rational integer.

Case 1: when e=1, the equation has a solution if and only if f=1.
In this case, ¢ is arbitrary.

Case2: e>1. If t<e, then #f=<{t/e> has a solution if and only if
f=t=1. If t>e, then tf =<¢/e> has no solution since <{¢/e)<t/e-+ 1<
t<tf.

Theorem 4.4, Suppose [ =H9’il", where the F are distinct prime
fm ]
tdeals with ramification indices e, 1<i<r, and residue class degrees
fi, 1<i<r, and where t,.=>1 for 1<i<r. Then O/I is cyclic if and
only if g.c.d, (A4, 1" PF)=1 for i5~j, fi=1 for 1<i<r, and =1
whenever e, 1. :
Proof. By the Chinese Remainder Theorem, we have O/I=

{=1

(0] Z%. Thus, the sufficiency is a direct consequence of Theorem 4. 3
and of g.c.d. (AR ./If:??jfj)zl for i<%j.

As for the necessity, one notices first that O/ﬂ" is cyclic for
t=1,--,7. Thus, by Theorem 4.3, fi=1 for 1<i<r and £ =1
whenever ¢, >1. Without loss of generality, suppose . !/, =p"1 and

AP y=p"  Since 0/I=(0) A" 9‘"“)@(0/1’19’ Y, it suffices to show

that 0/, ‘9"’2“ is not cyclic to arrive at a contradlctlon For a real
number ¢, let {a) be the smallest rational integer >>a. A positive
rational integer » is in Z%"ZA" if and only if :,(n)>#/e, and v,(n)>
t./e,. Hence, the smallest positive rational integer m in PG is
m=max p'?. By Theorem 4.2, 0/Z"Z* is cyclic if and only if

i=1,2

max /e =fit, + fot.. However, it is obvious that max (t [eD><fit, + fits,
and this yields the desired contradiction.

Theorem 4.5. Let K be an algebraic number field with tniegral
basis {wy, -+, w} over Q, and let I be a nontrivial integral ideal. Suppose
o, =d; (mod I) for 1<i<k, where di€Z for 1<i<k, Then a sequence
S =(a,), n=1,2, -, tn O with @n==2u®,+ -+ 2w for n=>1 is u.d.
mod I if and only if the sequence (0.), n=1,2, -, with o,=x,d, + -+
+xudy for n=>1, isu.d. mod . 1[I in Z.
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Proof. Since g,=q, (mod I), the sequence % can bte replaced
mod I by the sequence (s,), n=1,2,+-. According to Theorem 4.2,
{0, 1, ---, #T—1} constitutes a complete system of representatives of
O/1, and if d=Z, we have

A(N,d~+1,(e.))=A(N,d-+ (-1 1)Z, (a.),

since a=b (mod I) is equivalent to a=>b (mod .-/ I) for a, b=Z. Thus,
the theorem follows.

Corollary 4.6. Suppose K=Q(a) with integral basis {1, a, -, a" "'}
over Q and I is a nontrivial integral ideal with a=d (mod I) for some
dEZ. Then a sequence 7 =(a,), n=1,2,+, in O with on=2%.0+ XX
ot X g™t for n=>1 is u.d. mod I if and only if the sequence (),
n=1,2, -, where 6,=x,rxnd--+%xd*" for n=1, is u.d. mod
I in Z.

Theorem 4.7. Suppose ¥ =(a,), n=1,2, -, tsu.d. in O. Then
there exists a natural number m, independent of %, such that the

sequence (—;; Trx,o(a:,,)), n=1,2 ¢, isu.d. in Z.

Proof. It is obvious that Trxe:Q0—>Z is an additive group
homomorphism. Thus, there is a natural number m such that Tro(0)

=mZ. Since the topologies on O and Z are discrete, %Tr,(,q is an
open, onto, continuous homomorphism. By [3, Chapter 4, Theorem 5. 1],
we know that (% TrK,o(a,,)), n=12, -, isu.d. in Z.

Theorem 4.8. Let (my, -+, m)EZ* with m=>1 for 1<i<k, and
let X=(x,), n=1,2, -+, with x,=(%u, ***, T.) for n=>1, be a sequence of
lattice points. Then X is u.d. mod (m,, -+, m) in Z* if and only if the
sequences (¢,), n=1,2, -, with

%=%(J’1mz'"mkxm ----- F e X)) for n=>1,
k
are u.d. mod (%iﬂ m,—) in Z for any k-tuple (j,, -+, 7.) =0, «--,0) in Z*
-] k

with 0<j.<<my for 1<i<k and m=g.c.d. (_I_Ilmi,jlmz---mk, e, Jummy e
mk—l)-

k
Proof. To prove necessity, let t&Z with 1£t<%ﬂm.~ and set
i=1
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t —? wh d =1 and ¢>1
7 =7 Whereg.c. .(p,g)=1 and ¢=>1.
—I1 m; 7
Miml

Obviously, ¢>1. Put

_ Jamettmm o Jamy
$ = ’ y S = .
m m

We claim that at least one of the —‘Z—st is not an integer. For otherwise,

q|s for 1<i<k and q]—Hm,, which implies that ¢m is a common

mi=1
divisor of IIm,-, Jumgeromy, oo, Fumyceonu,..  But gm>m, yielding a con-
{=1
tradiction. Thus, by {7, Theorem 2, 1], one has

S———

lim —Z exp f (8180t =+« -+ SkZni)
N—oo Na=i 1

—II m;
M=

x
= lim = Z exp( m:c,,, mxnk)

N'—so0 m;

Il

0,

and the desired conclusion follows from [3, Chapter 5, Theorem 1. 2].
To prove sufficiency, let (j,, **, j:) be as in the theorem. Then,

v

N
lim 1 2. exp (l‘—x.., e ﬂxnk)

Nesoo n=1 k

1 T
—1II m;
mi=1

1 ,
=lim = exp (51 Zmt *** + Sx%nr) | =
Neroo n=1

by [3, Chapter 5, Theorem 1. 2], and the desired conclusion follows from
{7, Theorem 2. 1].

As an immediate consequence of the atove theorem, we obtain the
following result.

Corollary 4.9. Let K be an algebraic number field with integral
basis {w e .} over Q. If I=m0,Z@ - Pmuw,Z, mEZ, m=1 for
i=1, -, b, is a nontrivial integral ideal and Y =(a,), n=1,2, ---, with
,,—x,uw1+ st xonp for n=>1, is a sequence of algebraic tntegers, then
Y isu.d. mod I if and only if the sequences (a,), n=1,2, -+, with

o.,=% (Fame myZpt oo Jumy o om %) for n=>1,
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AT .- . . .
mI) tn Z for every k-tuple (j,, -, 7.)5<(0, «-»,0) in Z*

with 0<j,<<m, for 1<i<k and m=g.c.d. ("I, jim, - my, -, jm,
...mk_l).

are u.d. mod(
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