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Houh: Submanifoldsin a Riemannian manifold with general connections

SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD
WITH GENERAL CONNECTIONS

Chorng-Shi HOUH

Professor T. Otsuki developed the theory of general connection of a differ-
entiable manifold. The general connections were defined by a cross-section in an
appropriate bundle, that is the tensor product bundle of the tangent bundle (of
order 1) and the cotangent bundle of order 2 of a differentiable manifold. The
classical affine connections and the tensors of type (1, 2) are remarkable as
special general connections. He investigated the tensor calculus of spaces with
general connections and showed several formulas which are natural generaliza-
tions of those in the spaces with classical affine connections. Development of
curves in spaces with general connections which satisfy a certain condition is
possible by several methods. The Levi-Civita’s connection of Riemannian spaces
can be generalized in the theory of general connections under some conditions on
an n-dimensional differentiable manifold XV,

In the present paper, let ¥ be a Riemannian manifold with a metric (g;),
X, be an /-dimensional submanifold of X¥. The author tries to induce the general
connection of ¥ to the submanifold ¥, and develop a theory of submanifolds with
general connections.

In §2 we shall consider some injections of T(X), =X%,) into T(X), -X(X);
T*(X), D*(X) into T*(X.,), D*(X,) and some other things for later use.

In §3, the induced connection in ¥; is given as follows: '

Pi=0¢ P63

The=07 (P30.0]+ I'%.040%)
where (Pj, I'}:) is a general connection of X and 0:=0u*/0x", guw=g:,040% (g%)
=(gw)”", 0i=g"gi,0%; («"), () denote local coordinates of ¥ and ¥, at the
same point. To obtain some results we must restrict our attention to some sub-
manifolds so called adapted. The submanifolds considered in §§4-7 are supposed
‘to be adapted.

In §4 we shall induce the normal general connection of % to %; and consider
an especial normal general connection and its induced connection. A method of
development of curve in ¥, will be obtained.

In §5, we shall consider the regular general connection which is analogous
to the classical affine connection such that several results in classical theory of

1) In the present paper, we deal with only manifolds, submanifolds, functions and trans-
formations with suitable differentiabilities for our purpose.
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submanifolds can be generalized.

In §6 we show that the induced connection of %, derived from a metric
regular general connection of ¥ is also metric. Some concepts in classical metric
subspace are generalized. We also investigate the connection T° which is related
closely with submanifolds.

In § 7 we investigate the relation between curvature tensors of ¥ and ¥, with
respect to the connection T° and its induced connection. For this purpose, we
should introduce some other general connections and establish some lemmas.

The author wishes to express here his sincere gratitude to Professor T.
Ostuki who has given him various suggestions and frequent chances of discus-
sions. He also wishes to express his hearty thanks to Prof. H. Hombu and Prof.
S. Hokari for their kind guidance and encouragement.

§1. Preliminary. ([5]—[12])®

Let 22 be the group of all generalized infinitesimal isotropies of order 2 at
the origin of the #-dimensional coordinate space R”, whose element is written as
a set of real numbers (g}, a%) such that |a}|2¢0 and whose multiplication is
given by the following formulas :

For any o, fEE,

(1. 1) al(ag)=al(a)at(y)
(1.2) ab(ap) = al(a)ain(B3) + ak(a)ai(B)an(3).

Let X be any #-dimensional differentiable manifold. With any coordinate
neighborhood (U, #'), where the local coordinates #’ are defined on the neigh-
borhood U in %, we associate #?X#n fields of vectors denoted by Gu;, &%uy. Let
Gv:, 8°vi, be the vector fields associated with another coordinate neighborhood
(V, v%). When UN Vax¢, we assume that they are related mutually on UNV

as
v’
(].. 3) ou; =Wavj
~2,9 3 Ak
3, _ O ov’ av°
1.4 O = e i o Ve

Thus we obtain at each point x of ¥ an (1 + #n*)-dimensional vector space span-
ned by these »n +#n* vectors 6u;, 8’ux being independent of coordinate neighbor-
hood containing the point #, which is denoted by 7% (¥). The union

rn(i) = U Ti(i)

P1=1

may be considered naturally as the total space of a vector bundle {<* (%), ¥, 7}

2) The number in square braclets shows the number of the reference at the end of the
present paper.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/issl/1
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with the natural projection z, whose structure group is €3 (in fact, itis Li=
{e| atn(a) = ai ), «=82}) and the coordinate transformation gy, : UNV—E}
is given by

o’v’
tutou"

ai(gn)——;, ai’n(gvv)=

We call any element of -%(X) a tangent vector of order 2 of X at x. For the
sake of simplicity, we denote the vector bundle over ¥ by the same notation
%) and call it the tangent bundle of order 2 of X.

With any coordinate neighborhood (U, #') at each point x & U, we associ-
ate an (#+#»°)-dimensional vector space which is spanned by d«'@ du* and the
differentials d*’ of order 2 which are assumed to be linearly independent
among them and of du'@du”. We relate the two vector spaces corresponding

to (U, #') and (V, #') at x& UNV with each other by

Ald
(1.5) dv’=2—v‘du‘,
ou

b 2,4,
5 6y 0"y
dv’ = Wdzui + 0o du‘@du".

Thus we obtain the cotangent vector space of order 2 of ¥ at x denoted by
92(%) which is dual to 7i(¥X) and contains the tensor product TX(®)Q T#*(X) of
the cotangent space of X at x. The base {d’', du*@du"} is dual to the base
{02, 0°0um} of z2(%X). The union
D(X)=UD%X)
reX

is the total space of the cotangent bundle of order 2 of X which we denote by
the same notation. 9*X) contains the tensor product bundle T*(X)QT*(X) of
the cotangent bundle T*(%) as a subbundle.

We call any cross-section I' of the vector bundle T(X)QRD*X) over X a
general connection of X by definition. In a coordinate neighborhood (U, #*) let
I' be written as

(1. 6) I'=6u,Q(Pid*w’ + I'ydu’ @du").
In another coordinate neighborhood (V, v"), if UNVs4¢, let I' be writtten as
I'=00,Q(Pi(v)d*’ + I'i(0)dv’Qdv*),
then we get immediately

(1. 7) OU kau
"av"
(v)'—_n—k(Plknogz,f n +1h‘k Ou Oun)

"o ov™
We denote the general connection I" sometimes by (P, I'%u.

Now we define a homomorphism p=pr: %%)— T(X) by

Produced by The Berkeley Electronic Press, 1963
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(1. 8) /z(au,) = P}é‘ui, /1(6%_;;;) = Ffmﬁ‘u,,
and a homomorphism ¢=¢rp : 9%%)— T*X)®* by
(1.9) (@)= — A% du’ N\ du*, ¢(du'Q@du")= P} duwQdu"
where we put
a i
(1. 10) A§k=1’§k—6—5{.

Furthermore we put generally
(1.1 ¢(du')=du',
¢(@u'rQ - Qdu'Qdu") = P}}---P}gdu’1®---®duja®du“
and
(1. 12) P(dur@ -+ du's-1Qd'u'sQdu's+1 Q- Qdu's)
=— Pj}'"P}iIiA;}'P}ﬁﬂ'"P§2duil®'"
duls-1QduRQdu's+1---Qdu'»Qdu’
(1.13) e E)=p,
then we can also define a homomorphism ¢ :
(L.14)  g=gp: TE®D o TE)EPTD (p,g=0,1,2, )"
The covariant differential operator D=Dry of the general connection I' is
defined by
D=Dp=g¢-d: #(TE®"®)>p(TE) ")
where ¢ (T(X)®#9) means the vector space consisting of all cross-sections of
T(%)®?? over the algebra A(¥) of all scalar fields on %. In fact, if
Ve r(T®)®»)
V =Vitipou, Q- Qou, Qdur@- Qdus,
then

DV}J JP—VJI du,

)qh

P( 6Vh1 “Phl

(1. 15) Ve n= Pjeee

1 1, pi L Y kymk, DR 2,
”‘2 Pk. Pkﬁj}"'rxinpkz‘;}'" m”fvn}---né’ P}}"'Pig

§=1

—E Py PisVizge  Phie- Plest Njn Pt Pl
The torsion tensor of I' is a tensor of type (1. 2), with local components
(1.16) Th="Th—Th,

and the local components Rl of the curvature tensor I' are given by

3) On the symbols ®, T(®)®2.9+1, and the operation d, see [9] §2.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/issl/1
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1.17) m—I:P’(aF’"" aI‘,,,,,) + (T e — T P:nh)] P?

