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ON CONFORMAL DIFFEOMORPHISMS WITH
DECOMPOSABLE ASSOCIATED SCALAR FIELD

YosHIHIRO TASHIRO and MITSURU KORA

Introduction. In a recent paper [4], one of the present authors has
shown that there is no global conformal diffeomorphism between complete
product Riemannian manifolds M and M * such that the product structures
F and G of them are not commutative under it in a dense subset of M,
and given an example of a global conformal diffeomorphism commuting the
product structures. There remain some open problems concerning this,
for instance, whether the condition “in a dense subset” of the theorem can
be replaced with “in an open subset” or not.

Our purpose of the present paper is to show that the replacement is
possible in the case where the scalar field p associated with the conformal
diffeomorphism is decomposable in an open subset of M= M, X M, and
depends on points of obth M, and M, thatis, p is the sum

p=pt p

of non-constant functions p, on M, and p, on M,

After preliminaries are given in § 1, we shall prove in § 2 that the
parts p, and p, are special concircular scalar fields in M, and M, res-
pectively. In § 3 we shall give expressions of p with respect to adapted
coordinate systems in M = M, X M,. Then, in §4, we shall show that
no global conformal diffeomorphism with such a solution of p can be
admitted between complete product Riemannian manifolds M and M™*.

1. Preliminaries. Let M=M, X M, and M* = M} X MS be
product Riemannian manifolds of dimension #» =3, and denote the struc-
tures by (M, g, F) and (M*, g*, G) where g and g* are the metric
tensors and F and G the product structures of M and M™* respectively.
Throughout this paper, we shall assume that the manifolds are connected
and the differentiability is of class C~. The dimensions 7, and #, of
the parts M; and M, may be different from those of M{ and M7. Greek
indices run on the range 1 to »#, and Latin indices on the following ranges:

h; i: j'__ 17 2) ) nlr
p,oqg r=mn+1, -, n,

respectively. Summation convention is applied to repeated indices on their
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own ranges.

We shall use a separate coordinate system (x*) = (x",x?) in M=
M, X M, with respect to the product structure F. The metric tensor g
has components
gy O
(gu»\) ( 0 gn ) ’
where g depend on the coordinates (x*) of M, only and g, on (x”) of
M, only. The Christoffel symbol and the curvature tensor of M have
pure components only, and the covariant differentiations f; along M; and
I, along M, commute with one another.
A conformal diffeomorphism f of M to M™* is characterized by the

metric change
FHg*) = %g,

and p is called the associated scalar field with f. Hereafter, the image
of a quantity of M* to M by the induced map f* of f will be denoted by
the same letter as the original one, for example, we write g* for f*(g*)
and G for f*(G). If FG = GF at a point P M, then we say that
the structures F and G are commutative at P under f. The commuta-
tivity is equivalent to the purity of G with respect to F. We put

Gi=G.gun,

which is symmetric in 1 and .

Let Y be the gradient vector field (p*) of p, and Y; and Y, the
components (p") and (p") of Y belonging to M, and M, respectively.
We denote by # the squared length of Y:

¢ =|Y|*=pp,
and put the open subset U as
U={P|Y,(P)5=0 and Y,(P)+#0}.

It is proved in [4] that the product structures F and G are not
commutative under f in U, and we have the equations

Fjp=dgs+ % Gy,

(1. 1) r‘, pi = qu. s

<
o
, _ C
Fopp= boopt ; Gop
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in every connected component of U, where C is a constant and the
coefficients ¢, and ¢, are functions satisfying the relation

_¢ _1 .
(1-2) ‘b]‘l“f’z—?—?,ﬂ‘p.

Moreover we have seen that we may put
(1.3) ‘/’1—‘!’2=ku

k being a constant. The constants C and % might be different from
one connected component of U to another.

