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A CLASS OF ABSTRACT QUASI-LINEAR EVOLUTION

EQUATIONS OF SECOND ORDER

NAOKI TANAKA

1. Introduction

In this paper we study the abstract quasi-linear evolution equation of second order

1

2
3

4

u§(t)¯A(t, u(t), u«(t)) u(t) for t ` [0,T ]

u(0)¯φ, u«(0)¯ψ
(1.1)

in a general Banach space Z. It is well-known that the abstract quasi-linear theory due

to Kato [10, 11] is widely applicable to quasi-linear partial differential equations of

second order and that his theory is based on the theory of semigroups of class (C
!
).

(For example, see the work of Hughes et al. [9] and Heard [8].) However, even in the

special case where A(t,w, �)¯A is independent of (t,w, �), it is found in [2] and [14]

that there exist linear partial differential equations of second order for which Cauchy

problems are not solvable by the theory of semigroups of class (C
!
) but fit into the

mould of well-posed problems where the solution and its derivative depend

continuously on the initial data if the initial condition is measured in the graph norm

of a suitable power of A. (See also work by Krein and Khazan [13] and Fattorini [6,

Chapter 8].) This kind of Cauchy problem has recently been studied extensively, using

the theory of integrated semigroups or regularized semigroups. The theory of

integrated semigroups was studied intensively by Arendt [1] and that of regularized

semigroups was initiated by Da Prato [3] and renewed by Davies and Pang [4]. For

the theory of regularized semigroups we refer the reader to [5] and [16].

The second-order equation (1.1) is converted into the first-order system

(u(t), �(t))«¯Ah u(t) (u(t), �(t)) for t ` [0,T ] and (u(0), �(0))¯ (φ,ψ)

in a suitable Banach space Xh , where for each solution w of equation (1.1) the matrix

operator Ah w(t) in Xh is defined by Ah w(t) (u, �)¯ (�,A(t,w(t),w«(t)) u). We are here

interested in studying the case where each matrix operator Ah w(t) is the (complete

infinitesimal) generator of a regularized semigroup on Xh . In Section 3 we set up basic

hypotheses on the operators appearing in equation (1.1), and prove a fundamental

existence and uniqueness theorem (Theorem 3.6) for the Cauchy problem (1.1). The

proof is based on the theory of regularized evolution operators developed by the

author [15], and a method of successive approximations proposed by Kobayasi and

Sanekata [12] is applied to construct a unique twice continuously differentiable

function u satisfying equation (1.1).
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Our formulation includes the abstract quasi-linear wave equation of Kirchhoff

type

u§(t)m(rA"/#u(t)r#)Au(t)¯ 0 (1.2)

in a real Hilbert space H, where A is a nonnegative selfadjoint operator in H. Section

4 presents a regularized semigroup theoretical approach to the local solvability of

equation (1.2) in the ‘degenerate case’ where the function m(r) has zeros (Theorems

4.1 and 4.2), by using the result obtained in Section 3. In Section 2 we summarize

some results on the generation of a regularized evolution operator associated with the

linearized equation of (1.1), under the ‘regularized stability ’ condition, and show that

the family of matrix operators used to solve the linearized equation (1.2) satisfies

the regularized stability condition. This fact will be useful for our arguments in

Section 4.

2. Regularized e�olution operators

In this section we consider a pair of real Banach spaces (Xh ,Yh ) satisfying the

following condition (2.1) :

Yh is densely and continuously embedded in Xh . (2.1)

The norms of Xh and Yh are denoted by s[s
X
h and s[s

Y
h respectively. The symbol

B(Yh ,Xh ) denotes the set of all bounded linear operators on Yh to Xh . This section is

devoted to an exposition on the generation of a regularized evolution operator

associated with a given family ²Ah (t) : t ` [0,T ]´ of closed linear operators in Xh .
We begin by stating the following conditions (1)–(3) for the family ²Ah (t) : t ` [0,T ]´

of closed linear operators in Xh .
(1) There exist an injective operator Ch in B(Xh ) with dense range and two

constants M& 1 and β& 0 such that if λ" 0 satisfies λβ! 1 then the following

conditions are satisfied.

(i) I®λAh (t) is injective for t ` [0,T ].

(ii) D(0m

i="
(I®λAh (t

i
))−")[R(Ch ) and

))0m
i="

(I®λAh (t
i
))−"Ch ))

X
h
%M

for every finite sequence ²t
i
´m
i="

with 0% t
"
%…% t

m
%T and m with 0% λm%T.

(iii) Ch −"Ah (t)Ch [Ah (t) for t ` [0,T ].

(2) There exists an isomorphism Sh of Yh onto Xh such that

Sh Ah (t)Sh −"¯Ah (t) for t ` [0,T ], and Sh Ch Sh −"¯Ch .

(3) Yh ZD(Ah (t)) for each t ` [0,T ], and Ah (t) is norm continuous in B(Yh ,Xh ) on [0,T ].

Condition (1) is called the regularized stability condition, and the set of all families

²Ah (t) : t ` [0,T ]´ of closed linear operators in Xh satisfying the two conditions (1)(i) and

(1)(ii) is denoted by RS(Xh ,M, β,Ch ). We are now in a position to state the generation

theorem of regularized evolution operators.

T 2.1. Under assumption (2.1) and conditions (1)–(3), there exists a unique

family ²Uh (t, s)´ in B(Xh ) defined on the triangle

∆¯²(t, s) :0% s% t%T ´

with the following properties.
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(i) Uh (t, t)¯Ch and Uh (t, r)Uh (r, s)¯Uh (t, s)Ch for (t, r), (r, s) `∆.

(ii) Uh (t, s) is strongly continuous in B(Xh ) on ∆, and sUh (t, s)s
X
h %M for (t, s) `∆.

(iii) Uh (t, s) (Yh )ZYh , Uh (t, s) is strongly continuous in B(Yh ) on ∆ and sUh (t, s)s
Y
h %Mk

for (t, s) `∆, where Mk ¯MsSh s
Y
h
,X

h sSh −"s
X
h
,Y

h .