— 83un At 0 AT
Now we give some definitions for the following sections.
Definition 1.1. A general connection I' is said to be regular when
P! is an isomorphism of T(X).
When I' is a regular general connection, then (4%, 'I'%s), where
(1- 18) ’P}h= Q“—‘JIA, Q=P
is a classical affine connection. It is called the contravariant part of I'. Putting

(1L.19)  "Ih=ThQ)+ P1%Q,{,
(8% ""I'y) is also a classical affine connection. It is called the covariant part of
r.

Let I' be a regular general connection. For a tensor Viilj» the covariant

differentiation given by

(1. 20) le SN —Q‘ Qk”Vn he Q Q?g

q sh

is called the basic covariant differentiation of I'. 1Infact, V};Ziif‘:m is given
by

(1. 21) el — Vi

Jl qu 8 R

Jq -I—E'P&Vil s—1¥tg i

q

With respect to the basw covariant dlfferentiation, we have the following
formula :

(1. 22) {V_;l " th (le . 0¢)m+V11 J”j odin.

Definition 1.2. A tensor P of type (1.1) is called normal when P as
a homomorphism of the tangent bundle T(X) of X is an isomorphism on
each P(T.(X))=P.(X), xEX. and dim P.X)=m is a constant. A general
connection (P}, I'ix) is called normal if the tensor P= P} ¢{uQdu’ is nor-
mal.

Definition 1.3. We say that a general connection I' satisfies the
metric condition for a symmetric covariant tensor G=g,, du'® du’ if

DG=gndu*=0.

Let (P)) be given, we knew there are general connections I"=(P%, I'%,) which
satisfy the metric condition ([11], Theorem 2). We call such a I @ metric
general connection.

Definition 1.4. Let A" be an n-dimensional affine space. If there is

Produced by The Berkeley Electronic Press, 1963
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a general connection of type (Fj, 0) of A", with respect to affine coordinates
then A" is called a pseudo-affine space of dimension n.

For a curve C: #'(f) in ¥, if there exists a curve C: x*=2x¢) in a
pseudo-affine space A" and a field of frame { X%} of T(%) along C such that

(L23) (2 _ padet
dt tdt
1DX?= i pBXX J kd_lﬂ =
P_; dt P_;(P], dt +I’th;\ dt)'—O,

where {¥7} is the dual base of {X}}, then C is called a development of C.
Let C be a curve in a space ¥ with a normal general connection such that
dimP(T,(%X))=m. Then C has a development which depends on #(# —m)
arbitrary functions of the parameter of C. ([10], Theorem 3. 1.)
We can also define a development of C by conditions different from (1. 23).

§ 2 Submanifold %, of X.

Let ¥ be a Riemannian manifold with a metric tensor G. In local coordi-
nates (U, u"),
G=gydu'Qdu’
where (g,;) is symmetric, positive definite.
Let (-, X;) be a regular submanifold of X. Let / be the dimension of ¥,. For

a point xE%,, the local coordinates (U, #') of the point : (x)&X and the local

coordinates (U, x*) of the point xE%, have the following relations :

wtei=ut(xt, -, xY)

where the matrix (6%'/8x") is of rank . In the followings, we always denote
the local coordinates of a point by (#') if we consider it as a point of X and by
(x*) if we consider it as a point of the submanifold %;, where /=1, -+, n and
a=1,- 1.

Let the natural base of the tangent space of X, at x by {8x°}. Let the
same of the tangent space of ¥ at x be {{#;}. Then ([6], chap. 2)

f~P 1 1
ou oy
[*ax“—_—' 6—xu6u¢, t*dui= b—Fdx“,

where {du'), {dx"} are the duals of {6#'} and {Fx.}. We often omit the
notations ¢, :x and * if it does not lead any confusion. For example, we write
w'=u'(x, -, x')
instead of u'+:=u'(x, +++, ')
Putting

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/issl/1
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We have
(2. 1) z*?)‘x.,=0f,,6u¢
(2.2) e*dut =04dx".
We put also

gaa=gul9riﬂi 3
then g.» dx*®dx” is a positive definite symmetric form on %, Let (g™) be the
inverse matrix of (gs) and

(2. 3) 0?=g“bg“’ig.
Then we have
2. 4) 005 =00.

We consider other coordinates (V, »*) and (Vy, »*) at x, the correspond-
ing 6., 0f are written by 05(v), 6i(x) etc,, then we get

oz’ a 9y"
(2.5) 0a(y)= 0;(4’5)3—374 3i()’)=0?(x)aixb

vt ,, 6u’ .
0uv)= 2 504w)  0i(0) =25 05(w).
For any xE%,, we define a linear map * TH*X,)— TX*(X) :
2.6) Fdxt=0fdu';

it is clear that the definifion is independent of (U, #'). We also define a linear
map ¢ T.(X)—=T.(%X):
2.7 t3 0 1y =070%,,

which is also independent of the local coordinates (U, x*).

We defined z2(X), the tangent vectors of order 2 at x, in §1. Now we
define a linear map : x : z2(%,)—<%(X) :
¢ 50Xy, == (2,04) 024, + 010104,
e/ To(%,) : the same as (2. 1).
If we consider another coordinate neighborhood (V, #') at x, the coordinates of
x can be written as

(2. 8) {

ot =2 (u*(2)).
The formulas (1. 3), (1.4) imply the following :
%’ 8 v’

~2 _
0 X = o 6‘1)”&01 + ot o U

which shows that the definition of ¢« 8*x, is independent of the local coordinates
(U, u*).

On the other hand, let x be contained in two coordinate neighborhoods
(U, x%) and (V, ¥*) of %;. Then we have

Produced by The Berkeley Electronic Press, 1963
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6 b
0y.= ﬁax,,
A2 ax° 6x 8¢
Y= a aa +n aﬁ,ybax"
and hence
6x° ox" 0°x°
5 ox + )
tx0" Y= dy ayb *9 cd aya.ayh!* Xe
A 8ulon’ 4
_aymdy i ayaﬂ boui-’

= 0,0 ¥)dus+ 04 ¥)63( )6 uy .
Next, we define a linear map ¢*: DAX)—> Di(X,):
(. 9) { AUt =0td " + 805 dx*Rdx”
F]T*(%,): the same as (2. 2).
The formula (1. 5) implies :

g
c*d'zvj=g—:i1¢*d2u‘+ Ok du'®.*dut

Bu"‘ n

2 a,

6 xrld a a.a b

which shows that the defintion of *: DLE)—DAX;) is independent of the local

coordinate neighborhood (U, #'). If we transfom the coordinate neighborhood

(Uy, ) of %, into another coordinate neighborhood (V,, *) of %, we have
easily :

dx"®d

b= 2L gy Uy @y
" Y aya« v @y y

=0.(y)d’y* +0:0(9)dy " Rd y".

Now we want to define a linear map of Di(X,)—Di(¥X). It is unfortunate
that we can not define such a map which is independent of the local coordinates
(#'). We can only define a linear map ¢ : D5(X,)—>D(X) by :

A dhu = 07d ut + 050,98 du' Qdu”
{ EH/TXE)=10of (2.6).
We substiute (1. 5) into the following :
A dixt=6(0)d%" + 05(v). z,ﬂi(v)dv‘®dv
Comparing this with (2. 10), we have

S = bt + o) 2% OV ANGIRdun,

00 oulout
Al=0.5.
Tt is clear that *cid*x*=_% %d’¢". Since the kernel of *: (%) — D*X,)

(2.10)

(2.11) {

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/issl/1
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includes N= {Nidu'Qdu*, Nidw’Q@du*} where Ni=4;— Al, we may consider
HFDE) C DY(%) where D(X)=D*(X)|%,/N®
From the definition of (2. 8) and (2. 10), omitting the notation ¢, we may
write
(%) C (%),
Dx%) C D).
Now we consider a tensor field on a coordinate neighborhood (U, #*) of %
with the components :
T
Let
= 07050505~ T
Then T¢i are components of a tensor field on a neighborhood of %, We call
(T2) the tensor field on % induced from the tensor field (T4:) on %.
On the other hand, if there is a tensor field on a neighborhood of %, with
components

(zbeer
Cd

we have by (2. 1) and (2. 6), omitting the notation ¢,
T3 02,0%,Q+ Rdx"Qd xR+
=T & 0403050861, Qou Q- Qdu*Rdu'+.

