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HARMONIC AND ISOMETRIC ROTATIONS
AROUND A SUBMANIFOLD

LoreENzo NICOLODI and Lieven VANHECKE

1. Introduction. Reflections with respect to points, curves and
submanifolds in a Riemannian manifold have been studied extensively in
the framework of Riemannian, Hermitian, symplectic and contact geome-
try. We refer to 2], [18] for a survey and for further references. This study
shows that the properties of the reflections influence strongly the curva-
ture of the ambient space and also the extrinsic and intrinsic geometry of
the submanifold. It also shows that these properties may be used to char-
acterize some special classes of Riemannian manifolds and submanifolds.
(See also [6].)

In [15], [16] the authors extended this theory and initiated the study of
the more general notion of rotation around points and curvesin a Riemann-
ian manifold. Their aim was to treat similar problems as those treated for
reflections.

In this paper we continue this study by introducing the notion of rota-
tion around a submanifold. More specifically, we will deal with harmonic
rotations and direct our attention towards the relation between harmonic
and isometric rotations. This type of problem is similar to that for reflec-
tions with respect to points, curves and submanifolds treated in [1], [7],
(8], [19] and for rotations around points and curves considered in [3], [15],
[16), (17].

In Section 2 and Section 3 we introduce the basic material and discuss
the notion of rotation around a submanifold. In particular we derive, for
analytic data, necessary and sufficient conditions for an isometric rota-
tion. In Section 4 we concentrate on harmonic rotations and in Section
5 we prove, among others, that harmonic and isometric rotations around
a totally geodesic submanifold with flat normal connection coincide when
the ambient space is a locally symmetric Einstein space. This result shows
that the study of harmonic rotations is much more complicated than that
of harmonic reflections. This may be seen by noting that in [8] it is proved
that, in the analytic case, a reflection with respect to a submanifold in a
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general Riemannian manifold is harmonic if and only if it is isometric. Up
to now we do not know if the results proved in the present paper may be
extended to more general cases.

2. Preliminaries.  Let (M,g) be a (connected) n-dimensional
Riemannian manifold and let B be a (connected) topologically embedded
submanifold of dimension ¢. Further, let v be the normal bundle of B
an denote by exp, the exponential map of v. It is defined on some open
domain containing the zero section of v. We shall always suppose that this
domain is sufficiently small in order to have a diffeomorphic exp,,.

Next, let {E4,...,E,} be a local orthonormal frame field of (M, g)
along B in a neighborhood U C B of a point m € B. We choose
Ey, ..., E,; to be tangent vector fields and Egy4,,..., E, orthonormal sec-
tions of v. If (y!,...,4%) is a system of coordinates for B on U such that
d/0y*(m) = E;(m),i = 1,...,q, then the Fermi coordinates z!,...,z" rela-
tive to m,(y',...,y7) and the frame field {E¢41,..., E,} are given by (see
[11], [13], [18], for example)

n

z'(exp, Z 1°Eq (b)) = ¥'(b), i=1,...q,
a=q+1

n
z%(exp, Z t*Ey(b))=t*, a=¢+1,..,n
a=q+1
where b € U and the t*,a = ¢+ 1,...,n are small enough, in accordance
with the hypothesis made above for exp,,.

Now, fix a normal unit vector u at m and consider the geodesic normal
to B given by y(t) = exp,,(tu). Here we have 4(0) = m,¥'(0) = u and
we will specialize the frame field {Eq, ..., E;z} in such a way that E,(m) =
u. Next, let {e1(t),...,en(?)} be the frame field along +(t) obtained by
parallel translation of { Ey(m),..., E,(m)} with respect to the Levi Civita
connection V of (M, g).

Further, it is easily seen that the vector fields

W Vilt) = iy Yalt) = oy,
i=1,...,¢;a =q+1,..,n — 1 are Jacobi vector fields along vy with initial
conditions
(2) {Y,(O) = Ei(m), Y/ (0) = Vug%-‘
Ya(0) = 0, Y/(0) = Ea(m)
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where the prime denotes covariant differentiation along . Then the
endomorphism-valued function ¢t — D,(t) defined by

(3) Yo(t) = Dy(t)ea(t), a=1,..,n-1,
satisfies the Jacobi equation
(4) D"+ RoD, =0
where R()X = Ry)x7'(1), X € {7'(¢)}* and
Rxy = Vixy - [Vx,Vy],

for all vector fields X,Y of M, is the Riemann curvature tensor of (M, g).
Each D,(t) is an endomorphism of the space {7/(¢)}1 and these spaces
may be identified via the parallel translation along ¥ by using the parallel
basis {e4(t)}.

