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Abstract 

A simple, sensitive and selective method for the determination of bromide in 

seawater by using a flow injection/stopped-flow detection technique was examined.  

The detection system was developed for a new kinetic-spectrophotometric 

determination of bromide in the presence of chloride matrix without any extraction 

and/or separation.  The detection was based on the kinetic effect of bromide on the 

oxidation of methylene blue (MB) with hydrogen peroxide in a strongly acidic solution.  

Large amounts of chloride could enhance the sensitivity of the method as an activator.  

The decolorisation of the blue color of MB was used for the spectrophotometric 

determination of bromide at 746 nm.  A stopped-flow approach was used to improve the 

sensitivity of the measurement and provide good linearity of the calibration over the 

range of 0 to 3.2 μg ml-1 of bromide.  The relative standard deviation was 0.74% for the 

determination of 2.4 μg ml-1 bromide (n=5). The detection limit (3σ) was 0.1 μg ml-1 

with a sampling frequency of 12 h-1.   The influence of potential interfering ions was 
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studied.  The proposed method was applied to the determination of bromide in seawater 

samples and provided satisfactory results. 

 

Keywords: Stopped-flow injection, kinetic spectrophotometry, methylene blue, bromide, 

seawater 
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1. Introduction 

 Bromide ion is one of the constituents of ground water, surface water and 

seawater.  Some oxidizing agent in such waters may oxidize bromide ion to liberating 

bromine.  Bromide can combine with many types of organic pollutants present in waters 

to form toxic compounds of bromo-derivatives, which can cause serious harm to human 

health and environment.  Moreover, bromide ion in source water for potable water is the 

one of precursor to the formation of bromate, which is harmful disinfection byproduct 

(DBP) in drinking water.  Bromide concentration in water sources near the sea is 

entirely dependent on the amount of seawater mixing with ground and surface water.  

Therefore sensitive and selective methods are required for their reliable quantification. 

 Bromide has been determined using a wide variety of analytical techniques such 

as high performance liquid chromatography [1, 2], ion chromatography [3-5], gas 

chromatography [6] and capillary electrophoresis [7-10].  Although these methods are 

highly sensitive, their instruments are expensive and the determination procedure is 

complicated as well.  Moreover, they suffer from long times due to the necessity of the 

sample preparation steps.  Several kinds of kinetic-spectrophotometric methods based 
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on the catalytic effect of bromide on coloration reactions with organic compounds have 

been reported [11-19].  In these methods, manual procedures for kinetic measurements 

are tedious and time-consuming, and are sometimes complicated.  Such disadvantages 

in manual batchwise procedures can be overcome by using flow injection analysis (FIA), 

since FIA techniques can strictly fix the timing of the measurement of the catalytic 

reaction and the mixing of the solutions of reagent and sample with rapid sample 

throughput [20].  Several FIA procedures have been reported for the determination of 

bromide utilizing the catalytic effect of bromide on the redox reaction between tetrabase 

and chloramines T [21] and the reaction between m-cresosulfonephthalein and periodate 

[22].  However, high concentrations of chloride in millimolar can often interfere with 

these catalytic reactions, which lead to the difficulty to apply such kinetic reactions to 

the determination of bromide in the presence of chloride matrix, as in seawater.  Some 

FIA methods based on different principles also have been proposed for bromide 

determination [23-26].  One of them proposed the method for bromide determination in 

seawater sample by using chemiluminescence (CL) detection [26].  The procedure was 

based on the oxidation of bromide to bromine by chloramines T, followed by the 

reaction of bromine with luminol, which can result in CL emission.  However, some 

metal ions interfere seriously, and can suppress the CL intensity. 

 In this work, bromide in seawater can be determined by flow injection/stopped-

flow detection technique utilizing the new developed kinetic method proposed by K. 

Uraisin et al. [19].  The analytical method was based on the catalytic effect of bromide 

on the oxidation of methylene blue (MB) with hydrogen peroxide in strongly acidic 

solution.  In this reaction system, high concentrations of chloride can act as an effective 

activator for the catalytic reaction of bromide.  The application of FIA to a catalytic 

method results in a reproducible procedure with strict control of the timing, and thus 
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overcome the inherent difficulties in kinetic method.  A stopped-flow detection method 

was employed in this work in order to obtain higher sensitivity and less amounts of 

reagent consumption.  The stopped-flow was obtained by using a semi-automated 

stopped flow-FI analyzer [27], which can control a pump and a switching valve for 

sample injection.  The proposed method was successfully applied to the determination 

of bromide in seawater samples. 