In this case we say that the tensor field (T5%:) on (Uy, x%) of ¥ is represented
on (U, u*) of ¥ by

0503+ 0588 Ty,
§3 Induced general connection.

We consider a submanifold %; in X.
Suppose we are given a general connection

I'=0uQ(Pid*’ + Iy, duw’Qdu™)

of X. The induced tensor field on X, of the tensor field (Pf) on ¥ has compo-
nents as

Pi=6{Pifi.
Definition 3.1. For a given general connection I'=(P%, I,) of %,
r=o(P)=0,0u. Q(Pi*d*u’ + Iy *duQc*d u®)
is called the induced connection of X, derived from I.
In fact, by definitions in §2

4) D¥X)/%: means the portion of D? (X) on Xi. That is, if we consider £2CZ and ¢ is the
identify map of Zi—%, then@D(&)/# is the induced bundle :~}(DAE))

Produced by The Berkeley Electronic Press, 1963
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:gf)‘u[®(sz*d2uj+f'jﬂ*dﬂ’@:*duk) _
0792, [ Pi(63d°%" +8.03d2"Qd x°) + Iy 0105 d "R d x°]
= Eixa® (07 Pioid?*s® + 02 Pi6.0id x"Qd x° +0¢ Ty00Ed xR d x°)
=0x.Q [ Pid*s" + 67 Pi0:93 + IMu6305)d 5" Qd x°).

If we put
3.1) I, =08 P39+ ' 916%)
then
(3.2) (M =0x,Q[ Pid’x + I'.dx*Qdx°],

hence y is a cross-section on T(X,)QRI*X,). For any other local coordinate
neighborhood (V,, %) of %,, if UM\ V=g, it is easy to verify by (2. 5) and
(3.1):

() — 0y 0x° 6x 0 x
Corresponding to A§h=I‘ n—0n Py in the general connection theory of %, let
us put

o Py
0x°
=07 A%,.040% — 64 P'5,0%.

(3.3) Age=T"—

If UNVisEé, then An(x) and A%(y) are related with

qo iyt _ o°y* ay” 0x" 0x°
G4  a)={- Pl + 8 M} S5

Now we shall define the covariant differentiation of a mixed tensor with
respect to the given general connection and its induced connection.
Let pur be the linear map defined in §1 (1. 8),
(g ,up(au,) = :,(P{a uj) = Pi'ﬂ‘;axa,
e 2t0(0°%30) = T340 20 )= I 52070 %0
Then we obtain  cpur/cqra(®:) :
pperex(0%4) = cyr(050us) = 65 PP030x, = Piox,,
eapip s (0aXw) =y (040500 + 02030711 5)
= 0405 P{056 %, + 050315, 050,
O PFay0,+ 020358,
=TI 0%;.
Hence we have
Py =D s

where

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/issl/1
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11(62.) = P55 xa,
(3.5) { 03:)= Paby
,u.,(6~x,m)=1" o7 X

Similarly, we consider the linear map *¢r (§1, (1. 11) and (1. 14)) at each point
of X, :

Fer(du')=Hdu')= aidx®,
Fop(du'Q@du’) = H(Pidu* @dn’)
= Plsteldx"Rdx .
Fen(du') = [ —(Di— 0, P51 du’Qdu*
= — (I —0, PY)ol0kdx"Qdx".
Then we have *¢r/D5(X:) as follows:
Fep(ddx") = Fep(00du) = 0505d 2" = dx",
For(Fdx"Qdx") = 0165 * or(du'Q@du’)
=0¢0% Pios0ldx*@dx* -
= P2dx"Qdx’,
Fend (@) = *or (634 + 630,03 u' Qde”)
= — 0}y — 8, P390 d x°Qd x° + Pio36,050592d %' Rd x°
= [— 0750305 + 670, Pi930% + Pio:950, 1 dx"Qd x°
= [ — (0802 + P32.6%) + 6¢ P}0.93 + 610 P49}
+ Pi3:5365]1dx"@dx°
=[—TIg+08:0¢ Po)]dx"Rdx"
=(—=TI%+e,PHdx"Qdx’
= — A%dx"Qdx".

To compute *¢rd (d°x%), we only have to operate the map *¢p to the last
term of the right hand side of (2. 11)

¢ (f’l‘[:ﬂz(g:)t u’ 6 z ()q ;) dup® duq:I

a \
o o, S0 (i 4D Praw @du']

a,ou %t (34—
" 6v* 6u® ou’
=0

since AL91=0. Hence we have

AY) 62 PIaidx"Qdx”

:*gﬂp:f,dzx“ = c*q‘pc tdix

that is *¢p § is independent of the coordinate neighborhood (U, «*). Therefore,
we have

Produced by The Berkeley Electronic Press, 1963
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oy="Ferd="%gnd,
where
oy (dx®)=dx",
(3.6) { ¢(d2*Rdx")= PidxRdx’,
oy(d’x") = — Apd °Qd 2",
We generalize (3. 5) and (3. 6) to define a linear map by the followings :
¢(0%a; Q- Q%4 ) = Pgi+>» Pardxn®--@Qdxs,,
¢dx1Q) - Qdx*n@d x*m+1) = PGi++- Pynd 21+ Qd 2" mQd 1 m+3,
o0"%0s) = TGy D%,
o d’x")= — A5 dx*Qdx".
This map ¢y leads us to define the covariant differentiation Dy of the induced
general connection y of %;:
D=Dy=gs-d : AT (ESX*D) 5 TE)D)
Now we try to define the coovariant differentiation of so called mixed ten-
sor on the submanifold ;. The tensor
V=Vi120x, @ 024, Q0u Qou,Q-
Rdx1Rdx"2Q) -+ QdurQd u’s) -+«
is called a mixed tensor on X.. We define dV by the following :
dV=25,V3 1 0x, Q- Qbu, Q-+ Qdu1 Q- Xdx’
—I—;V',ﬁil’}}iﬁ:axal®---®63xukb®-°-®8u¢l®'--®dx"l®"-
RduhrQ -+ Rdx’
+30 Vigjiroxs, @ Qou, @+ @0, Q-+
Rdx"RQ -+ RdurQ-Qdu’
+ %} V. 0%, Q- ® 0, Q- Qdx"1 Q)+ Qd’x™
R () Qdui®--

AR ().
If we denote the portion T(X)®Y/%, T*(X)®"/%, briefly by T(X)®. T*(X)*",
then d maps a vector field of the vector bundle T(X)®*QTX)*QRQT* (X)* Q@
T*(X)®* into one of the following vector bundle :

TEQTEPRTHEITRTHHTQT(E)
+ é}T(?Ez)m‘“@ 2(E)QTE)PP 2R T(X)>
RT*E)¥QRQT*HX)¥QTHX,)

rd

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/issl/1
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+ qu T (i,)@”@ T (35)-8(:—1)® HX)R T(?é)@(q—s)@) T*('&l)gr
QT *(X)®E+D
+ § T(%,)®* Q@ T(X)®'T*(%,) " Q DX,)R T(E)® ~"Q THE)®*

+ R TE)PRTEHRTHERTR TR R PERTHER) .
Now we define a map ¢ on the image of d which is a generalization of
(3. 6) and (1. 14) as follows
@052, &+ @ouy R+ Qdx"1Q++-@du1&--- Qdx")
= P{{}---PI‘;---P,’}}---P,{}---6x¢j®---®6unl®---®dx"l®---®du'°1
®'"®de,
#0204 QR 6°%2p QX {2, Q-+ Qdx"1Q) - Qdu’1Q)--Qdx’)
= P Tityeee Plaee Pitess PheoG2, @ Q@7 @+ Qd 241Q@-++
Rdu"1Q-+Qdx",
¢(Btte @+ QU @+ R6%u1, @+ QxR+ @duh @ Rdu')
= Pters PlieesTlyoe Pltees Pliens0, @+ 0un @+
®dx"1®...®duk1®...®dui,
¢(6xml®---®auil®---®dx”l®~-®d"‘x”h®(---)®du’1®--')
=— P;}'"P?f"' P,‘;}---AZ;b---Pi;---axq@---@auhl@--°®dxdx®---
Rdu'1t Q- Qdx’,
P05, @+ Q0@ QA Q-@du’' Q-+ @d'u'n@ (-+))
= Pg}"'P?}"'Pzi"‘Pﬂ}"'lijs;’,;k"'axﬁ@'"®5’un,®'"
Rdx1Q-+QRdu*1Q---Qdu*,