The initial conditions for D,(t) are obtained through the Gauss and
Weingarten formulae for a submanifold given by [4], [14]

) VxY =VxY +TxY,
VxN =T(N)X + V%N

for all X,Y tangent to B and all N normal to B. Here V denotes the
Levi Civita connection of (B, g), TxY is the second fundamental form of
B, T(N) is the shape operator of B corresponding to the normal vector N
and V< denotes the normal connection along B. Note that g(T(N)X,Y) =
—g(TxY,N). Now, using (5), we then have in matrix form with respect
to the basis {Eq(m), ..., En—1(m)} :

(6) Du(O):(‘SI 8) D_L(O):( T) 0 )

—tJ_(u) In—q—l
where
T(u)i; = 9(T(v)Ei, Ej)(m), L (u)ia = 9(VE,Ea, E,)(m)

and Iy, I,,_,_; are the identity matrices of order g and n—g—1, respectively.

Note that the local orthonormal frame {Eg44,...., E,} defined above
can always be chosen to be parallel with respect to the normal connection
at a single point in U. Moreover, it can be chosen to be parallel on U
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if and only if the normal connection is flat, that is, the curvature of the
normal connection vanishes identically [4].

We finish this section with the computation of the components of the
metric tensor ¢ and its inverse g~! with respect to the Fermi coordinates
introduced above. We have

P I B I
95 =49 Oz 827"’ 9ia = 9 Az’ 9z’ Gab = ¢ 9z 0zt

J=1,..,q5a,b =g+ 1,...,n — 1 and further, from the generalized Gauss
lemma (see, for example [11]) we also have

Gin = Gan = 0, Gnn = 1.

Next, using (1) and (3) we have for p = exp,,(tu),u € Tt B, || u|=1:

9ii(p) = 9(Du(t)es, Du(t)e;),
Gialp) = $9(Dult)es, Dult)ea),

9ab(P) = 39(Dult)en, Dult)es).

Further, using the Jacobi equation (4) and the initial conditions (6) we

get the following power series expansions for the components of g and g~ !.

(By abuse of notation we will also denote the linear map corresponding to
the matrix ‘L (u) by the same symbol.) We have

9ij(p) = 9(E;, E;)(m) + 2tg(T(u)E;, E;)(m)
+1*{—g(R(u)E;, E;) + 9(T(u)*Ei, Ej) + g(* L(w)Ei,* L(u) E;) }(m)
—%tz{g(R'(u)E,-, E;) + 29(R(w)E:, T(u)E;) + 2g(R(u)E;, T(u)E;)
~29(R(u)E;, ' L(u)E;) — 29(R(u)E;," L(u)E;}(m)
(R (W) B, E5) — dg(R(w)Ex, E) + 3g(R () E:, T(u) E5)
+3g(R'(u)E;, T(u)E;) + 4g(R(u)T(u) E;, T(u)E;)
—39(R'(v)E;, ' L(u)E;) — 3g(R'(w)E;," L(u)E;)
+4g(R(u)' L(w)E;,  L(u)E;) — 4g(R(u)* L(w) E;, T(u)E;)
—4g(R(W)T(v)E;,* L(u)E)}(m) + O(t°),

Gia(p) = —tg(* L(w) s, Eu)(m) — Sg(R(w)E:, E,)(m)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/17
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—1—12~t3{39(R'(u)Ei, E.) + 4g(R(u)T(u)E:, Ex)

—4g(R(uv)' L(u)E;, Ea)}(m)

5t (20(R" (W) By, Ba) - 49(R(w)* Es, Ex)

+5g(T(w)Ei, R'(v)Ea) — 59(* L(w) Ei, R'(v) Ea)}(m) + O(t°),

gan(7) = (B E3)(m) — 52%9(R(@) Ea, Es)(m) — 51°9(R'(w) Eas Es)(m)

+‘1%t4{89(R(u)2EmEb) — gg(R"(u)Ea,Eb)}(m) + O(ts)

and

¢ (p) = g(E:, E;)(m) — 2tg(T(u)E;, E;)(m)
+82{3¢(T(v)*E;, E;) + 9(R(u)E;, E;)}(m)

+38{9(R (w) i, Ey) - 49(T(w) Bs, RWE)
—4g(R(w)E:, T(w)E;) — 12g(T(u) Ex, Ej)}(m) + O(t%),

4°(p) = to(* L(w)Bs, Ea)(m) + 51*{g(R(x)Ex, Eo)
—3Y " g(T(u)Es, Ex)g(* L(u)Ey, Eq)}(m)
k
%tS{g(R'(u)Ei,Ea) _ 4g(R(w)T(u)E;, Ea)
+4 Z g(R(u)E,-, Ek)g(t-]-(u)Eln Ea)
k

+12)" g(T(u)? Ei, Ex)g(* L(w) Ex, Eo)}(m) + O(t),
k

gab(p) = g(EaaEb)(m) + %tz{g(R(u‘)Eae Eb)
43 L(u) Be, Ea)g(*L(w)Bi, Bu)} () + gt {g(R(u) o, Ey)
k
123" g(T(u) Br, EQg(* L(w)Ex, Ea)g(*L(w) Ee, Ey)
k.