 

2. Experimental 

2.1 Chemicals and reagents 

 All chemicals used were of analytical reagent grade and solutions were prepared 

using water purified with a Milli-Q system (Elix 3/Milli-Q Element, Nihon Millipore).  

A stock solution (1000 mg l-1) of standard bromide was prepared by dissolving 0.1488 g 

of potassium bromide (crystals: Wako Pure Chemicals, Osaka) in 100.0 ml water.  

Working standard solutions of bromide were subsequently prepared by appropriate 

dilution of the stock solution with 0.011 mol l-1 sodium chloride. 

 The carrier stream of 0.011 mol l-1 sodium chloride was prepared by dissolving 

approximately 0.65 g sodium chloride (Wako Pure Chemicals) in 1000 ml of water.  

This solution also can be used for the preparation of working standard solutions of 

bromide. 

 The mixed reagent stream was a solution of 8x10-5 mol l-1 methylene blue (MB), 

2.5 mol l-1 sulfuric acid and 0.6 mol l-1 sodium chloride.  This mixture was first 

prepared by diluting 70 ml of 95% sulfuric acid (Wako Pure Chemicals) to 500 ml with 

water: this result in sulfuric acid of 2.5 mol l-1.  MB crystalline (Tokyo Kasei, Tokyo) of 

0.013 g and sodium chloride of 17.5 g was then dissolved in this sulfuric acid solution.   
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 The oxidizing agent of 2 mol l-1 hydrogen peroxide was prepared by diluting 100 

ml of a commercially available solution of 30% (10 mol l-1) hydrogen peroxide (Kanto 

Chemical Co. Inc., Tokyo) in 500 ml of water. 

 Seawater samples were collected at the Seaside of Okayama and Okinawa 

Prefecture.  Filtration with a filter paper (Advantec, No. 5B) and 50-fold dilution with 

purified water was the only pretreatment. 

 

2.2 Flow injection (FI) apparatus 

 The stopped-FI system used is schematically depicted in Fig. 1.  The manifold 

was equipped with two double plunger pumps (PUMP 201, F.I.A Instruments, Japan), 

six-port injection valve (SNK, Japan), a spectrophotometer (Soma Visible Detector S-

3250) equipped with a 10-mm flow-through cell and a signal recording FIA 

monitor/data processing apparatus (F.I.A Instruments).  The manifolds were constructed 

from PTFE tubing with i.d. of 0.5 mm. 

 

2.3 Operating procedures for stopped-FI method 

 A simple semi-automatic stopped flow-FI analyzer developed by K. Grudpan et 

al. [27] was applied to the proposed stopped-FI system in Fig. 1.  By using this analyzer, 

the on-off of the pump and the switching of the sample injection valve can be controlled.  

Table 1 illustrates the operation sequence for the proposed FI system.  The carrier of 

NaCl, the mixed reagent of MB/H2SO4/NaCl solution and the oxidizing agent of H2O2 

were propelled at 0.5 ml min-1 for each channel via double plunger pumps.  The aliquots 

of 200 μl of standard solution (0 to 3.2 μg ml-1) or diluted (50 times) seawater samples 

was injected into the carrier stream.  The mixed zone of the sample and reagents was 

arrested inside the flow cell at exactly 100 s after the sample injection (T1, traveling 
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time).  After that the sample zone was trapped inside the flow cell by stopping the 

pumping system (T2, stopping time), the decreasing in the absorbance of MB at 746 nm 

for 2 min was monitored.  Then the solution was expelled from the flow cell by turn on 

the pumping system (T3, washing time).  Fig. 2 demonstrates the stopped-FI profiles 

obtained by using these operation sequences.  The absorbance difference between the 

baseline and the minimum value of the hollowed at 746 nm was used for the preparation 

of a calibration graph. 