(iv) ¦Uh (t, s)}¦t¯Ah (t)Uh (t, s) and ¦Uh (t, s)}¦s¯®Uh (t, s)Ah (s), both of which exist in

the strong sense in B(Yh ,Xh ) and are strongly continuous in B(Yh ,Xh ) on ∆.

The family ²Uh (t, s) : (t, s) `∆´ in B(Xh ) obtained by Theorem 2.1 is called the

regularized e�olution operator on Xh generated by ²Ah (t) : t ` [0,T ]´. Theorem 2.1 was

previously proved in [15, Theorem 2.1, Theorem 3.2], noting that the fact that Ch (Yh )
ZYh and Ch (Yh ) is dense in Yh is deduced from the assumption that Sh Ch Sh −"¯Ch and Ch
has dense range. We state here the following relation, which will be used in

Section 3.

Sh Uh (t, s)[Uh (t, s)Sh for (t, s) `∆. (2.2)

This relation has already been obtained in [15, proof of Theorem 3.2].

We conclude this section by showing that the family of matrix operators used to

solve the linearized equation of (1.2) satisfies the regularized stability condition. If A

is a nonnegative selfadjoint operator in a real Hilbert space H with the inner product

©[, [ª then for each k¯ 1, 2,…, the Hilbert space D(Ak/#) equipped with the inner

product

©u, �ª
[D(A

k/#
)]
¯3

k

i=!

©Ai/#u,Ai/#�ª for u, � `D(Ak/#)

is denoted by [D(Ak/#)].

T 2.2. Assume that A is a nonnegati�e selfadjoint operator in a real Hilbert

space H and that a(t) is a nonnegati�e and nondecreasing continuous function on [0,T ].

Let Xh ¯ [D(A"/#)]¬H and Yh ¯ [D(A)]¬[D(A"/#)]. Then the family ²Ah (t) : t ` [0,T ]´ of

linear operators in Xh defined by

1

2
3

4

Ah (t) (u, �)¯ (�,®A(a(t) u)) for (u, �) `D(Ah (t))

D(Ah (t))¯²(u, �) :u `D(A"/#), � `D(A"/#) and a(t) u `D(A)´

satisfies conditions (1)–(3) with a positi�e constant M, depending only on T and

sup²a(t) : t ` [0,T ]´, which is nondecreasing with respect to T, β¯ 2, an isomorphism Sh
of Yh onto Xh defined by

Sh (u, �)¯ ((IA)"/# u, (IA)"/# �) for (u, �) `Yh ,

and Ch BSh −".

Proof. It is easily seen that all the other conditions except conditions (1)(i) and

(1)(ii) are satisfied. We begin by checking condition (1)(i). To this end, let λ" 0

and t ` [0,T ] and assume that (u, �) `D(A"/#)¬H satisfies a(t) u `D(A), � `D(A"/#) and

(I®λAh (t)) (u, �)¯ (0, 0) which is written as

u¯ λ�, (2.3)

�λA(a(t) u)¯ 0. (2.4)
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By equation (2.4) we have

0¯ r�r#©λ�,A(a(t) u)ª¯ r�r#a(t)©A"/#(λ�),A"/#uª.

Since a(t) is nonnegative we find �¯ 0 by substituting equation (2.3) into the equality

above. It follows from (2.3) once again that u¯ 0, and so condition (1)(i) is satisfied.

To check condition (1)(ii), we use a family ²aε(t) :ε ` (0, 1]´ of auxiliary functions

defined by aε(t)¯ a(t)ε for t ` [0,T ], and note that the operator Ah ε(t) in Xh defined

by Ah ε(t) (u, �)¯ (�,®aε(t)Au) for (u, �) `D(A)¬D(A"/#) has the property that for each

λ" 0, I®λAh ε(t) is injective and R(I®λAh ε(t))¯Xh . The proof of this property of Ah ε(t)
is immediate, since aε(t)& ε for t ` [0,T ] and A is a maximal monotone operator in H.

Now, we show that condition (1)(ii) is satisfied. For this purpose, let (u
!
, �

!
) `

D(A"/#)¬D(A"/#) ([R(Ch )), let λ ` (0, 1}2] and let ²t
i
´m
i="

be any finite sequence

such that 0¯ t
!
% t

"
% t

#
%…% t

m
%T and 0% λm%T. If we set (u ε

i
, �ε

i
)¯

0i

k="
(I®λAh ε(tk))

−" (u
!
, �

!
) for 1% i%m, then we have (uε

i
, � ε

i
) `D(A)¬D(A"/#) and

(uε

i
®uε

i−"
)}λ¯ �ε

i
, (2.5)

(�ε

i
®�ε

i−"
)}λaε(ti)Auε

i
¯ 0 (2.6)

for 1% i%m, where (u ε

!
, � ε

!
)¯ (u

!
, �

!
). Let 1% j%m and set wε

i
¯3j

k=i
Auε

k
for 1%

i% j, and wε

j+"
¯ 0. By (2.5) we have

(rA"/#uε

i
r#®rA"/#uε

i−"
r#)}2λ%©A"/#uε

i
,A"/#uε

i
®A"/#uε

i−"
ª}λ¯©wε

i
®wε

i+"
, �ε

i
ª (2.7)

for 1% i% j. By (2.6) we have

©�ε

i
®�ε

i−"
,wε

i
ª¯®λaε(ti)©wε

i
®wε

i+"
,wε

i
ª

%®λaε(ti) (rw
ε

i
r#®rwε

i+"
r#)}2% λ(aε(ti) rw

ε

i+"
r#®aε(ti−"

) rwε

i
r#)}2 (2.8)

for 1% i% j. To obtain the last inequality we have used the fact that a(t) is

nondecreasing. Addition of (2.7) and (2.8) gives

(rA"/#uε

i
r#®rA"/#uε

i−"
r#)}2λ©�ε

i
,wε

i+"
ª®©�ε

i−"
,wε

i
ª

®λ(aε(ti) rw
ε

i+"
r#®aε(ti−"

) rw ε

i
r#)}2% 0

for 1% i% j. We sum the inequalities above from i¯ 1 to i¯ j, and use the fact that

a(t) is nonnegative. This yields the estimate

rA"/#uε

j
r#% rA"/#u

!
r#2λ 3

j

k="

©A"/#�
!
,A"/#uε

k
ª

% rA"/#u
!
r#T rA"/#�

!
r#λ 3

j

k="

rA"/#uε

k
r#

for 0% j%m. Let α
j
denote the right-hand side of the inequality above. Clearly,

rA"/#uε

j
r#%α

j
and α

j
®α

j−"
¯ λrA"/#uε

j
r#% λα

j
, which we solve to obtain

rA"/#uε

j
r#% exp(2T ) (rA"/#u

!
r#T rA"/#�

!
r#) (2.9)

for 0% j%m. Here we have used the fact that (1®t)−"% exp(2t) for t ` [0, 1}2].



