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Katsumata: A note on Schauder basis

A NOTE ON SCHAUDER BASIS

OsaMu KATSUMATA

Preliminary and notations. Let E denote a topological linear space
over the real or complex scalar field. A sequence (b,)..1... in E is call-
ed a basis of E if for any element x of E there exists a unique sequence
(t.)u=1.2,.. of scalars such that =2 %..4,b.. The convergence of the series
is in respect to the vector topology of E. If (b,) is a basis of £ and x=
2 meitab., then the uniqueness of the expansion ensures that the correspon-
dence x —= ¢, is a linear functional for each n. When all of these
linear functionals are continuous, the basis (6,),-:... is named Schauder
basis. E with a basis being complete and metrizable is a sufficient condi-
tion for the basis to be Schauder (Arsove [1}, p. 368). Also in .#*Z-space
(strict inductive limit of Fréchet spaces) a basis is a Schauder basis (Arsove
and Edwards [2], p. 113). In this note, we shall show that the some
theorems known in Banach spaces also hold in certain Fréchet spaces.

For a toplogical linear space E, let us denote by E' its topological
dual. The topologies (E, E'), Tu{E, E') (abbreviated &,(E)) are weak-,
strong-topologies on E’, that is, the topologies deduced from the polars
of all finite sets, of all bounded sets of F, respectively. The facts used
in this note about topological linear spaces will be found for example in
Bourbaki [4], Kelley [7], Kothe [8] or Robertsons [10]. We mean the
biorthogonal pair (%, fu)u=1s... in (E, E') as the sequences («,) in E and
(fu) in E' which satisfy <<x., fu=>=0., (Kronecker's delta). Let us put

§) U ()= S00<t, by Val®)=2—Un(®)

for a biorthogonal pair (x, f,) in (E, E’). Then, U, and V, are con-
tinuous operators in E. Moreover, U% will mean the transpose of U,
defined by the relation <x, U¥(f)>=<<U,(x), f> for all x=E, f€E’,
and similarly for V%. A sequence (x,) in E is basic if and only if it is
a Schauder basis for the clcsed linear hull (denoted by [,]) of the set {x,;
n=1,2, --}.

Characterization of a basic sequence and its corollaries. In what

follows, “completeness’” will play the essential role. First, we shall prove
a lemma.

17
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Lemma. Let E be a complete topological liner space. If (Tn)a-1rs,.
is an equicontinuous sequence of linear operators which map E into E,
then E,={x; lim T, (x) exists} is a closed linear subspace of E.

Proof. 1t is clear that E, is a linear subspace of E from the line-
arity of each T,. Let %, be any point of the closure of E, then a net
(2.).cs in E, converges to x, where for every €= A there exists y.€EF
such that lim T,x.=y. For every V, a closed neighbourhood of 0, there

n—soe

exists a neighbourhood U of 0 which satisfies U+U~+UCV, and T,(U)
CV for each n by equicontinuity. The net (x,).,es converges to %, so
there exsits 6&A such that if «, 3=0 then x.—x,€U and so T.(x.—
%) T, (U)C V. This and the closedness of V imply y.—ysEV, ¢, J=0,
i.e. (¥.)eecs to be a Cauchy net in E. Completeness assumption assures
then the existence of an element y,&E to which (y,) converges. The two
nets on the same directed system A converge, therefore we can find «,
in A such that both Ye,—¥o and x—x, are in U. For this «, there
exists an integer #, such that T,,(x(,l)~— y‘,IEU for all » larger than #,.
Then, Tu(%)—yo=Tu(2)— Tal%.) + Tu(%e) = Yo, + Yo, —3E U+ U+ U CV,
=n,. Hence, T.(x,) converges to ¥, and we finish the proof.

Theorem. Let E be a Fréchet space, (ba, fo)amra,.. @ biorthogonal
pair in (E, E'), and define Uy(x)=2 7<%, fu=>b, for every *xEE and
every natural number m. Then, (b,) is basic if and only if the sequence
(Un)mare,.. is pointwise bounded on E,=[b,] (A. Wilansky [13], p. 210).

Proof. When (b,) is basic, the sequence U,(x) converges to x for
every x=E, and {U.(x); m=1,2, ---} is a bounded set in E. Conver-
sely, E, being a closed linear sutspace of a Fréchet spece, E, is itself a
barrelled space. When we regard U,, as a pointwise bounded sequence of
continuous linear operators from E, to Ey, {U,; m=1,2, ---} is equicon-
tinuous. Here we can apply the preceding lemma to obtain a closed linear
subspace {x&FE,; lim Un(x) exists}. As it contains all b,’s, it coincides

m—sc0

with E,, that is, x=3".,<x, /.0, for all x€E,. This implies that
(b,) is a Schauder tasis in E..

In the following, metrizability of (E', S,(E)) is needed. This is
equivalent to the condition that all bounded sets in E has countable co-
base, i.e. there is a countable family of bounded sets such that every
bounded set is contained in some member of the family.
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Corollary. Let E be a Fréchet space which has a countable co-base
for all bounded sets. If E has a basis (b.)ner.s,.., then there exists a
sequence (fi)pa1s,.. in E' biorthogonal to (b,), which is basic in (E',

T E)).