+4) g(R(w)Ex, Eo)g(* L(u)Ex, Ey)
k

+4> " g(R(u)Ex, Ep)g(* L(u)Ex, Eo)}(m) + o(th),
k
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where R(u) = Ry.u, R'(u) = (Vo R)y.u, R (u) = (V2,R),.u.

3. Rotations around a submanifold. Let f be an isometry of
(M,g) and suppose it has a fixed point set of positive dimension. Let B
be a (totally geodesic) connected component of this fixed point set. Then,
on a sufficiently small tubular neighborhood of B, f can be represented as

f =exp,odf|go exp;1

where df|g is the differential map of f calculated along B. So, df|p is a
(1,1)-tensor field along B which is a linear isometry on each fiber of the
normal bundle and which is the identity map on the vectors tangent to B.

With this example in mind we will now introduce the notion of rotation
around a submanifold. Therefore, let B be a g-dimensional submanifold
of (M,g) as specified in the preceding section. Denote by X(B) the C*
tangent vector fields of B and by X(B) the C* tangent vector fields of
M along B. Then X(B) = X(B) & ¥*(B) where X*(B) consists of all
C* vector fields normal to B. Further, F(B) will denote the algebra of
real-valued C* functions on B.

Definitions. A (1,1)-tensor field S along B, that is, an F(8)-linear
map
S :X(B)— X(B),

is said to be a rotation field along B if
S(x*(B)) Cx*(B), Slxs) = idx s
and
g(SU,5V) = g(U,V)

for all U,V € X1(B).
On a sufficiently small tubular neighborhood of B the local diffeomor-
phism defined by
sg = exp, oS o exp}!

is said to be a (local) S-rotation around the submanifold B. If S — I is
non-singular on the normal bundle, sp is said to be a free S-rotation.

Note that for S = —1, sp defines the (local) reflection with respect to B.
Further, we have

sp : exp,(m,v) — exp,(m, Sv).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/17
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Moreover, B is contained in the fixed point set of sg. Finally, the analytic
expression of sg in terms of Fermi coordinates is

{ziosB =z, i=1,..q;
2% osg = Sgrb, a,b=q+1,...,n

where S¢ are the components of § with respect to the basis {Eg41, ..., B}
introduced above.

The covariant differential of S along B is the F(B)-linear function
VS :X(B) x ¥(B) — X(B) defined by

(VS)X,V) = (VxS)V = Vx(SV) - SVxV.

Then it is easy to see that V.5 = 0 is equivalent with the two following

statements :
i) S preserves the second fundamental form of B, that is, STxY =
TxY;

ii) S preserves the normal connection of B, that is, SV U = V% (SU)
(or equivalently (V% S)U = 0),
for X,Y € X(B) and U € X*(B). Hence, if S is free, VS = 0 implies
that B is totally geodesic. In particular, when S determines the reflection
with respect to B, then V.S = 0 is equivalent to the fact that B is totally
geodesic since V§S = 0 is automatically satisfied.

From the remarks made at the beginning of this section it follows
that an isometry f of (M,g) is a rotation around the (totally geodesic)
connected components of its fixed point set (which was supposed to have
a positive dimension). Its rotation field is the differential map of f along
B. It is easy to see that this field is parallel along B. Now we will derive
a criterion for a rotation to be isometric. It will be used in Section 5.

Proposition 3.1. Let B be a submanifold of (M,g) as specified
above and let sg be an S-rotation around B. Then we have:
A. If sp is an isometry, then
i) VS =0 along B;
i) (Ve uR)uzuy = (Vgu...SuR)SuSISuSy
for all normal vectors u, all tangent vectors z,y to M and all k € N.
B. The converse also holds for given analytic data.

Proof. Ifspg = exp, oSoexp, ! is an isometry, then sg = exp, odsp|go
exp,;! and hence S = dsp|p is parallel along B. Moreover, since any
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isometry preserves the curvature tensor and its covariant derivatives, we
have ii).