202  

Next, we take the inner products of equations (2.5) and (2.6) with aε(ti)Auε

i
and

�ε

i
respectively, and add the two resulting equalities. This yields

aε(ti)©A"/#uε

i
,A"/#uε

i
®A"/#uε

i−"
ª©�ε

i
, �ε

i
®�ε

i−"
ª¯ 0,

from which it follows that

aε(ti) rA"/#uε

i
r#®aε(ti−"

) rA"/#uε

i−"
r#r�ε

i
r#®r�ε

i−"
r#% (aε(ti)®aε(ti−"

)) rA"/#uε

i−"
r#

for 1% i%m. Substituting (2.9) into the right-hand side of the inequality above and

summing the resultant inequalities from i¯ 1 and i¯ j (%m), we find that

r�ε

j
r#% r�

!
r#aε(t

!
) rA"/#u

!
r#

(aε(tj)®aε(t
!
)) exp(2T ) (rA"/#u

!
r#T rA"/#�

!
r#)

% r�
!
r#(a(t

j
)1) exp(2T ) (rA"/#u

!
r#T rA"/#�

!
r#) (2.10)

for 1% j%m. By equation (2.5) we have ruε

i
r#®ruε

i−"
r#% 2λ©uε

i
, �ε

i
ª% λ(ruε

i
r#r�ε

i
r#),

which implies that

ruε

j
r#% (1®λ)−j 0ru!

r#λ3
j

i="

r�ε

i
r#1

for 1% j%m. Combining this inequality with (2.9) and (2.10), we obtain for

1% j%m,

ruε

j
r#
[D(A

"/#
)]
r�ε

j
r#%M

!
(ru

!
r#
[D(A

"/#
)]
r�

!
r#
[D(A

"/#
)]
), (2.11)

where M
!
is a positive constant depending only on T and sup²a(t) : t ` [0,T ]´, which is

nondecreasing with respect to T. By the reflexivity of [D(A"/#)] and H there exists a

null sequence ²ε(n)´ such that for 1% j%m, ²uε(n)

j
´ and ²�ε(n)

j
´ converge weakly to u

j

and �
j
in [D(A"/#)] and H respectively, as n!¢. From (2.11) it is easily seen that

ru
j
r#
[D(A

"/#
)]
r�

j
r#%M

!
(ru

!
r#
[D(A

"/#
)]
r�

!
r#
[D(A

"/#
)]
) (2.12)

for 1% j%m. Let w `D(A"/#). We take the inner product of (2.6) with w and the limit

as n!¢. This yields

©w, (�
i
®�

i−"
)}λªa(t

i
)©A"/#w,A"/#u

i
ª¯ 0,

which implies that a(t
i
) u

i
`D(A) and ®A(a(t

i
) u

i
)¯ (�

i
®�

i−"
)}λ. Passing to the limit

in (2.5) as n!¢ we obtain �
i
¯ (u

i
®u

i−"
)}λ `D(A"/#). Thus it has been shown that

(u
i
, �

i
) `D(Ah (t

i
)) and (I®λAh (t

i
)) (u

i
, �

i
)¯ (u

i−"
, �

i−"
) for 1% i%m. Estimate (2.12)

shows that condition (1)(ii) is satisfied with the operator Ch . *

3. A class of quasi-linear e�olution equations of second order

In this section we consider a triplet of real Banach spaces YZXZZ, with

inclusions that are continuous and dense, and assume the following condition.

There exists an isomorphism S of X onto Z satisfying the property that

S(Y )¯X,

and an injective operator C in B(Z) satisfying

1

2
3

4

C(Z ) is dense in Z,

C(X )ZX and C(X ) is dense in X,
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such that

SCS−"¯C.

By the assumption of C, the linear operator Ch in Xh defined by

Ch (u, �)¯ (Cu,C�) for (u, �) `Xh BX¬Z

is injective and bounded, and has dense range. This fact should be recalled in stating

the regularized stability condition (Hypothesis 3.3 below).

We begin by setting up basic Hypotheses 3.1–3.5 on the operators A(t,w, �)

appearing in equation (1.1), with some comments.

H 3.1. There exist a nonempty open bounded subset W of [C(Y )], a

nonempty open bounded subset V of [C(X )] and T
!
" 0 such that A(t,w, �) is a closed

linear operator in Z defined for each (t,w, �) ` [0,T
!
]¬W¬V.

Here and subsequently, [P(8)] denotes the Banach space P(8) equipped with the

norm sxs
[P(8)]

¯ sP−"xs8 for x `P(8), if P is an injective operator in B(8) and 8 is a

real Banach space.

The aim of this section is to find a function u in the class

C([0,T ] ; [C(Y )])fC "([0,T ] ; [C(X )])fC #([0,T ] ; [C(Z )])

satisfying equation (1.1) and the condition

u(t) `W and u«(t) `V for t ` [0,T ], (3.1)

for a given (φ,ψ) `W¬V. Such a function u is called a solution to (1.1) on [0,T ].

For this purpose, let (φ,ψ) `W¬V be fixed arbitrarily. To formulate the

regularized stability condition, for each ρ" 0 and τ ` (0,T
!
] we introduce the set D(ρ, τ)

of all functions w in the class C([0, τ] ; [C(Y )])fC "([0, τ] ; [C(X )])fC #([0, τ] ; [C(Z )])

satisfying the property

1

2
3

4

w(t) `W and w«(t) `V, for t ` [0, τ],

sw§(t)s
[C(Z)]

% ρ for t ` [0, τ],

w(0)¯φ and w«(0)¯ψ.