Proof. Because every basis in a Fréchet space is a Schauder basis,
there exists a biorthogonal sequence (f,) in E’ to (b,). If we choose U,
as in (1) then the sequence is equicontinuous by the same reason as in
the last part of the proof of the theorem, and the sequence of their trans-
poses U¥ is equicontinuous in respect to J,(E). Next, for every gEFE/,
x€E we have

<z, UX(g)>=<<Un(x), g=>—><x, g>>, as m—> oo,

which means {U¥(g);m=1,2, -} is a o(E, E') bounded set. From this
and the fact that E is a barrelled space, {UX(g); m=1,2, ---} becomes
a J,(E) bounded set for each g€E'. Now, (E', 9,(E)) is complete as
the strong dual of a bornologic space E. We conclude therefore by the
preceding theorem, that (f,) is basic in (E', G,(E)).

As corollaries to the theorem, we shall mention two propositions.

Proposition 1 (M. M. Day (5], p. 70). Let E be a Fréchet space
which has a countable co-base for all bounded sets, and let (b,)y-1.s,.. be a
basis and (fo)ner,s.. be a sequence in E' biorthogonal to (b,). The fol-
lowing conditions are equivalent :

(i) (fw) isa SW(E) Schauder basis.

(ii) V¥—>0, as m—> oo, in respect to the strong operator topology.

(iii) For every f&E' and for every bounded set B of E,
sup {|f(®)|; x€BN\[ba, brs1->+]} —0, as n—> oo,

(iv) [ful=E'i.e. {fuun=12, -} is fundamental in (E', Ty E)).

Remark. (a) V¥ means the transpcse of V,, where V,, is defined
as in (1). When for every f€E' VX(f)— 0 in respect to 9(E), we
say that Vi —0 in respect to the strong operator topology.

(b) A Schauder basis in a Banach space is called shrinking when it
satisfies the condition that for every fEE’,

sup {|f(®)[; € 1bp bass, -], | |2] | =1} —>0, as n—>co.

?

The property ‘“shrinking” is related to the basis of a reflexive Banach
space (cf. for instance James [6], Retherford [9] and Singer [12]).
(c) For a barrelled space X (in particular, for a Fréchet space), it
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can be proved that if X’ provides the toplogy of uniform convergence of
all precompact sets then every sequence biorthogonal to a Schauder basis
spans X'. Comparing this with the condition (iv), one will see the dif-
ference between a shrinking basis and a Schauder basis.

Proof. (i)=>(ii): For every x€E, fEE/,
<z, VE(f)>=<V.(2), f>=<2— X" <2, fu>b, [>
=<, f— S <lb,, F>5L>.
Accordingly, if (f,) is a 9,(E)-basis then for every bounded set B of E
we have sup | <z, VE(F)>| — 0 (n—> o), thatis, V¥ —0 (m —> )
in respect to the strong operator topology.

(ii)=>(iii): Since (b,) is a Schauder basis, it is obvious that % is in
BN\[by, busy, =-] when and only when 2=V,(x) and x=B. On the other
hand, for every fEE'

sup {|<#, f>1; 2=V.(x), xE€B} <sup {|<V.(2), f>|; xEB)}
=sup{ |<x, V¥ f)>|: x=B}.
We see therefore (ii) implies (iii).

(ii)=>(@v): For every f=E’ and every bounded set B of E, if we

set B,=\Unm-V.(B) then there holds

sup| <z, I <b,, f>fu— > =sgl <Vaul(x), f>|

zEN

< sgg{ <%, f>1; 2=V.(2)}.
f 3 l

(Note that V2 =V,.) As the union B, of the images of bounded set B by
equicontinuous operators is a bounded set of E, this yields the implica-
tion (iii)=>(iv).

(iv)=(i): This is a consequence of the preceding corollary.

Proposition 2. (I. Singer [11], p. 77). Let E be a Fréchet space
which has a countable co-base for all bounded sets. If E' contains a
o(E, E'Y Schauder bzasis (fu)u-rs,.. then E contains a Schauder basis
(ba)n=1,3,., and conversely.

Proof. For the o(E, E')-Schauder basis (f,) there exists a biortho-
gonal sequence of «(E, E')-continuous linear functionals (&,), which we
may regard as a subset of E. Since UX(f) o(E, E')-converges to f, it
follows that U,(x) o(E', E)-converges to x. Accordingly, {U.(x);m=1,
2, «+} is o(E', E)}bounded, i.e. it is a bounded set of E. Now, noting
‘that the linear hull of 4,’s is dense in E, the same argument used in the
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proof of the theorem shows that the sequence (b,) is a Schauder basis.
Conversely, assume that (b,) is a Schauder basis in E. Then, by defini-
tion, there exists a biorthogonal sequence (f,) and for each xEE there
holds 2=327.,<x, f.>b, As <z, f—2 0 <bn f>fi=<x—3 1<%,
Ja>b,, f> for every fEL’, we readily see that ... <<b,, f>f, o(E, E)-
converges to f. Moreover, b,’s being continuous linear functionals on
(E', ¢(E, E")) and biorthogonal to (f,), the expansion is unique.
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