If we consider the last term dx” of the above right hand side as an element
6% du'of T*(X), we have

¢: d(TE)PQTAFRITHE)TQTHH)®)
= TE)ITQTX)*QT*E)¥ QT *(X)>*QT *(X).
Now we define the covariant differentiation of a mixed tensor by the following :
DV =¢dV
In fact, let
DV =0x, @+ Qdx"Q - Qius Q-+ QdurQ---QDV 3zl

and
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DV b};I = Dng'lmj o dxb.
Then
Dy V= Pyt P8, Virhin Pirees Pl
12 a. t cor@eesfp one d. k.
+ZZ:PUII--'Fbg'-'Phi-"V.‘;%... ...]:i...‘Pb}"'le"
i i, pf plgedien DA I3
‘i‘zszz}"'Ph}“'Phlﬂb"'Vcl...'l.l.....b.... P Pj;'
Ly 70w 1 a &
—;PS}"'Pn}"'le P‘bl"'Ad‘b"'PJ{"'
@ Dy YT Cyrevreeeeify vereee a k. yL3 ...
‘—;Pcf"'Pnl"'le ‘7] b}"'Pji'"ijjliﬁb'

1

For a tensor field with components (Vf,;iii) of X defined on %,, the covariant
differentiation of (V1) defined by (3.7) is the same as that defined by the
general connection I' of X. For a tensor with components (Vi) on %, the
covariant differentiation of (V{,‘Jliff) is the same as that defined by induced connec-
tion v of X, derived from I" of X.

Next, we are going to consider a special general connection of X and its
induced connection of X,. Let A% be any 1-1 tensor of X. Then

Ar=(AjPi, AT
and :
T'A=(PjAi, I'iAl+ Pi.Af)
are also general connections of ¥, and hence

e . 4
T=ArA=(aiPia} AiThAs+AP:24)

isa general connection of ¥ ([13], §1) Let us put
Pi=Ak
T jh=AZP,,,A Y+ AL P, A"
Then .
Th=AiAn A5 —0,A; PLA".
Especially, we consider the case when A{=0.0%o0n X, In this case, we
have
0fAS=05 0:A5=0;
and
62 AL PL A% =05 Prgy = Py
04 P393+ Tnb 62
=07 [ALPrA%001+ AL AL036% + AL Po, Al9ier]
=0% Pio (A9 + 0L hm39:
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=TIt

Hence we have the following theorem :

Theorem 3.1. If Ai=0405 on X, then the induced connection of %,
derived from the general connection AI'A of X is the same as that derived
from the general connection I' of X.

We denote the covariant differentiation with respect to the general connec-

tion I by D. Then it is easy to verify:
(3.8)  D,Vhli=AhAl-D (Al Vanis Ame-) AL Al
Now we consider a tensor field with components (V?;%;ZII), which is represen
ted in a neighborhood of ¥ by:
"Voimds = 0a1603+ Ve 0miOmze++.
Since
AL AR Vit A AT ="V,
(3. 8) implies
3.9) D'Viur= AjAsn--D(Vel) AjAje-
Since Af1=0465 on X, we have
D Vi = 0i08--+(D, Vi) o%0%- .
Theorem 3.2. Let Viizz™ be components of a tensor field of X.. If we
represent them in a neighborhood (U, u') of X by
V= 0a0a2 V30305,
Then,
D, Virzi=0a10a2+-(Dy Vi1ia) 65105+
where D denotes the covariant differentiation with respect to the general
connection I'=ATI'A and AS=06505 on %,.
In fact,
D;Vi=A!D,/ViAL
= A{(Pio, ' VA Py 4Ty 'Va Pro3— A7 ' Vi Pig)) AL
=005 P10y ' Vi PU03+0i T8, ' Vo PT6393 — 0347303 ' Vi, Pi6%) 62
=04(0F Pidy ' Vi PT03+ 05 T1, ' Vi Pr6397 — 65 47305 Vi Pi62)6s
= 0008 Pi0:0,Vita Proy+ 65 P{o,5. Voo Pros
+ 08 PiO:V3ds9% Pl0y-+0:T 5, ' Vi, PRoo}
— 0547503 'V, P167)0%
=04 [ P20,V 1P} 05( Pids5e+ I'ty0:05) Vi Py
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+ PV 0y Po,9% — 0% AT63)] 6%
From (3.1) (3. 3) we have
D,'VE=0L[ Po,ViPi+ 'y VePi— PiVidiy 6= D, Vs6h
Finally we shall generalize a theorem on parallel vector field in the classical
subspace theory to our general connection theory.

Let (V*) be a vector tangent to a submanifold ¥, and be represented in a
neighborhood of ¥ by
"Vi=6iV"
We consider the covariant difterentiation of the vector 'V* along a curve in %,

with respect to the general connection I" of X ;
1yt 1y J k
DV _ V" gy e

ds s
TAD
=(P 'V + I VIS

= [ Pi9y9) Vot Pl Ve+ Tl 'Vfaﬁ}g—i‘,

ﬁfD v LﬁgPJ(Gbﬂi)V“+ Paa,,Vuﬁ:r,,coaa{fV“]dx

_l:oc(Pﬁ,ﬁf—l—I’Jmaﬂ YVt P”abV“J dx’
=[P26‘,,V“+F ye e d"'
=DDVC%£:

where dx’/ds is the tangent vector of the given curve in ¥,.

Hence we have

D(ﬁaV“) DVe
ds ds

along the given curve.

Theorvem 3.3. Let X, be a submanifold X. If a vector field tangent
to %, is a parallel vector field along a curve of %, with respect to a given
connection I' of X, then it is also parallel along the same curve with respect
to the induced connection of X, derived from the given I' of X.

§4. Induced normal connection.

Let the given general connection (P}, I'k) of X be normal. Then Plisa
normal tensor (Definition 1. 2.). We denote the image -P(T (X)) by P.(%) or
P, and the kernel of P : T,(¥,)— P, by N.(¥) or N,. Now we have
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To(%) = P(X) + N.(%).

We assume in this section that the normal tensor P is orthogonally related
with the given Riemann metric G, that is, P.(¥X) and N.(%) are mutually
orthogonal with respect to G.

We are going to consider some submanifolds satisfying a condition given
by the following definition.

Definition 4. 1. A submanifold ¥, of X is called adapted to the gene-
ral connection (P, I'':) of X if each tangent space T, (X), xEX, and its
orthogonal complementary space in Tn(X) are invariant by the homomor
phism P.

Briefly, we say sometimes such a submanifold ¥; to be adapted in X.

Let %; be adapted in ¥. Then the tangent space at each point xE%, can
be written by

(1) T (%)=PX)+N.(%)
where P,(%,) is invariant by P® and N.(X.) is a subspace of N,. Let {#.} (a
=1, ---, 1) be a basis of T.(%X,). There exists a matrix (Py) such that

(4.2)  Pioi= Puss,
where (P3) is not necessarily regular.