H 3.2. There exist ρ
!
" 0 and τ

!
` (0,T

!
] such that the set D(ρ

!
, τ

!
) is

nonempty.

This condition is necessary for equation (1.1) to have a solution on [0,T ] where

T ` (0,T
!
]. Indeed, if u(t) is a solution to (1.1) on [0,T ], then Hypothesis 3.2 is satisfied

with τ
!
¯T and ρ

!
¯ sup²su§(t)s

[C(Z)]
: t ` [0,T ]´.

By Hypothesis 3.2 the set D(ρ, τ) is nonempty for each ρ& ρ
!
and τ ` (0, τ

!
]. Let

ρ& ρ
!
and τ ` (0, τ

!
]. For each w `D(ρ, τ) we consider a family ²Ah w(t) : t ` [0, τ]´ of closed

linear operators in Xh defined by

1

2
3

4

Ah w(t) (u, �)¯ (�,A(t,w(t),w«(t)) u) for (u, �) `D(Ah w(t))

D(Ah w(t))¯ (D(A(t,w(t),w«(t)))fX )¬X.

H 3.3. For each ρ& ρ
!

there exist Mρ & 1, βρ & 0 and τρ ` (0, τ
!
] such

that if τ ` (0, τρ] and w `D(ρ, τ) then

²Ah w(t) : t ` [0, τ]´ `RS(Xh ,Mρ, βρ,C
h ).
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H 3.4. For each (t,w, �) ` [0,T
!
]¬W¬V,

SA(t,w, �)S−"¯A(t,w, �) and C−"A(t,w, �)C[A(t,w, �).

H 3.5. For each (t,w, �) ` [0,T
!
]¬W¬V, D(A(t,w, �))[Y. For each

(w, �) `W¬V, A([,w, �) is norm continuous in B(Y,Z ) on [0,T
!
]. There exists

L
A
" 0 such that

sA(t,w, �)®A(t,wW , �W ) s
Y,Z

%L
A
(sw®wW s

X
s�®�W s

Z
)

for (t,w, �), (t,wW , �W ) ` [0,T
!
]¬W¬V.

This condition implies that there exists M
A
& 1 such that

sA(t,w, �)s
Y,Z

%M
A

for (t,w, �) ` [0,T
!
]¬W¬V. (3.2)

The main theorem in this paper can now be stated.

T 3.6. If (φ,ψ) `C #(Y )¬C#(X ) then there exists T ` (0,T
!
] such that the

e�olution equation (1.1) has a unique solution on [0,T ].

The proof will be divided into a sequence of lemmas. It should be noted that

(φ,ψ) has been fixed in W¬V. Since W and V are open subsets of [C(Y )] and [C(X )]

respectively, there exists R
!
" 0 such that

Wh B ²(w, �) `C(Y )¬C(X ) :sw®φs
[C(Y)]

s�®ψs
[C(X)]

%R
!
´ZW¬V.

Put

ρ¯M
A
(sφs

[C(Y)]
R

!
)hρ

!
. (3.3)

To prove the theorem we use the method of iterations proposed by Kobayasi and

Sanekata [12]. To do this, for each τ ` (0, τρ] we introduce the set E(τ) of all functions

w in the class C([0, τ] ; [C(Y )])fC "([0, τ] ; [C(X )])fC #([0, τ] ; [C(Z )]) satisfying the

property
1

2
3

4

(w(t),w«(t)) `Wh for t ` [0, τ],

sw§(t)s
[C(Z)]

% ρ for t ` [0, τ],

w(0)¯φ and w«(0)¯ψ.

Since D(ρ, τρ)1W we choose w
!
`D(ρ, τρ) and then define

τ-
!
¯ sup²τ ` (0, τρ] :sw

!
(t)®φs

[C(Y)]
sw!

!
(t)®ψs

[C(X)]
%R

!
for t ` [0, τ]´.

It is clear that w
!
r
[!,

τ]
`E(τ) for each τ ` (0, τ-

!
]. Thus we have the following lemma.

L 3.7. There exists τ-
!
` (0, τρ] such that the set E(τ) is nonempty for each

τ ` (0, τ-
!
].

Now, we set Yh ¯Y¬X, and define an operator Sh from Yh into Xh by

Sh (u, �)¯ (Su,S�) for (u, �) `Yh .

Condition (2.1), stated in Section 2, is clearly satisfied.

L 3.8. For all w, z `E(τ) and τ ` (0, τ-
!
], the following assertions hold.
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(i) There exist M& 1 and β& 0, independent of w and τ, such that

²Ah w(t) : t ` [0, τ]´ `RS(Xh ,M, β,Ch ).

(ii) Ch −"Ah w(t)Ch [Ah w(t) for t ` [0, τ].

(iii) Operator Sh is an isomorphism of Yh onto Xh satisfying

Sh Ah w(t)Sh −"¯Ah w(t) for t ` [0, τ], and Sh Ch Sh −"¯Ch .

(iv) D(Ah w(t))[Yh for t ` [0, τ], and Ah w(t) is norm continuous in B(Yh ,Xh ) on [0, τ].

(v) sAh w(t)®Ah z(t)s
Y
h
,X

h %L
A
(sw(t)®z(t)s

X
sw«(t)®z«(t)s

Z
) for t ` [0, τ].

Proof. Since E(τ)ZD(ρ, τ), assertion (i) follows immediately from Hypothesis

3.3. Assertion (ii) is easily checked. It is seen that all the other conditions of (iii) except

the fact that Sh `B(Yh ,Xh ) are satisfied by a straightforward argument. The closed graph

theorem implies that Sh `B(Yh ,Xh ), by showing that Sh is a closed linear operator from

Yh into Xh . The first half of assertion (iv) is obvious, and assertion (v) is proved as

follows. Let t ` [0, τ] and (u, �) `Yh . Since

Ah w(t) (u, �)®Ah z(t) (u, �)¯ (0,A(t,w(t),w«(t)) u®A(t, z(t), z«(t)) u),

we have, by Hypothesis 3.5,

sAh w(t) (u, �)®Ah z(t) (u, �)s
X
h %L

A
(sw(t)®z(t) s

X
sw«(t)®z«(t) s

Z
) sus

Y
.