In general, a scalar field p in a Riemannian manifold M is said to
be concircular if it satisfies the equation

(1.4) Fupr= dgur s
and to be special concircular if it satisfies the equation

(1.5) Fupr = (kp + b)gur,

k and b being constants. Properties of concircular scalar fields play
important roles, and we refer to [2] and [3] as to them. The trajectories
of the gradient vector field Y = (o) are geodesics, called p-curves, and,
in a neighborhood of an ordinary point of p, there is a local coordinate
system, called an adapted one, such that the first coordinate x is the arc-
length of p-curves, p is a function of x only, and the metric form ds*
of M is given in the form

ds® = ds* + (o' (x))* ds?,

where prime indicates derivative in x and ds® is the metric form of an
(n — 1)-dimensional Riemannian manifold M, see also [1]. Along the
p-curves, the equations (1.4) and (1. 5) reduce to the ordinary differential

equations
px)=1¢
and

p(x)="Fkp+b.

2. The decomposable associated scalar field. Now we suppose that,
in an open subset U’ of U, the associated scalar field p is the sum

2.1 p=pt p
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of non-constant functions p; depending on (x") only and p, depending on
(x*) only. Then we have

pi = r. oL Pa = rq P2 -
and
FeF:ip=0

in the open subset U’'. Since there is a hybrid component G, 0, it
follows from the equation (1.1, 2) that C=0 and p is decomposable in
the connected component of U containing U‘. Consequently we may
suppose that the open subset U’ is the connected component of U.

Then the equations (1.1, 1) and (1. 1, 3) turn to

{ Fipi =185,

(2.2)
Fepn= b2 8ap

in U'. Therefore the function ¢, depends on (x") only and ¢, on (x?)
only. Substituting (2. 1) into (1. 3), we have the equation

b1 — kpy =y + kp,.

Since the left hand side depends on (x") only and the right hand side on
(x®) only, both sides are equal to a constant, say 5. Hence the functions
¢, and ¢, are given by

(2. 3) b = kPl + b, ¢=— sz + b,
and the equations (2. 2) become

{ FjFiPl = (kPI + b)gji )
F;,F'ppz = (— sz + b) g

If we denote by M, (P) and M,(P) the parts of M passing through
a point P& M, then these equations mean that the parts p, and p, of
p are non-constant special concircular scalar fields in the intersections
U'NM(P) and U’ N M,(P) respectively. Since there are at most two
isolated stationary points of a concircular scalar field, the closure of the
intersection U’ N M,(P) in M,(P) coincides with M, (P) provided »,=2
and the closure of U’ N M,(P) in M,(P) with M,(P) provided »n, = 2.
Therefore the open subset U consists of one component U7, and the
closure of U coincides with the manifold M. If one of the parts, say M;,
is of dimension 1, then the part p, of p is given by a hyperbolic or sine
function in U’ N M;(P), as will be seen later in the equations (3. 6) and
(3.9). Hence the stationary points of p, are isolated in M, by means of

2.4)
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differentiability of p;, and the closure of U coincides with the manifold
M. Therefore, in any case, the equations (2. 4) are valid over the whole
manifold M= M, x M, Thus we can state the following

Lemma 1. Let M and M* be product Riemannian manifolds and p
the scalar field associated with a non-homothetic conformal diffeomorphism f
of M to M*. If p isdecomposable in an open subset in M= M, x M,,
and the parts p, and p, of p are not constants in the subset, then p is
globally decomposable and the parts p, and p, are special concircular scalar
fields in M, and M, satisfying the equations (2. 4) respectively.

3. Expressions of the associated scalar field p. We shall seek for
expressions of p in all possible cases under the assumptions of Lemma 1.

In the case k =0, the equations (2. 4) become together the tensor
equation

(3 1) ruPA = bgu}\

and the gradient vector field Y is parallel if » =0 and concurrent if
b =4 0. Along any geodesic curve with arc-length x, the equation (3.1)
reduces to the ordinary differential equation

3.2) p=0b.

By choosing suitably the arc-length x of the p-curves, p is given by

ax (b =0),
(3.3) p= {

_'A}): x>+ a (b£0),

a being a constant, and the metric form ds* of M is expressed as

et {dx2+£2' (b =0),
ST =

@-4) dx® + x%ds*  (b#0),

in the respective cases.