We can verify that the dimension p. of P(T.(¥%,)) is constant. In fact, at a
fixed point xE¥%,, a basis of P(T.(%.)) can be represented by an (%, /) matrix
with respect to a basis of T(%;). The rank of this matrix is p(%), that is the
dimension of P(T.(X;). In a neighborhood of %, each point has such a matrix
of rank not less than p(x,), that is

lim p(x) = p(xo),

—
mzu

hence p(x) is a lower semi-continuous function. Similarly the dimension #(x) of
N.(%,) is a lower semi-continuous function. Since p(x)+#n(x)=constant, we
have that p(x) is a continuous function and hence it is a constant. Let the
dimension of P.(¥,) be /;. The dimension of N (¥,) is /,=/—1/,. We consider
a basis {Vﬁn/ao=1, oo, 11} of P.(X,) with respect to a natural frame in %,, and
a basis { V;‘l/a,=ll+1, -, I} of N.(%) with respect to the same frame. If we
represent the basis of 7T,(¥%:) by the given corresponding neighborhood and the
natrual frame in ¥, we shall have {()ZVZ'O} and {ﬁéng} as its components. By
(4.2), we have Pi=6}P']. Since (ﬁ,VZDE P (%)C P, and ¥, is adapted in %,
we have
PyVe =07 PUoIVa) =616, Vi Wao) = Vi Wi,

where (W‘i‘g) is a regular (/;, ;) matrix. Since ﬁf,VﬁlENx(RZ)CNm, we have

5) “T«(%:) is invariant by P” means P(Tz(£:))C Tx(X1).
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PjoiVe =0, thatis 6P} Va,=0, in other words,
P;V;=0.
The P; given in (4. 2) is the induced tensor field on ¥, from the tensor field P
on X. We have an induced connection (P§, I'%.) of ¥, derived from I'. Hence
we have the following :
Theorem 4.1, Let I'=(P}, I's) be a normal general connection of %,
X, be adapted in X. Then the induced tensor Py on X, from P;is also nor-
mal and hence the induced general connection : y=(P3, I's.) of X, derived
from I'=(Pj, I'y) of X is normal.
Now we consider the case T«(%X )= P«(X). At this time, (P$) is a regular
matrix.
Let {64} be a basis of N,(¥), and
(4.3) 8an=g1,040b.
Then (g.s) is regular, whose inverse we denote by (g4®). If we put
(4.4)  of=g, g™k, |
since P is orthogonally related with G, we have
(4. 5) 6i0F =05, 0.0¢=0, 6L9£=0.
The inverse of the matrix (0%, 6%) is
6%
( of )
that is
(4.5) 6202+ 046¢ =41,
we shall compute the mixed tensor D,8% defined by (3. 7). In this case
Dygt= Pion0d P+ Iy 08 P3s — A2 P
= P:(8,0] Pi+ I'020%) — 45,07 PS.
Hence we have by (3. 1)
05D,0% = P2p(0,04 P:+ I'n06%) — 03 45,63 P
= PiIra— Ao Pq
=D,d%.
Theorem 4. 2. Let I'=(P}, I'},) be a given normal general connection of
X and ¥, be a submanirold of X such that each tangent space T (%) coincides
with PX). With respect {0 I" of X and its induced general connection y
of X, Dy is orthogonal fo X if and only if
Dos=0.
At each point XEX,, we consider a coordinate neighborhood (U, #') of ¥
which satisfies the following conditions :
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(a) In U, % can be represented by the following equations:
u‘:u’(xl, orey xl, cl'”, u-...c”)

1+1

where (%!, +++, &%) are variables and ¢**}, «++, ¢™ are constants.

(b) U is covered by a system of / dimensional submanifolds denoted by
ut=u'(x% x°)
where (%) (B=1[+1, +--, n) can be considered as a system of parameters which
represent the system of submanifolds.

(¢) Any two vectors (64'/02%) and (0u'/0x") (a=1, ++-l; B=I+1, -, n)
are orthogonal with respect to the given metric G.

We call such a coordinate neighborhood “a@ coordinate neighborhood
associated to %,”. Itis clear that (x% x*) can also be considered as coordinates
in U.

Let the indices «, 3, *** run through 1, 2, -+-, n; the indices a, b, -+ run
through 1, «++, / and the indices A, B, -:* run through /+1, -, n. With respect
to any associated coordinates, we put

1
(4.7) o.‘,=%
and
(4.8)  6¢=g"g.,0},
where

Zus=8ufubb, (g°°)=(gap)™";
clearly the matrix (gas) is reducible :
. (gab 0 )
0 gu’’
We are going to consider the general connection AI'A defined in §3. In
the associated coordinates (x*) the tensor field A% may be written by :
Az=06¢ AS04.
The general connection I" can be written in the coordinates (x*) as
P3=02P}6}
Igy=6% (Pioygs+ I 6463).
Especially, let A% be the following tensor :
4.9  Al=0.05%
that is, if we consider the tensor A} as an endomorphism A of T.(%) in itself,

A is a projection of the tangent space T .(X) onto the tangent space Ti(%,;) for
any x €UNZX,. If A isdefined by (4. 9), we denote the general connection

AT'A by T, in other words
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Pi=A! P} A
Th=Ail%, AL+ ALPL6, A}
{ L =0005

J alje

(4. 10)

Since A is a projection, we have A*=A. By the definition (4. 9), the following
relations are easily verified :
(4.11) PiAl=A'Pl=Pi,
Alol=0. Aj04=0
w2 {7 e
0‘:14_; = 0‘; 01 3= 0.
Hence we have
Pio)=0i0} Piok =0} P,
Pioj= Al PLA%,=0.

Thus it follows immediately :

Theorem 4.3: Let I'=(P}, I'y) be a normal general connection of
X. If %, be adapted in %, then (P}, T'%) is also a normal general conne-
ction of %.
Now we try to write the general connection (P}, I'%) in the associated
coordinates (x*).
Pi=067 Pigj=0¢ Pioi= Ps,
PI=0lP}0i=07A'PLA%]=0,
Pi=P2=0,
that is,
(Pyy=,P; 0
413 ( )
(4.13) o 0o/
We can also easily see:
A4p) = ( o 0 )
0 0/
Concerning the I'g,, we have by (4. 10)
T3, =03(Poy84+ T4 050%)
=02 [ At PL A" 03+ AL (T A+ PhocAY)046Y]
=02 AL [ PL A%, 04+ i Alo30%+ ProcA50405].

(4. 14)

Hence we have

fgv =0,
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T3y =07 A} [ PLA},93+ P9 A%0405)
—04 A‘ Ph [Ahay9 +67A 01{]
=0TA§ Phay(Ajﬁ_u)—O.
In the same way as Theorem 3. 1., the adove I'§, implies
=I%.
T2, can be written now by :
{ T =0, Ie,=0,
Ie=rs.
Next, we are going to give a method of develpoment of curves in ¥; by use
of the associated coordinates (U, x*) of X.
Let A" be a pseudo-affine space of dimension # (§ 1 Definition 1.4) and

C: x*=x%{) be a curve in X. If there exists a curve C : v*=0(f) in A” and
a frame field {X%} on T(X) along C such that

(4.15)

dl) )\dxw
dt =Ya dt
(4.16) DX? axy dx®
A o B A Yy _
LT dt Pﬁ(Pth 7 X3 a't) 0,

where { Y3} is the dual basis of {X?}, and the given general connection (F}, 0)
of A® satisfies
=Y.P; X!

along C, and is free otherwhere except the curve C, then C is called the deve-
lopment of C with respect to the general connection I

Now let C be a curve in the submanifold ¥;. We shall {find a development
of C with respect to the general connection I'. Local coordinates used in the
following are the adapted ones. Since C is contained in %;, we have

dx®(t) _
Tdr
By (4. 13), (4.15), the formulas (4. 16) are written as
dov* Adx®
dt =Ya dt
(4.17) d
PP g I

The matrix (P5) is regular, hence the second formula is
d X)\ dx

T + Q5 I'ty T =0.

Let us put
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» dx°

Qb-r'cd'd—t:Kc-

Then it can be written in
418 X gexi—o.
dt
The i's run through from 1 to n. Let us denote

i=1,-.0;  a=l+1, o, n.
In (4.18) let us put
(4.19) £=0
and solve the equations
axx

dt + K ¢ Ay = 0
about (X%). If we give such an initial condition as:
X3(to)=c5, lex| 70

where (cf) is a constant matrix, then we can get a system of linearly independent
solutions. Thus we have a system of solutions of (4. 17), that is

(X2, 0) | X2(t)| 0.
Now we attach any (n—17) vectors
(X3 X39)
to the above solution such that the following matrix
X 0
@200 (L, .,)
XX Xi
to be regular. Let the dual frame of (4. 20) be

0 Y 0 ) ]
@ () (YD=(%
Now the first formulas of (4. 17) can be written as
dk _
a0

that is v*=c (constant), in other words, the development C of C is contained
in a submanifold A' of A", where A' is defined by r=c.