This means that the desired inequality holds. Similarly to the preceding argument, we

easily see that the second half of assertion (iv) is true. *

By Lemma 3.8 we can apply Theorem 2.1 to the family ²Ah w(t) : t ` [0, τ]´. This

procedure, together with relation (2.2), yields the following lemma.

L 3.9. For each w `E(τ) and τ ` (0, τ-
!
] there exists a unique regularized

e�olution operator ²Uh w(t, s)´ defined on the triangle

∆(τ)¯²(t, s) :0% s% t% τ´

generated in the sense of Theorem 2.1 by ²Ah w(t) : t ` [0, τ]´, which satisfies the following

properties.

(i) sUh w(t, s)s
X
h %M and sUh w(t, s)s

Y
h %Mk for (t, s) `∆(τ), where Mk ¯

MsSh s
Y
h
,X

h sSh −"s
X
h
,Y

h .

(ii) Sh Uh w(t, s)[Uh w(t, s)Sh for (t, s) `∆(τ).

It should be noted that M is the constant appearing in Lemma 3.8, which is

independent of w `E(τ) and τ ` (0, τ-
!
].

L 3.10. For each w, z `E(τ) and τ ` (0, τ-
!
] we ha�e

sUh w(t, s)Ch yh ®Uh z(t, s)Ch yh s
X
h

%MMk L
A
syh s

Y
h & t

s

(sw(σ)®z(σ)s
X
sw«(σ)®z«(σ)s

Z
) dσ

for yh `Yh and (t, s) `∆(τ).
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Proof. Let yh `Yh and (t, s) `∆(τ). By Lemma 3.9 we have

Uh z(t, s)Ch yh ®Uh w(t, s)Ch yh ¯& t

s

Uh w(t,σ) (Ah z(σ)®Ah w(σ))Uh z(σ, s) yh dσ (3.4)

which is obtained by differentiating Uh w(t,σ)Uh z(σ, s) yh in σ and then integrating the

resultant derivative over σ ` [s, t]. Property (i) of Lemma 3.9 and assertion (v) of

Lemma 3.8 together imply that the integrand of equality (3.4) is estimated by

MMk L
A
(sw(σ)®z(σ)s

X
sw«(σ)®z«(σ)s

Z
) syh s

Y
h .

The desired inequality is thus obtained. *

Let τ ` (0, τ-
!
] and w `E(τ). Since (φ,ψ) `C #(Y )¬C#(X )¯Ch #(Yh ), Ch −"(φ,ψ) `

Ch (Yh )ZYh . If we set (u(t), �(t))¯Uh w(t, 0)Ch −"(φ,ψ) for t ` [0, τ], then we have,

by Lemma 3.9, (u, �) `C([0, τ] ; [Ch (Yh )])fC "([0, τ] ; [Ch (Xh )]) and (d}dt) (u(t), �(t))¯
Ah w(t) (u(t), �(t)) for t ` [0, τ] and (u(0), �(0))¯ (φ,ψ). Since [Ch (Xh )]¯ [C(X )]¬[C(Z )]

it is seen that u belongs to the class

C([0, τ] ; [C(Y )])fC "([0, τ] ; [C(X )])fC #([0, τ] ; [C(Z )])

and satisfies u(0)¯φ, u«(0)¯ψ and u§(t)¯A(t,w(t),w«(t)) u(t) for t ` [0, τ]. This fact

enables us to consider a mapping Φ from E(τ) into C([0, τ] ; [C(Y )])fC "([0, τ] ;

[C(X )])fC #([0, τ] ; [C(Z )]) such that (Φw) (t) is defined to be the first component of

Uh w(t, 0)Ch −"(φ,ψ) for t ` [0, τ]. By the preceding argument we have (Φw) (0)¯φ,

(Φw)« (0)¯ψ and

(Φw)§ (t)¯A(t,w(t),w«(t)) (Φw) (t) for t ` [0, τ]. (3.5)

Equation (3.5) is written as

(d}dt) ((Φw) (t), (Φw)« (t))¯Ah w(t) ((Φw) (t), (Φw)« (t)) for t ` [0, τ]. (3.6)

By the definition of Φ it is evident that

((Φw) (t), (Φw)« (t))¯Uh w(t, 0)Ch −"(φ,ψ) for t ` [0, τ]. (3.7)

L 3.11. There exists τ ` (0, τ-
!
] such that if T ` (0, τ] then Φw `E(T ) for

w `E(T ).

Proof. Let xh ¯Sh Ch −#(φ,ψ). This definition of xh makes sense, since (φ,ψ) `Ch #(Yh )
and Sh is an isomorphism of Yh onto Xh . Since Yh is dense in Xh there exists yh `Yh such

that
sSh −"s

X
h
,Y

h (MsCh s
X
h ) sxh ®yh s

X
h %R

!
}2. (3.8)

Now, let us choose τ ` (0, τ-
!
] so that

sSh −"s
X
h
,Y

h MM
A
syh s

Y
h τ%R

!
}2.

It will be shown that the lemma is true with this number τ. Let T ` (0, τ] and w `E(T ),

and then set �¯Φw. By equation (3.7) we have (�(t), �«(t))¯Uh w(t, 0)Ch −"(φ,ψ) for

t ` [0,T ], and henceSh Ch −"(�(t), �«(t))¯Uh w(t, 0)xh for t ` [0,T ], by property (ii) of Lemma

3.9. Using the relation that Sh Ch Sh −"¯Ch in assertion (iii) of Lemma 3.8 we obtain

Sh Ch −"((�(t), �«(t))®(φ,ψ))¯Uh w(t, 0)xh ®Ch xh

for t ` [0,T ], and the right-hand side is written as

Uh w(t, 0) (xh ®yh )(Uh w(t, 0) yh ®Ch yh )Ch (yh ®xh )
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by means of yh `Yh satisfying inequality (3.8). Moreover, it is deduced from Lemma 3.9

that

Uh w(t, 0) yh ®Ch yh ¯& t

!