 

2.4 Procedure for titration method (The validating method) 

 The titration was performed according to the method recommended in 

“Handbook of Anion Determination” [28].  A 10.0 ml of seawater was transferred into 

250 ml conical flask, followed by the addition of 5 ml of 1 mol l-1 KH2PO4, 5 ml of 2 

mol l-1 NaCl and 2.5 ml of 0.35 mol l-1 NaOCl.  Then the mixture was heated just to 

boiling and then add 5 ml of 50 %(w/v) HCOONa.  The solution was then cooled and 

diluted to approximately 100 ml with water.  A 15 ml of 10 %(w/v) KI, 15 ml of 3 mol 

l-1 H2SO4 and 1 ml of 0.1 mol l-1 ammonium molybdate were added, and the mixture 

was titrated against a standardized Na2S2O3 solution (about 2.7x10-3 mol l-1), in the 

presence of 1 %(w/v) starch as an indicator. 

 

3. Results and discussion 

 In the present paper, the determination of trace amounts of bromide was based 

on the catalytic effect of bromide on the oxidation of MB with H2O2.  In the presence of 

small quantities of bromide, MB is slightly oxidized by H2O2 in strongly acid solution 

to form an oxidized product of MB.  The effect of bromide on the catalytic reaction is 

enhanced in the presence of large amounts of chloride [19].  This can causes a rapid 
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color changed of MB from blue to less bluish, which can be monitored 

spectrophotometrically at 746 nm.  It was found that the rate of the decolorisation of the 

absorbance of MB at the beginning was very fast, and after that the rate becomes slower 

[19].  In order to achieve reproducible results, the mixing and measurement of kinetic-

based system must be exactly timing, which can overcome using FI techniques.  

Moreover, the stopped-FI mode was very effective to improve the sensitivity of the 

kinetic-based system.  

 

3.1 Effect of experimental variables 

 In order to decrease the dilution factor of sample and reagents in the flow system, 

all reagents such as MB, H2SO4 and NaCl were mixed together.  However, from our 

previous work [19], a large amount of chloride could act as a catalyst for the oxidation 

of MB with H2O2, without trace amounts of bromide.  Therefore, H2O2 should be 

separated from the mixed reagent.  The simplified stopped-FI system can be assembled 

as demonstrated in Fig. 1.  In the previous paper [19], at higher temperature, the 

sensitivity was decreased.  In the present study, the experimental was carried out at 

25oC. 

 

3.1.1 Stopping-time 

 In this work, the optimization of stopping-time is very important from the point 

of view of the sensitivity of the measurement and the linearity of the calibration.  

Standard bromide solutions of 0 to 3.2 μg ml-1 were injected into the FI system shown 

in Fig. 1.  The sample zone was trapped inside the flow cell for the difference time 

interval after the pumping system stopped.  Calibration graphs were also prepared: the 

linear correlation coefficient (R2) of the calibration graphs obtain in each stopping time 
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was also considered for selected time.  As can be seen in Fig. 3, the increase in the 

stopping time increases gradually the sensitivity of the method.  The signals obtained 

from all standard solutions were slightly changed, when the stopping time above 2 min, 

with the correlation coefficient higher than 0.99.  The shortest stopping time, 2 min, was 

selected due to its high sensitivity with good linearity of the calibration. 

 

3.1.2 Optimization of concentrations of chemicals 

 In strongly acidic mediums, MB gave the maximum wavelength at 746 nm, 

which corresponds to protonated MB.  The absorbance of MB in this wavelength is 

strongly affected from acid concentrations.  In order to achieve an applicable signal 

reading of baseline (0.8 to 0.9 a.u.), sulfuric acid concentration of 2.5 mol l-1 and MB 

concentration of 8x10-5 mol l-1 were selected for further studies. 

 A 50-fold dilution of seawater samples should be performed, prior to the 

determination of bromide by using the proposed system.  This procedure leads to the 

dilution of sodium chloride content in seawater from the nominal value, which is 

approximately 0.55 mol l-1 [29] to 0.011 mol l-1.  In order to avoid difference on 

refractive index (Schelieren effect), which can appear when a spectrophotometric 

detection was employed [30], the carrier stream have to be the same matrix as sample 

solutions.  Therefore, 0.011 mol l-1 of sodium chloride was added to the carrier solution. 