‘We have proved the following theorem :

Theorem 4.4 Let %, be adapted in X as in Theorem 4.2. Let I' be

a given normal general connection of X. I' is a general normal connection
given in (4.10). In an associated coordinate neighborhood any curve C in
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X, has at least one development in a submanifold A' of a pseudo-affine
space A", which can be determined except (n—1) frame vectors which are
not tangent to %,. In this case, A" has a general connection (F3, 0) which
satisfies
Fi=YiP;X: Fi=0, F.=0
along C and Fb is free outside C.

From Theorem 3. 1. and Theorem 4. 4. we have

Corollary. The development C of Cin %, of Theorem 4. 4. coincides
with the development of C in the pseudo-affine space A' with respect to
the induced connection y of %, derived from the normal connection I' of
x.

Remark® Under the conditions F,§= YIPiX X 'Z"= 0, F§=O, the deve-

lopment C in A’ in A" of any geodesic C will be also a geodesic. Because, under
the given conditions

Flyi=Y}P:
along C, and taking account of (4.17) we have

&) -mi -rg (v

-ri(eet 4
- vie (G xR 4
Vi () -G s - P"j“"w%]
D ()8 i
—Y"D ‘fi’lf) Y§«1pP£7’;—
Adv“

=Ar 'y dar°

§5 Induced regular connection

Let the given general connection of X be regular (§ 1 Definition 1. 1.), %,
be an adapted submanifold in %, {6%}, 0L=5u'/6x* be a basis of the tagnent
space T.(%,) at each point *E%, and {4} be #»—/ independent tangent vectors
of T.(X) which are orthogonal to T,(%;). Then they satisfy :

6) See [10] § 3.
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(6.1)  gusuoi=0.
We put  go=g1,0564, 6¢=g"g;0 asin §2, and
(5.2) Zan=g" 040},
(5.3) ﬁ¢‘=g“”’gu 63, (gén)"=(g“")-
Then we have
(5.4)  60a6¢=20% 0.67=0. 6f04=0.
Since {6z} and {6%} are invariant by P and P is regular, then if we denote
PE=07Pj0} o, B+ =1,2, -, 1.
we have
Po=0{ Pioi=0t0; Wi=
Pi=0{Pi9i=0{65 W5i=0

Hence the matrix (P§) can be written :

(z;) (PY(83, 0%) = ( g’s 1(3);; )

where (Pj), (P37) are regular matrices.

(5. 5)

Theorem 5.1. Let I'=(P% I'\y) be a given regular general connec-
tion of X, X, be an adapted submanifold in X. Then the induced general
connection v of X, from I' is regular.

From the definition of 6§ and 67, it is clear that

6L6,=0y,  0705=07,
(5.6)  0f0l+0i0l=4ai
By (5. 5) (5. 6) we get :
Pioi=06¢Pi6i6¢
=07 Py(61—046%)
=67 Pi.
Similarly we have ¢f P = P} 0“, hence
(5.7 0f Pi=Py6;,  0i Py= Pi6.
Denoting the inverse matrix of (Pﬁ) and (P$) by
(Q)=(P))" Q) =(P)",
we obtain from (5. 7)
(5. 8) bR Qi=61Q1 05 QL=Q%0..
Let us put
QL Pﬂn AmQJ ”Fﬂx
Q,]" Ty, A.Qf="I%
Now the basic covariant differentiation (81, (1. 20)) can be generalized on the

(5.9)
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mixed tensor field.
Definetion 5.1. For a mixed tensor field with components V2. §1§,I::
on X;, the operation

Db o ha jljg =Q5 Q‘;;'Q 1Qh2"'DbVﬁ1-12 k) k' S Qh QD;"'Q,} ng"‘

is called basic covariant differentiation with respect to the connection I’
and its induced connection y.

From (3. 7), we get easily :
D,,V,, (8 S =8,V §J§§ +Z’F“L V’,f}"'f'"}lf,z
(5. 10) ZLI Fb bel"' c‘..}ljz .'—Z IF;I’C ‘V:ln.., ijz 6:.
"‘;”P,;lk zrf]gg j} 2 e
Now we consider the relation between basic covariant differentiations and
contractions. We have
DV =0, Vigaie: + T Vi e
— ST Vi + ST, Vi ol
S SR

—Db(Vblb“ t” )+'1ﬂ1 Vi uz"ﬁ 5 65
”F11k %1(;3 nljz 0y
=Dy(Vigz:iier) + Vel ('Tin— ") 65
=Dy (Vi) + Vigerhia Do 4,
that is
(5.11) 0 .IDDVbll," ;lg —Db(Vblb )+ Ve i ‘3 D,,o{
Similary we get
(5.12)  suDy Vil =D Vifiyifol) + VeziyiaiDisly
Hence we can assert

Theorem 5. 2. If Doj—O with respect to the general regular con-
nection T' of X and if Dot=0" with respect to the induced connection 7
of ¥X;, then the basic covariant differentiation of a tensor and the contrac-
tion of the tensor are commulative.

We shall compute the basic covariant differentiation of the mixed tensor 62,

7) Infact, D8%=0  implies D33=,0 (see §6, Theorem 6.1.)
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which is given by
(5.13)  Dobi=0,0%+ 0505 — """ 65
From (5. 7) and (3. 1) we get
I't, = P36%0.63+ 0:Tn8307
Q3I'l.=0%0.0]+ Q301 nbi0¢
= 050,94+ 02Q in030:.
(5.14) 18, = 098,61+ 0% ' T5n03 00
From (5. 13) and (5. 14) we get
0:Dy94="I"%— "I = Do
If we put D,9,=H}, then
(5.15) to=D,05 05+ Db,
where
Qo= ; (0:0024:
why=0£H.
0%, is a vector orthogonal to T(¥). «#% can be calculated as follows :
wiky= 080,05+ ' T2 05— " I2a08)
=019,05+6{'T": 61063.
Lastly, we generalize some theorems in the classical theory of subspace to

the submanifold with a regular general connection.
Let C be a curve in ¥ which is a geodesic® of X. The tangent vector at

each point of C may be denoted dy £* if we consider it as a vector of % and
by &' if we consider it as a vector of ¥, thatis, &‘=04£% Let the affine para-
meter of the geodesic C be s. Then
Dg' _
ds
Since £'=0£% we have by (5. 12) and (5. 15)
Dg* _ D(0a£*)
ds ds
DO,_-

(5. 16) —a;?f’ +&° (o:.m‘ur 205°) —

_0;DE &“0‘ A4

v aes

—E‘= i 1 ‘._D_E_a= L gage —
a 0 implies R 0 and QL£%°=0

8) See [9], §4, Definition 4.1.

Hence
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Theorem 5.3. Let I'=(P% I's) be a given regular general connec-
tion of X, X, be an adapted submanifold in X. If C is a curve on X, and
is a geodesic of X with respect to I', then C is also a geodesic of X, with
respect to the induced connection y of X, derived from I.

Let the given general connection I" of X be regular, and ¥, be an adapted
sudmanifold in ¥. If any geodesic on ¥; with respect to the induced connection
r of %, is also a geodesic of ¥ with respect to -I", then X, is called @ geodcsic
submanifold of X. Now we have evidently

Theorem 5.4. The necessary and sufficient condition of %, to be

geodesic in X is
(5.17) Dlary=0.

Similarly, let 7%(s) be a vector field tangent to X, along a curve C in X..
It is represented by 7*=0:%" in coordinates of X. We have
D(p%7") Dy*

ds ds
Hence, if 3 is any vector field which is parallel along C with respect to the
induced connection of ¥;, then 7'=0,%" is parallel along C with respect to
the general connection I" of X if and only if 2i,=0.

Let %, be adapted in ¥ and X be given a regular general connection I". We
displace parallelly a vector tangent to ¥; along any curve in %, with respect to
I. 1f the displaced vector is always tangent to %;, then ¥, is called a flat sub-
manifold. Now we get the following theorem :

(5.18)

=g

1
+%° Dok

Theorem 5.5. Let X be given a regular general connection and %,
be adapted in X. X, is a flat submanifold of X if and only if 0,=0.

