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NOTE ON A MEAN ERGODIC THEOREM

TakesHi KATAOKA

S.-Y. Shaw [ 2] showed an interesting mean ergodic theorem, and
recently R. Sato [1] improved his result. In this paper we shall show
that an analogous result holds for k-parameter semigroups of operators.
To do this we apply the method of Sato.

The result is the following

Theorem. Let {T(t,**,tx); ti,,tx 20} be a strongly measurable
k-parameter semigroup of uniformly bounded linear operators on a Banach space
X. Suppose there exist 8;: > 0 (i =1, k) such that | T(0,---,0, t:,0,-+-,0)—I|
<2forall 0< ¢t; < 6s Then'foreachO( < 8 (=1, k) we have

fah f T(s1,%*,Sx)x dsi - dsg
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whenever one of these limits exists.

fak f T(s1,*,Sx)x dsi- dsg

Pox = hm
a0 017" Qg

(resp. Piy :.x—llm‘iE 2 T(d1t1, ", intr)x)

—~oo 1=0 {x=0
exists. Then by the uniform boundedness of the semigroup we get
Xo=_0 NIT(, se)—I]@sp  RIT (st is0) 1]

----- Sy »3

and

Xyt = ﬂ NI[T (it inte)—1I]

{1yin=1

® sp U RIT (i1t inte)—1],

f1ysin=1

where sp U denotes the closed linear space spanned by U. It is clear that
if € () N[TGit,wint)—1] then Pox exists, thus Xi., © Xo. On

the other hand, we have
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so that for any x in Sp ] R[T(“t1 iats,"**,ixtr)—I], namely for any

feewin=1

x with Piyotptex =0,

k 2 2 T(thl. z'ktk)xH
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2 2 Z T(“tl ZZtZ,"',iktk)x

nquzO ia=0

-0
as n » oo, Thus P;,,...,x =0, that is,

s U R{T(i‘ﬁ, ot inte)— 11
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C 5p w' U RIT(itr, - dints)—1].
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Doing this process successively and applying an approximation argument,
we finally observe that

5p U R[T(s1,7+~,56)— 1]

StssSe>0

csd U RIT(it, - iste)—I).

iteenie=1

Since Py (resp. Pi,,...,) is a projection onto ﬂ N [T (s, s0)—1]

(resp. ﬂ N[T (it ints)—I]), the proof is completed.

f1vein=1
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