Uh w(t,σ)Ah w(σ) yh dσ

for t ` [0,T ]. Thus we have

sSh Ch −"((�(t), �«(t))®(φ,ψ))s
X
h % (MsCh s

X
h ) sxh ®yh s

X
h MM

A
syh s

Y
h T

for t ` [0,T ]. Here we have used the estimate that sAh w(t)s
Y
h
,X

h %M
A

for t ` [0,T ] which

follows from (3.2). Since

swh s
[C

h
(Y

h
)]
¯ sCh −"wh s

Y
h % sSh −"s

X
h
,Y

h sSh Ch −"wh s
X
h (3.9)

for wh `Ch (Yh ), it is seen from the choice of τ and yh that

s(�(t), �«(t))®(φ,ψ)s
[C

h
(Y

h
)]
%R

!

for t ` [0,T ], which implies that (�(t), �«(t)) `Wh for t ` [0,T ]. Furthermore, we use

inequality (3.2) to estimate (3.5) and find, by the second half of Hypothesis 3.4, that

s�§(t)s
[C(Z)]

%M
A
s�(t)s

[C(Y)]

for t ` [0,T ]. The right-hand side is majorized by M
A
(sφs

[C(Y)]
R

!
), and so it is

concluded that � is an element of E(T ), by the choice of ρ (see expression (3.3)).*

Now, let us choose T ` (0, τ] so that

αBMMk L
A
sCh −#(φ,ψ)s

Y
h T! 1. (3.10)

By Lemma 3.7, the set E(T ) is nonempty. This fact enables us to choose u
!
`E(T ).

Since the set E(T ) is invariant under the mapping Φ by Lemma 3.11, we can define a

sequence ²u
n
´ in E(T ) by u

n
¯Φu

n−"
for n¯ 1, 2,… .

L 3.12. The sequence ²(u
n
(t), u!

n
(t))´ con�erges in X¬Z uniformly on [0,T ], as

n!¢.

Proof. Since (u
n
(t), u!

n
(t))¯Uh un−"(t, 0)Ch −"(φ,ψ) for n¯ 1, 2,… (by equation

(3.7)), we have, by Lemma 3.10,

s(u
n
(t), u!

n
(t))®(u

n−"
(t), u!

n−"
(t))s

X
h

%MMk L
A
sCh −#(φ,ψ)s

Y
h & t

!

(su
n−"

(σ)®u
n−#

(σ)s
X
su!

n−"
(σ)®u!

n−#
(σ)s

Z
) dσ,

and hence, by (3.10),

d(u
n
, u

n−"
)%αd(u

n−"
, u

n−#
)

for n& 2, where d is the metric in C([0,T ] ;X )fC "([0,T ] ;Z ) defined by

d(u, �)¯ sup²su(t)®�(t)s
X
su«(t)®�«(t)s

Z
: t ` [0,T ]´.

If n"m, then d(u
n
, u

m
)% (3n

k=m+"
αk−") d(u

"
, u

!
), and since α! 1 the right-hand side

tends to zero as m!¢, which proves the desired assertion. *

L 3.13. The sequence ²Uh un(t, s) : (t, s) `∆(T )´ of regularized e�olution

operators on Xh is strongly con�ergent in B(Xh ) uniformly on ∆(T ), as n!¢.
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Proof. For xh `Xh , yh `Yh and 1%m% n, we have

sUh un(t, s)xh ®Uh um(t, s)xh s
X
h

% sUh un(t, s) (xh ®Ch yh )s
X
h sUh un(t, s)Ch yh ®Uh um(t, s)Ch yh s

X
h sUh um(t, s) (Ch yh ®xh )s

X
h ,

and we see from Lemma 3.10 that the right-hand side is bounded by

2MsCh yh ®xh s
X
h MMk L

A
syh s

Y
h (t®s) d(u

n
, u

m
).

The desired claim is obtained, since Ch (Yh ) is dense in Xh and lim
m,n!¢ d(u

n
, u

m
)¯ 0 by

Lemma 3.12. *

Proof of Theorem 3.6. Let ²u
n
´ be the sequence defined in the paragraph before

Lemma 3.12. We have, by the definition of u
n

and equation (3.7),

Sh Ch −"(u
n
(t), u!

n
(t))¯Uh un−"(t, 0)Sh Ch −#(φ,ψ)

for t ` [0,T ] and n& 1, and the right-hand side converges in Xh uniformly on [0,T ], by

Lemma 3.13. This means that the sequence ²(u
n
(t), u!

n
(t))´ converges in [C(Y )]¬[C(X )]

uniformly on [0,T ] as n!¢, by inequality (3.9) and the fact that [Ch (Yh )]¯
[C(Y )]¬[C(X )].

It will be proved that the limit

u(t)¯ lim
n!¢

u
n
(t) in [C(Y )]

gives a unique solution to equation (1.1) on [0,T ]. By the result in the preceding

paragraph we have u `C([0,T ] ; [C(Y )])fC "([0,T] ; [C(X )]) and lim
n!¢ u!

n
(t)¯ u«(t) in

[C(X )]. Since Wh is a closed subset of [Ch (Yh )], (u(t), u«(t)) `Wh ZW¬V for t ` [0,T ]. It

is deduced from Hypothesis 3.5 that A(t, u
n−"

(t), u!
n−"

(t)) converges to A(t, u(t), u«(t)) in

B(Y,Z) uniformly on [0,T ] as n!¢. By equation (3.5) and Hypothesis 3.4 we have

C−"u"
n
(t)¯A(t, u

n−"
(t), u!

n−"
(t))C−"u

n
(t), which converges to A(t, u(t), u«(t))C−"u(t) in

Z uniformly on [0,T ] as n!¢. This implies that u"
n
(t) converges to A(t, u(t), u«(t)) u(t)

in [C(Z )] uniformly on [0,T ] as n!¢. It is therefore concluded that u belongs to the

class C([0,T ] ; [C(Y )])fC "([0,T ] ; [C(X )])fC #([0,T ] ; [C(Z )]) and satisfies condition

(3.1) and equation (1.1), that is, u is a solution to equation (1.1) on [0,T ]. Finally,

to prove the uniqueness of the solution to (1.1) on [0,T ], let � be another solution to

equation (1.1) on [0,T ]. The preceding arguments imply that u `E(T ), since u
n
`E(T )

for n¯ 1, 2,… . It follows from Lemma 3.9 that the family ²Ah u(t) : t ` [0,T ]´ generates

a regularized evolution operator ²Uh u(t, s) : (t, s) `∆(T )´ on Xh . Let t ` [0,T ]. The

equality

(u(t), u«(t))®(�(t), �«(t))¯& t

!