§6. Induced metric connection.

In this section, we suppose X has a regular general connection and the
submanifold %; is adapted in X.
We have a relation between "It and /T, :

Hnpe _ g4 N _ na f_aP?
Pbc'_‘/-‘chb—Pfc Q7 or Q{

=00 192 + P13 59 Qi — % Ql

Al pt Di 3
=0t QLas0t-+0: PiaaiQ— ZOPID o

oP 007

13
10%Qlas—

=08 I, QLOs9: — 67 {0307

¢ Iy, Q16 Yo 50 Pi07Q7
@ 4t A iakon__ 00F piasak

=0{ A5nQil0:9: — % P;Qic,
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=07 6300 + 07 601:;;
ox
that is

"M = 08" Tha30%s + 030:93.
From (5. 14) we have
1Dy — =601 —"T%,)04 0%
In other words,
D.d¢=0{Dyd'00%
Theorem 6.1, Let I'=(P}, I'';) be a regular general connection of %
ard X, be adapted in %. Then Dyst=0 implies Dedg=0.
Now we consider the basic covariant differentiation of the induced metric
tensor gu. of %,.
5cgalx = Bc(gijottzﬂg)
=(50g‘1) szﬁ,{ +g,—,(5091)0i+guﬂ.§l—)gﬂﬁ—gnjﬂﬁﬁjﬁc()‘ﬁ—gmﬁéﬂ’ﬁﬁ 6"’
=(D.g: 0401+ g1 (04 Dodi+ 04) 83 + g 1,05(03D 52 + %) — gn 6563 D
gmﬂwﬁbD or.
=(D.gu,)0.6)+g.,0% Dca::ﬂb+guﬁaﬁ Dbt —gas0563Deds — gn005Do3%
= (chu)ﬂaﬂg +&Gua Dcaa +Zaa ch‘b—ghﬂiﬁa’ ch\;’: ——g{hﬁiﬁ’g Bﬁﬁ.
But since
gwl_)cb‘g——-gnaﬁchowu guﬂanma
gD =guats Ddi% = gn, DoBlo5.
we obtain
Ee(guﬁhoi) = (l—)cgu) 0463,
Theorem 6.2. If I'=(Pj, I''y) is a regular metric general connection

of %, and X, is adapted in %, then the induced connection y of %, from
X is also meiric.

For a reglar metric general connection (P}, I'i,) of %, it must be

= Fg%" P¢Pk gmdinPf—gm/‘?nP§=0

where
Pl
h_r R
K T

that is
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0gu
ou"

— &' Iih—8gu "ria=0.

Hence "'I' is a metric connection derived from gy Itis clear thatif /I" is a
metric connection derived from gi; then (Pj, I's) is metric. Furthermore,
if the regular metric connection [ satisfies the condition :

(6.1)  Sh=2(Ih—T4) =5 (Pla— Ph)

where the semi-colon //; " denotes the covariant differentiation with respect to
the Levi-Civita’s connection derived from (g), then I'=AI'A is a normal
metric general connection with respect to (gi;) and satisfies the following con-
dition :
< 1 - -
(6.2)  ShAi=— Ai(Pin—Fi w) ALY
Now we shall use a coordinate neighborhood associated to the submanifold

X, to write the metrric general connection I
At first, we are going to write (6. 2) in associate coordinates (x*) :

(6.3)  StrAj= 1 AN(Pi,p—Phio) A}
From (4. 13) and (4. 14), (6. 3) can be written as
St =5 (P¥ o= Pg,)= —=(P%o— Pi.J),
S&=0,
Sa i—'a’ _;_Pg;ﬂ.

=g Pcin=
Let us put
(6.4)  ZuSh=Seery  &urPhis=Ppass
then the above three formulas are
(6.5)  San=5(Parso— Poas),
(6- 6) gcnﬂ= f

(6° 7) §ca,n = % Pca;B-

Concerning the metric general connectton I°, (6) of [13] shows that Tyy=
gul'l; satisfies the following relation :

9) See [13] Theorem 3.3.
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({7, 1] @ =5 (Tt Tu) A+ G P+ 5 PG
where
[ij, b] = %(%uijn + %‘%ﬁ“} - %)a guy=gu PPy,
Qi=A41Q} 4.
We shall write these formulas in terms of the associated coordinates. It holds
clearly :

(6. 8) (@) =< @ 0 ) (@) =(P3)7,

0 0
(6- 9) §u=gcaP§P§, §A»=§M=0- §43=0-

o ~i(3§m . @@_a_?a_b)
Lab, c]= 2\%x ' 9x* ox°/

(6.10) [BC, a] =0, [Bb, C]=0,

B o] — L 08w 25 Cl=—_108n
(Bb,c]= 5%, [ab, C)=—5 %2,

6.11)  [af, 5] Qi= - (Purs+ Tsue) + Sova P+ 5o PQL

Let @« beaand 8 be b in (6.11). Then

Lo+ Toas =2[ab, ¢1Q5—2(Sra P + 570 PO Q.

Since
f ad T'baa. = ZSaab;
we have
Tupe=[ab, ¢1Q5+Suw— (Srea Pi+ 570 PO
(6.12) 1
Scab =? (Pca;b— me.-c)-

Next, we have from (4. 14),
(6.13)  I'py=0,
(6.14)  TIany=0.

Lastly, it remains to find Toca. By (6. 6) we have
(6.15)  Taon=Twos— 1 5:a=2Seen= Puc; n

Theorem 6.3. Let X have a regular metric general connection I'=
(P, I's) satisfying (6.1). In a coordinate neighborhood associated to the
adapted submanifold %, the normal metric connection A'A=T can be
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written by (6.12), (6.13), (6.14) and (6. 15).
From theorem 3. 1. and (4. 15) we get

Corollary. The induced connection of X, from (P, T) is metric and
given by (6.12).

§7. Curvatures of T and its induced connection.

Let I'=(P% Ij) be a regular general connection of %, and X, be a

submanifold adapted in %. I" is the connection AT'A where A{=0¢4% on %,.
Since ¥, is adapted in %, the matrix (P%):
§=0{P,03
is regular. Let (Q%) be the inverse matrix of (P§) and put
@1 Q=0iQse}
then (Q%) has the following properties :
(7.2)  PYQi=AL,  QiPi=A4,
(7.3)  AQi=Q,  QAI=QL
(7.4)  0iQ5=Q50}  6iQ5=0iQ5.
Suppose that ¥, is covered by coordinate neighborhoods of % associated to ¥%,.
Then Q% is a tensor and we can derive the following general connection :
T=3qT
=(@iPL QiT%)
=(A;c) 'T h)
where
(1.5)  TH%=@Qil .
From the definition of I': (see (4.9)), we have AjI'y=TI"%. Hence (7.5)
implies the following relation :
(7.6)  PiT%=T"%.
4%, can be written as
(7.7 4% =T —8.4.
Now we shall give some lemmas concerning the general connection.
Lemma 1. The induced connection of %, derived from the general
connection 'I’ of X is a classical connection (0%, 'I's,) where
T = QI

and T'%L are the same as (3. 1).
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Proof. It is clear that
03A565=6%.
From (7. 4) and Thecorem 3. 1., we have
63(A30, 03+ T 3046%)
=050:9] +0{ Qi %03 0%
= 050:93 1 Q25T 930%
= Qi(P;050.5]+ 65 T"640%)
= Q:0i(P}0.93+ T'n30¢)
= QIS (Q.E.D.)
We denote the covariant differentiation with respect to 'T" by /D.
Lemma 2. 'Dai=0.
Proof. 'Dné!='T} 8\ Ai— Ajoids,
=THAi— AN T —6,A})
=ThAl— T+ Alo, Al
’;{,.AE can be calculated as follows :
THAI=Q{T% Al
= QAN Al + ALPiB, AN AL
= QI(Airu Al + AL P56, AAY)
= QIAI AL+ AL P, AS— ALPL A%, AY)
= QA A+ AL P39, AY — Qi P, Al
QiTh— Alon AL
T —~A,ahA£.