 Sodium chloride content in seawater sample may be different from the nominal 

value of 0.55 mol l-1, which depends on the source of sampling area.  In order to inspect 

the possibility to apply the proposed stopped-FI system to the determination of bromide 

in various content of sodium chloride in seawater, standard bromide solutions of 0 to 

2.4 μg ml-1 were prepared in 0.010, 0.011 and 0.012 mol l-1 of NaCl, which correspond 

to 0.5, 0.55 and 0.6 mol l-1 of NaCl content in seawater, respectively.  The linear 
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equation obtained from these three conditions were Abs = 0.135CBr- + 0.302, Abs = 

0.138CBr- + 0.300 and Abs = 0.135CBr- + 0.296, respectively, where Abs corresponds to 

the absorbance difference between the baseline and the minimum value of the hollows.  

The slope and the intercept of calibration graphs are almost identical.  This indicates 

that the proposed stopped-FI system can be applied to the determination of bromide in 

differing content of sodium chloride in seawater.  As a result, 0.011 mol l-1 of NaCl was 

used for the preparation of standard bromide solutions. 

 The optimization of NaCl concentration in mixed reagent and H2O2 

concentration were done using a series of standard bromide solutions of 0 to 3.2 μg ml-1.  

As is described above, the catalytic effect of bromide on the oxidation of MB with H2O2 

can be accelerated by the presence of chloride as an activator.  The influence of NaCl 

concentrations in the range between 0 to 1.2 mol l-1 on sensitivity was investigated.  The 

results shown in Fig. 4(a) demonstrate that in the absence of NaCl the sensitivity was 

very poor, while catalytic effect of bromide is appreciable when chloride is present at 

high concentrations.  This behavior is probably due to the following chemistry: a large 

amount of chloride can partly be oxidized with an excess amount of hydrogen peroxide 

to chlorine, which can oxidize bromide to bromine.  Finally, bromine can oxidize MB to 

the oxidation product.  The response increased rapidly up to 0.6 mol l-1; therefore this 

concentration was used for further studies due to good linearity of the calibration graph 

over the range of bromide concentration examined. 

 The effect of H2O2 concentration on the sensitivity was studied over the range of 

0.5 to 3 mol l-1.  The results in Fig. 4(b) show that the signal intensity increases with an 

increase in H2O2 concentration, and gradually decreases above 2 mol l-1, which was 

chosen as optimal by considering on sensitivity and good linearity. 
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3.1.3 Optimization of FI variables 

 Variables affecting the performance of the proposed stopped-FI system for the 

determination of bromide were optimized.  The variables examined for the optimization 

were the flow rate, mixing coil length and an injection volume.  The optimization was 

carried out by repeating the sample injection (n=3) of standard bromide solutions, 0 and 

2.4 μg ml-1.  The operational conditions of the FI system were obtained in a univariant 

way in order to achieve the best sensitivity with the appropriate analysis time during 

one injection run.  When a stopped-flow technique was used, the timing of stopping the 

pump after the sample injections is very important.  The time when the sample reaches 

the detection cell (traveling time) after the sample injection can be fixed by obtaining 

the traveling time for each FI parameter using a MB solution of 1x10-3 mol l-1.  Water 

was pumped in all reagent channels and the sample loop was filled with MB solution.  

The FI parameters and their corresponding stopping times were verified for each 

variable.  This parameter also affected on the analysis time.  Therefore, the objective for 

the optimization of FI variables was to get a compromise between analytical signal and 

analysis time.  “Analysis time” is defined as the time taken from the injection of sample 

until the cycle of system is complete. 

 To simplify the optimization of the flow rate in the proposed stopped-FI system, 

the flow rate of all reagent and carrier stream were identical.  The influence of total flow 

rate was investigated from 0.6 to 2.4 ml min-1.  The results are shown in Fig. 5(a).  The 

analytical signals obtained from the blank and the standard bromide of 2.4 μg ml-1 

gradually increased with an increase in the flow rate.  This is probably due to the better 

mixing achieved at the merging point in Fig. 1.  Flow rate of 1.5 ml min-1 was selected 

for further studies as a compromise between sensitivity and sampling frequency. 
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 The effect of mixing coil length was investigated in the range of 1 to 7 m.  