Uh u(t,σ) (Ah u(σ)®Ah v(σ))Ch −"(�(σ), �«(σ)) dσ

is obtained by differentiating Uh u(t,σ) ((u(σ), u«(σ))®(�(σ), �«(σ))) in σ, integrating the

resultant derivative over σ ` [0, t], and then using assertion (ii) of Lemma 3.8. We note

that there exists Mh " 0 such that sCh −"(�(t), �«(t))s
Y
h %Mh for t ` [0,T ], and estimate the

equality above by using assertion (v) of Lemma 3.8. This yields the inequality of

Gronwall type

su(t)®�(t)s
X
su«(t)®�«(t)s

Z
%MMh L

A& t

!

(su(σ)®�(σ)s
X
su«(σ)®�«(σ)s

Z
) dσ

for t ` [0,T ], and so we conclude that u¯ � on [0,T ]. *
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4. Application to wa�e equations of Kirchhoff type

Let us consider the abstract wave equation of Kirchhoff type

1

2
3

4

u§(t)m(rA"/#u(t)r#)Au(t)¯ 0 for t ` [0,¢)

u(0)¯φ and u«(0)¯ψ
(4.1)

in a real Hilbert space H with the inner product ©[, [ª and the associated norm r[r.
Here A is a nonnegative selfadjoint operator in H and m `C "([0,¢) ;2) satisfies the

property that m(r)& 0 for r ` [0,¢).

The Cauchy problem (4.1) has been studied by Yamada [17], by a different

method based on a certain kind of energy estimates. Our results (Theorems 4.1 and

4.2) give an improvement of [17, Theorem 2.1, Theorem 2.2].

T 4.1. Assume that m(rA"/#φr#)1 0. If φ `D(A) and ψ `D(A"/#), then there

exists a positi�e number T such that the problem (4.1) has a unique solution u on [0,T ]

in the class

C([0,T ] ; [D(A)])fC "([0,T ] ; [D(A"/#)])fC #([0,T ] ;H )

satisfying the property that m(rA"/#u(t)r#)" 0 for t ` [0,T ].

Proof. We consider a triplet of real Banach spaces [D(A)]Z [D(A"/#)]ZH as

YZXZZ, and take (IA)"/# and the identity operator I as an isomorphism S of X

onto Z and C in the previous section, respectively. Since m(rA"/#φr#)1 0 there exists

R" 0 such that m(rA"/#φr#)" 1}R, sφs
[D(A)]

!R and sψs
[D(A

"/#
)]
!R ; we then define

W¯²w ` [D(A)] :m(rA"/#wr#)" 1}R and sws
[D(A)]

!R´
and

V¯²� ` [D(A"/#)] :s�s
[D(A

"/#
)]
!R´.

It is obvious that W and V are open bounded subsets of [D(A)] and [D(A"/#)]

respectively, and that (φ,ψ) `W¬V. Let T
!
" 0. We shall apply Theorem 3.6 to the

family ²A(t,w, �) : (t,w, �) ` [0,T
!
]¬W¬V ´ defined by

A(t,w, �) u¯®m(rA"/#wr#)Au for u `D(A).

Clearly, Hypotheses 3.1 and 3.4 are satisfied. It is well known that the Cauchy

problem
1

2
3

4

w§(t)Aw(t)¯ 0 for t ` [0,¢)

w(0)¯φ and w«(0)¯ψ

has a unique solution w `C([0,¢) ; [D(A)])fC "([0,¢) ; [D(A"/#)])fC #([0,¢) ;H ).

(See [7, Chapter II, Remark 7.5].) By the continuity of w there exists τ
!
` (0,T

!
] such

that (w(t),w«(t)) `W¬V for t ` [0, τ
!
]. This implies that Hypothesis 3.2 is satisfied with

such a number τ
!

and ρ
!
¯ sup²rw§(t)r : t ` [0, τ

!
]´. Since

A(t,w, �) u®A(t,wW , �W ) u

¯®0&"

!

m«(θrA"/#wr#(1®θ)rA"/#wW r#) dθ1 (rA"/#wr#®rA"/#wW r#)Au

we have

rA(t,w, �) u®A(t,wW , �W ) ur% 2(sup²rm«(r)r :r ` [0,R#]´)Rsw®wW s
[D(A

"/#
)]
rAur

for (t,w, �), (t,wW , �W ) ` [0,T
!
]¬W¬V, from which Hypothesis 3.5 follows readily.
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It remains to check Hypothesis 3.3. To do this, let ρ& ρ
!
, τ ` (0, τ

!
] and w `D(ρ, τ).

For brevity in notation we write a(t)¯m(rA"/#w(t)r#) for t ` [0, τ]. The definition of

D(ρ, τ) in the previous section implies that (w(t),w«(t)) `W¬V for t ` [0, τ], and hence

that 1}R! a(t)% sup²m(r) :r ` [0,R#]´ and ra«(t)r% 2 sup²rm«(r)r :r ` [0,R#]´R# for

t ` [0, τ]. It follows that there exists ω& 0, independent of ρ and τ, such that

ra(t)®a(s)r}a(s)%ω(t®s) (4.2)

for 0% s% t% τ. Let λ" 0 and ²t
i
´n
i="

be any finite sequence with 0¯ t
!
% t

"
%…%

t
n
% τ with 0% λn% τ. Since a(t)& 1}R for t ` [0, τ] it is easily seen that the inverse of

I®λAh w(t) exists in B(Xh ). Let (u
!
, �

!
) `Xh , and set (u

i
, �

i
)¯0i

k="
(I®λAh w(t

k
))−" (u

!
, �

!
)

for 1% i% n. Let 1% j% n. Then we have (u
i
, �

i
) ` [D(A)]¬[D(A"/#)] and

(u
i
®u

i−"
)}λ¯ �

i
, (4.3)