Hence we get
'Dé{=0. (Q.E.D.)
Lemma 3. P!D,Pi=Dyd{ where D denotes the covariant di fferenti-
ation with respect to T'.
Proof. 'DyPi=Al0wnPiAi+ THWPiAi— AiPid,
= An PLA+ T Pi— Pl iy
= Al0, PiAL+ T Pi— PLT, + Plo, Al
=0, Pi Al — 0, AL P} +' Ty Pi— Ty + P, Al
=08, Pi— 0, A Pi+ T P —
= —0,ALP] — A+ T4 P
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On the other hand,
P|0, A Pi="P{0,P,— P{ AL, P;=0,
hence from (7. 16) we get
P!'D,Pi=P;iTh— PiA=Dusl. (Q.E.D.)
_ Next, we are going to investigate the relation between the curvature tensor
Ri. of the connection I' and the curvature tensor Rj,; of the induced connec-
tion of ¥, from I
Since (43, 'I'%.) is a classical connection, its curvature tensor 'Ry, is given
by
(7.8) "Riae=04 5 — 0. Ioa~+'T'ed' The— ' T8 T'sa
From (7. 4) and (7. 5) we have
Toe=Qal
= Qi9{(P'051 -+ T 'wb16?)
=01 Qi(P}0.0]+ Iu0i6t)
=05(AlD.09+ ' Tx036%)
that is
TS =690+ 0% ' T'3:016%.
We substitute this relation into (7. 8), then the result is
'Riae=04T5:— 0/ g+ 'Ted T3 —'T¢,' T3,
=ﬂ?(an'l—";x—akﬁ-n—!-’inn'l_“‘;x~'f§k’l_“§n)0féﬂiﬂ'§
40407630, Al — 001010, Al — 03" T305040.A{ +6{' T 505030241,
In the proof of Lemma 2, we got the following relation :
THAi="Th— Al6, Al
Hence the last two terms in the right hand side of 'R. can be written as :
05/ T05050. A1 = 05 T 30%0.0,— 08 T 'w05A1 8.5,
=08 T050:9] — 0T — A0, A7) 96,95,
=050.A10.9}
= 0407000 — A0a050.6%
=04970:0%— 046%0:03 +0.95. 050 Af
=0,0%. 059 A].
Now we obtain
(7.9)  'Rba=08(0n' T — 0,/ Tip+ Th/ T~ THT'n)05030%
On the other hand, the curvature tensor of the general connection 'T" is given

by
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"Ri=[A{ (01" Tna— 04" T)+ (T T — T/ T)] AT
—'Dndl A+ Dbl AT
Lemma 2 asserts that ’—Dcﬁj‘=0, hence we get
(7.10)  "Rine=[ANON Tk —0x'Tun) + (T Tl — TH/Th0) L AT
Now (7. 9) and (7. 10) give the following theorem :
Theorem 7.1, On the adapted submanifold %, the curvature tensor

! 1

of the general connection T of X and the curvature tensor 'Rl of the
induced classical connection 'I's, derived from 'T' of X have the follow-
ing relation :

(7.11) 'R =0%Rh.0:6%06%.
Next, we investigate the relation between 'R}: and the curvature tensér Riu
of the general connection 7.
(7. 10) can be written in the differential form as follows:

(7.12) Qi =(AMd T\ Ndu*+ Thdu® N'T. du*) AP
The curvature form of I" is
0l =(P{dT N\ du* + Tl du® \Toudu®) PP — Do, \ ATdu®
From (7. 6) and Lemma 3, we have
07={Pld(P}'T:x) Ndu'+ P Thndu" \ P Trudu*} Py
— P!'DPL N\ Ajdu®.
In the proof of Lemma 3, we obtained the following relation :
— Apdu*="DPy—'TuPidu*+ Pid A7
We substitute this relation in £{ and put
M?=P{P..
Then we have
O} ={Mid'T . \Ndu* + P{d P\ Tindu*+ P'Thdu* N P Tiudu®
—P!'DPi\ Twdu*+ P'DP: Nd AL) Pr+ P'DPu \'D PP
The term P! DP!A 'Thi du® can be written as
P!'DPi \'Thudu*=PldP; \'Trudu* + P{ Thdu" \ P{'T'du’
— M 'Thdu \ Thdu* + Mid A \ 'Tadu.
Now we obtain
D1={M{!d T'u\du+ M} 'Thdu" N\ T wdu* —MId A\ Thd
+PIDPINdALY PP+ P!'DP..\'DP?.
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On the other hand (7. 12) is
" =(d'Ti \Ndu*~"T'd Al Ndu* + 'Thdu* \'T' . du*) A

We get the following theorem :

Theorem 7.2. Between the curvature form of I' and the curvature
form of ‘T, we have the following relation :

(7.13)  Oi=M{'"G Pr+P!'DP: N\dA. P+ P{'DP, N'DP;.
Let us put
M:= P} PJ,

and combine Theorem 7. 1. and Theorem 7.2. Then we obtain

Corollary. Let X, be adapted in X. Between the curvature tensor of
X with respect to the general connection T and the curvature tensor of %,
with respect to the induced connection (P3, I'tc) of I', the following rela-
tion holds :

(7.14)  03R}hubi9%05= M! Rjo Pi+2 P07/ Dea Py By Aty P
+2 P20 Dea Pl Dy P70},
Lastly, between Ri. and 'R, we have'”
(7. 15) wie= Ms 'Ry P{+2P3' Dy Piy ' Dy P3.

To simplify the last term of the right hand side of (7. 14), we establish the
following lemma :

Lemma 4. (a) 'D#i=0, (b) D6 =0.
Proof. (a) 'D.gy=A}0.89+ ' Thoi0E—'T561A%
From (7.3), (7.5) and the definition of ‘I'3,, we get
"D.03= A50:93+ T — (03005 + 07 Tret305)03A]
= Aj0.08+ "T1.0305 — And.95 — Th0865 =0,
(b) "D =8.85A1+'Te05A! —"50:6%
=0.05A1+ 00 I'ec— ('T, — 8, A 040
=0.0% + 65 (0n0:0% + 03 'T.830%) — 'T'E. 626%.
From the relation A{'T5='T% — A3, A} which is proved in Lemma 2, we
have
D =030 A} + (T — AN0L AY6S9E — T2 = 0. (QED)
By Lemma 2, Lemma 4, we can write the last term of the right side of
(7. 14) as
P:9:'DaPu'D. PP 0i= P;'Du05 P4) D P16})

10) See [9] §7 (L.2).
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= P'D{ P36},)' D P36y’) = P¢'D, P;'D, Pi.
Hence from (7. 14) and (7. 15) we have
OSR A B30%08 = Rigo+ 2 P20 ' D P2y ALOF P
The last term of the right hand of this formula can be simplified by Lemma 4,
that is

"Dy Pioc Aty = "Dl 0% P0%) 8. A6y =04 Da P3 610, AL6T,
but since
019, A%07 =0,
we have
O R0307%05 = Ry

Then we have established the following theorem :

Theorem 7.3. If X, isadapted in X, and X has a regular connec-
tion (P TI'w), then between the curvature tensor Ry of T=AT'A and

the curvature tensor Ry.. of X, with respect to the induced connection
(P3, T's.) from I' of X, there is the following relation :
(7.16) 05 Rn03026%= Riser
In the above, we used the general connection 7" to simplify the curvature
tensors. Similarly, we can use a general connection defined as follows
"T=TQ=(AS"T%)
”-I——'fik = T?x@fs + ?z‘ am@?, ”ij = ]h@f«
The induced connection (Pj§, I't;) of X; from the regular general connection I"
of X is regular. Its covariant part "'I's; is given by
"Dse=IeQ3+ P30.Q5.
It is easy to show that the classical connection "I, is the induced connection
of %, from "I of %, thatis
(7.17) " =01 A50.9]+"T".546%).
Corresponding to Lemmas 2, 3, and 4, we can prove :
(7.18) "D,éi=0,
(7.19) "D, PiPi=Dyd,
(7.20)  "DgL=0, "D =0.
Lastly, from §5, Lemma 4 of this section and (7. 20), we get
Theorem 7. 4. Let X, be adapted in X, and X have a regular gene-
ral connection (P} I'%s). Then X, is flat with respect to the general con-
nections 'T, "I of X and their induced classical connections of %,.
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