Results shown in Fig. 5(b) demonstrate that the increase in the coil length slightly 

decreases the signals for both the blank and the standard bromide.  This is due to the 

increase of the dilution of the sample with increasing in the mixing coil length.  Mixing 

coil of 5 m can offer a reasonable compromise between blank value and analysis time: 5 

m was selected. 

 The influence of injection volume was examined by varying from 100 to 500 μl.  

The results in Fig. 5(c) demonstrates that the analytical signals of standard bromide of 

2.4 mol l-1 increase with increasing the sample volume, and the constant signals were 

obtained at the volumes greater than 200 μl, whereas the blank signals and analysis time 

showed a little difference: a 200 μl was adopted. 

 

3.2 Analytical characteristics 

 Using the optimized manifold under the optimum experimental condition, the 

calibration graph for the determination of bromide was prepared over the range of 0 to 

3.2 μg ml-1.  The typical stopped-FI profiles are shown in Fig. 2.  The calibration 

equation was Abs. = (1.35+0.02)x10-1 CBr- + (2.72+0.06)x10-1; R2 = 0.999, where CBr- 

is the concentration of bromide in μg ml-1.  Each point in the calibration graph 

corresponds to the average of three replicates injection of the standard bromide 

solutions.  The repeatability of the method was calculated as the relative standard 

deviation (RSD) of five replicates injection of 2.4 μg ml-1 of the standard bromide 

solutions, and the result obtained was 0.74%.  The detection limit was 0.1 μg ml-1, 

which corresponds to the concentration of analyte giving signal equivalent to three 

times of the standard deviation of the blank signal (3σ of blank).  The sample 

throughput was 12 h-1. 
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3.3 Interference study 

 The effect of various potential interferences in seawater on the determination of 

bromide were investigated by analyzing synthetic sample solutions containing 2x10-5 

mol l-1 (1.6 μg ml-1) of bromide together with various amounts of interfering ions.  A 

given substance was considered to be tolerable with the determination, if the deviation 

in the peak height of bromide was less than 3% compared with the standard bromide 

solution.  The maximum tolerable concentrations of the interfering ions in the 

determination of 2x10-5 mol l-1 of bromide are summarized in Table 2.  It can be seen 

from the table that most of cations and anions normally present in seawater samples do 

not interfere with the determination of bromide in the proposed procedure, even at 

concentration of 2x10-2 mol l-1.  Ions, such as Fe(II), Mo(VI), I-, NO2
- and ClO-, can 

interfere seriously with the determination of bromide.  However, the dilution of 

seawater samples to 50 folds prior to the measurement of bromide can eliminate the 

interference from the above mentioned ions.  The results demonstrate that the proposed 

method has the good selectivity for bromide determination. 

 

3.4 Application to seawater samples and validation 

 In order to test the reliability of the proposed method, the method was applied to 

the determination of bromide in seawater samples.  The recovery of bromide in the 

samples was checked by the addition of 1.6 μg ml-1 standard bromide to 50-fold diluted 

samples.  The results are shown in Table 3.  The recoveries were ranging from 96.2 to 

105% (n=8), while indicates that no interfering substances encountered with the 

determination of bromide. 
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 The proposed method was also validated by the titration method [28].  Bromide 

contents in eight kinds of seawater samples were determined.  The results were 

compared with those given by the titration method as shown in Fig. 6.  The results 

obtained by both methods are in good agreement with each other.  According to paired 

t-test [31], no significant difference was found between the results of both method at 

95% confident limit (tobserved = 0.49, tcritical = 2.36). 

 

4. Conclusion 

A stopped-FI system using kinetic-spectrophotometric method for the 

determination of bromide was accomplished.  The proposed procedure is simple and 

provides good reproducibility and accuracy.  With respect of the advantage of the 

stopped-FI technique, the sensitivity of kinetic-based reaction can be improved, together 

with low dispersion and less consumption of the reagent.  The method was applied 

successfully to the analysis of different source of seawater samples without interference 

effect of chloride, as well as other ions.   
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