(�
i
®�

i−"
)}λa(t

i
)Au

i
¯ 0 (4.4)

for 1% i% j. We use the inequality that rur#®r�r#% 2©u, u®�ª for u, � `H, after

taking inner products of (4.3) and (4.4) with a(t
i
)Au

i
and �

i
respectively and summing

the two resulting equalities. This yields

a(t
i
) rA"/#u

i
r#®a(t

i−"
)rA"/#u

i−"
r#r�

i
r#®r�

i−"
r#% (a(t

i
)®a(t

i−"
)) rA"/#u

i−"
r#

for i¯ 1, 2,… , j. Adding these inequalities, we obtain

a(t
j
) rA"/#u

j
r#r�

j
r#% a(t

!
) rA"/#u

!
r#r�

!
r#3

j

i="

(a(t
i
)®a(t

i−"
)) rA"/#u

i−"
r#

for j¯ 1, 2,… , n. Let α
j
denote the right-hand side of the inequality above. Then we

have a(t
j
) rA"/#u

j
r#r�

j
r#%α

j
and by (4.2)

α
j
®α

j−"
% ra(t

j
)®a(t

j−"
)r a(t

j−"
)−"α

j−"
%ω(t

j
®t

j−"
)α

j−"

for j¯ 1, 2,… , n. Solving this inequality we find that

a(t
j
) rA"/#u

j
r#r�

j
r#% exp(ω(t

j
®t

!
)) (a(t

!
)rA"/#u

!
r#r�

!
r#)

for j¯ 1, 2,… , n. By (4.3) we have ru
n
r% ru

!
rλ3n

j="
r�

j
r. These estimates imply that

Hypothesis 3.3 is satisfied. Consequently, Theorem 4.1 follows from Theorem 3.6.

*

T 4.2. Assume that m(rA"/#φr#)¯ 0. If φ `D(A#) and ψ `D(A$/#) satisfy

A"/#φ¯ 0 and A"/#ψ1 0 respecti�ely, then there exists a positi�e number T such that the

problem (4.1) has a unique solution u on [0,T ] in the class

C([0,T ] ; [D(A$/#)])fC "([0,T ] ; [D(A)])fC #([0,T ] ; [D(A"/#)]),

pro�ided that the function m(r) also satisfies the property that m«(r)& 0 for r ` [0,¢).

R 4.3. If A is a positive selfadjoint operator in H and m(r)¯ rα where

α& 1, then the following statements hold by Theorems 4.1 and 4.2 (cf. [17,

Theorem 2.1, Theorem 2.2]).

(i) If φ `D(A) satisfies φ1 0 and ψ `D(A"/#), then there exists a positive number

T such that the problem (4.1) has a unique solution u on [0,T ] in the class

C([0,T ] ; [D(A)])fC "([0,T ] ; [D(A"/#)])fC #([0,T ] ;H )

satisfying the property that rA"/#u(t)r" 0 for t ` [0,T ].
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(ii) If φ¯ 0 and ψ `D(A$/#), then there exists a positive number T such that the

problem (4.1) has a unique solution u on [0,T ] in the class

C([0,T ] ; [D(A$/#)])fC "([0,T ] ; [D(A)])fC #([0,T ] ; [D(A"/#)]).

Proof of Theorem 4.2. We consider a triplet of real Banach spaces [D(A)]Z
[D(A"/#)]ZH as YZXZZ, and take (IA)"/# and (IA)−"/# as an isomorphism

S of X onto Z and an injective operator C in B(Z ), respectively. Choose R" 0 so that

sφs
[D(A

$/#
)]
!R and sψs

[D(A)]
!R, and define

W¯²w ` [D(A$/#)] :sws
[D(A

$/#
)]
!R´

and

V¯²� ` [D(A)] :s�s
[D(A)]

!R´.

Clearly, W and V are open bounded subsets of [D(A$/#)] and [D(A)] respectively, and

(φ,ψ) `W¬V.

Let T
!
" 0. We shall prove the theorem by applying Theorem 3.6 to the family

²A(t,w, �) : (t,w, �) ` [0,T
!
]¬W¬V ´ defined by

1

2
3

4

A(t,w, �) u¯®A(m(rA"/#wr#) u) for u `D(A(t,w, �))

D(A(t,w, �))¯²u `H :m(rA"/#wr#) u `D(A)´.

It is easily seen that all the other conditions of Theorem 3.6 except Hypotheses 3.2 and

3.3 are satisfied. Since (φ,ψ) `D(A$/#)¬D(A) one verifies that Hypothesis 3.2 is

satisfied with some ρ
!
" 0 and τ

!
` (0,T

!
], similarly to the proof of Theorem 4.1.

To check Hypothesis 3.3, let ρ& ρ
!

and choose τρ ` (0, τ
!
] so that τρ %

(o17®3) rA"/#ψr}2ρ. Here we have used the assumption that A"/#ψ1 0. If τ ` (0, τρ]

and w `D(ρ, τ) then w `C([0, τ] ; [D(A$/#)])fC "([0, τ] ; [D(A)])fC #([0, τ] ; [D(A"/#)]) and

sw§(t)s
[D(A

"/#
)]
% ρ for t ` [0, τ]. (4.5)

Since w(0)¯φ and w«(0)¯ψ, the function w is written in the form

w(t)¯φtψ& t

!

(t®s)w§(s) ds

for t ` [0, τ]. By estimate (4.5) we have

©A"/#w(t),A"/#w«(t)ª

& trA"/#ψr#®rA"/#ψr 0& t

!

(t®s) rA"/#w§(s)r dst& t

!

rA"/#w§(s)r ds1
®0& t

!

(t®s) rA"/#w§(s)r ds1 0& t

!

rA"/#w§(s)r ds1
& trA"/#ψr#®rA"/#ψr(t#ρ}2t#ρ)®(t#ρ}2) (tρ)

for t ` [0, τ]. Here we have used the assumption that A"/#φ¯ 0. The right-hand side is

greater than or equal to

t(rA"/#ψr#®3τρrA"/#ψr}2®τ#ρ#}2),

which is nonnegative by the choice of τρ. Hence

(d}dt)m(rA"/#w(t)r#)¯ 2m«(rA"/#w(t)r#)©A"/#w(t),A"/#w«(t)ª& 0

for t ` [0, τ]. It follows from Theorem 2.2 that Hypothesis 3.3 is satisfied. *
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