In the case 2550, we may put k = ¢?, ¢ being a positive constant,
without loss of generality. The equation (2.4, 1) reduces to the ordinary
differential equation

(3.5) p;' (x) = ¢ ot b

along any geodesic with arc-length x in M, By choosing suitably the
arc-length x of the p-curves of p,, the part p, is given by
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“’ (a) aexp cx — b/c?,
(3.6) o= } (b) aysinh ¢x — b/c?,
. (c) aycoshex — b/c?,

@, being a non-zero constant. In an adapted coordinate system in M,
the metric form ds} of M, is expressed as

(a) dx® + (exp2cx)dst,
(3.7 dsi = { (b) dx*+ (cosh cx)ds?,
. (¢) dx® + (sinh cx)?ds?
in the respective cases of (3.6), where ds: is the metric form of an
(n,— 1)-dimensional Riemannian manifold M,.

On the other hand, the equation (2.4, 2) reduces to the ordinary
differential equation

3.9) o () = —c*p, + b

along any geodesic with arc-length y in M, By choosing suitably the
arclength y of the o-curves of p,, the part p, is given by
3.9 p2 = acos ¢y + b/c?,

a, being a non-zero constant. In an adapted coordinate system in M,, the
metric form ds} of M, is expressed as

(3.10) ds} = dy* + (sin cy)?ds?,

where dsi is the metric form of an (#, — 1)-dimensional manifold M, .
By adding the expressions (3.6) and (3.9), we see that associated

scalar field p is given by
(a) aexp cx + axcos cy,
3.11) p=1 (b) asinh cx + a,cos ¢y,
(c) a,cosh cx + aycos cy

in the respective cases.

4. Theorem. We recall the following lemma [4, Lemma 5] for later
use :

Lemma 2. Let M and M* be complete Riemannian manifolds and f
a diffeomorphism of M onto M*. If the length of a differentiable curve
I' in M is bounded, then so is the length of the image I'* = f(I') in M*.
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Now we suppose that the manifold M and M* are complete and f
a global conformal diffeomoprhism of M onto M*.

In the case £ =0 and b =0, M is globally the product of a straight
line I with an (# — 1)-dimensional Riemannian manifold M. Since the
arc-length x of I is extendable to the infinity in a complete manifold, the
associated scalar field p given by the expression (3.3, 1) vanishes at the
point of I corresponding to x = 0. This contradicts to the positiveness
of p.

PIn the case # =0 and b0, the constants @ and b in the expres-
sion (3. 3, 2) should be positive because p is positive for all value of x.
The point O corresponding to x =0 is the stationary one of p, the
(n — 1)-dimensional Riemannian manifold M with metric form ds® is of
constant curvature 1, and M itself a Euclidean space. The rays issuing
from O are p-curves. The arclength s* of the image I'* of a p-curve
I' in M under conformal diffeomorphism f is related to the arc-length =«
by

ds* 1 2

d«  p bx'+a’
Putting s* = 0 corresponding to x = 0, we have

__2_ ‘/_b_
—Vabarctan ps x.

S*

and see

7w

Sy )
This means that the length of the image I'* is bounded and it is a contra-
diction by means of Lemma 2.

In the case & = ¢?5~ 0, the arclengths x and y are extendable to
the infinity. In the first case (a) and the second (b) of (3. 11), p has zero
points. In the third ‘case (c) with |&;| < |ae;|, p has zero points too.
Thus in these cases there is no global conformal diffeomorphism of M to
M*,

In the third case (c) with |e,| > |a,|, the constant @, should be
positive. Let P be a point corresponding to y = n/2¢, and I" a p-curve
lying in the part M;(P) passing through P. The arclength s* of the
image I'* is related to x by the equation

ds* 1

dx a,cosh ¢x”
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Integrating this equation, we have

2
st —st =

arctan (exp cx) — —=
a,c (exp cx) 2a,c

’

where s is the value of s* corresponding to the point P of p, on I,
and see

i3
2a,c

s*

— s —> (x = o0).

This implies the boundedness of the length of the image I'* and leads to
a contradiction by means of Lemma 2. Thus we have established the
following

Theorem. Let M and M* be complete product Riemannian manifolds.
Then there is no global conformal diffeomorphism of M onto M* such that
the associated scalar field p is decomposable, p= p,+ p,, in an open subset
U of M and the parts p, and p, are not constanis in U.
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