Conversely, given i) and ii), we have to prove that sgg = ¢g. Using i)
this reduces to

9:;(p) = gi;(sB(P)),  9ia(P) = Gia(5B(P))S7 (M),
9ab(P) = gp1(s8(p))SE(m)S} (m),

for:,j=1,...,qand a,b,a,8,7y = g+1,...,n where p = exp,,,(tu). Now, as
we explained in Section 2, the components of the metric tensor are given
in terms of the operator D,. The Jacobi equation (4) yields

[

DL (0) = =Y (,f) RU-H(0)DP(0), ¢eN.

k=0

Then, the Taylor expansion of D,(t) together with the initial conditions,
T(Su) = ST(u) = T(u), SVYiu=Vi(Su),
and ii) yield the required result.

4. Harmonic rotations. Let ¢ : M — N be a smooth map
between two Riemannian manifolds with metrics g and h, respectively.
The covariant derivative Vdy of the differential dp : TM — TN is a
symmetric bilinear form on TM with values in ¢ "}(T'N) and is called the
second fundamental form of . The trace of Vdy taken with respect to
the metric g is called the tension field of ¢ and denoted by 7(¢). The map
 is said to be harmonic if T(¢) = 0 (see [9], [10]).

Let U C M be a domain with coordinates (z!,....,.2™) and V C N a
domain with coordinates (y,...,y") such that ¢(U) C V and suppose ¢ is
locally represented by y* = ¢*(zl,...,2™),a = 1,...,n. Then we have

0" Mk 097 N D™ 0°
(7) (Vd(p)?j = dridzl ijm + I‘gﬂ((’o) ox? Bz’

i,7=1,..,mand vy = 1,...,n. Here MF% and Nl"lﬁ denote the Christoffel
symbols of (M,g) and (N,h), respectively. Hence, ¢ is harmonic if and
only if

(8) ()" = g7(Vdp); = 0.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/17



Nicolodi and Vanhecke: Harmonic and | sometric Rotations Around a Submanifold

HARMONIC AND ISOMETRIC ROTATIONS 243

Using Fermi coordinates and with the notations just introduced we
have

Proposition 4.1. The S-rotation sg with respect to the submanifold
B is harmonic if and only if for allm € B

(9) 7(sB)*(p) = {9"(Vdsp)}; + 29" (Vds)l, + ¢°°(Vdsp )} (p) = 0,
(10) 7(s)°(p) = {97(Vdsp)§; + 29" (Vdsp)s, + ¢°*(Vdsp)o}(p) = 0

fori, j, k=1,..,gand a, b, c = ¢+ 1, ..., n, where p = exp,,(tu),
u€TLB,||ul|l=1 and

S‘@
(11) (Vdsg)5(p) = ~T5(p) + I%(sB(p)) + I‘w<sa(p))—m“
0S¢
k k Vs 6
+Fa](33(p))a K :l) + T ,B( B(p)) Szt le; p.,
(Vdsg)k(p) = —T%(p) + Tis(sB(p))S? 058 6645
(Vdsg)k,(p) = —TE(p) + T a(sa(p»sas”
8255 0S¢ .
(Vdsg)ij(p) = 92927 Tip )—33 - I'%(p)Sa
+T%(sB(p)) + I (sB(p))
85" 952 558
+T¢;(sB P)) x“+I‘c e ] 52 ’J‘ zozH,
oS¢ 65
(Vdsp)ia(p) = 5% — Tha(p) 552" - Th(p)SE
TS5 (s5(p))S? L sga?,

(Vds5)2s(p) = ~Tla(p) oba’ T3 (p)sc+r°g(sa(p))sas"

where S§ and its partial derivatives are evaluated at m.

To express the harmonicity of sp we need to know the Christoffel
symbols with respect to a system of Fermi coordinates. For this we will
use the well-known formula

a4 _ 1<~ ap,998p  Ogcp Ogmc
(12) The =3 2. 9150 * 5B ~ a0
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A,B,C = 1,...,n, giving the Christoffe] symbols in terms of the metric
tensor. Then we will use the expressions for ¢ and g~! given in Section 2.

5. Harmonic and isometric rotations. In this section we shall
concentrate on harmonic S-rotations in relation with isometric S-rotations
around a submanifold of a Riemannian manifold. More specifically, we
shall prove

Theorem 5.1. Let B be a submanifold of (M,g) as specified above
and let sg be an S-rotation around B. If sg is harmonic, then S preserves
the mean curvature vector field of B and if sg is a free rotation, then B is
a minimal submanifold. Moreover, if B is totally geodesic with flat normal
connection and sg a harmonic rotation, then VS = 0 along B.

Theorem 5.2. Let (M,g) be a locally symmetric space with S-
invariant Ricci tensor and let B be a totally geodesic submanifold with flat
normal connection and sg an S-rotation around B. Then sg is harmonic
if and only if it is isometric.

This gives at once
Corollary 5.3. Let (M. g) be a locally symmetric Einstein space and

let B be a totally geodesic submanifold with flat normal connection and sp
a rotation around B. Then sg is harmonic if and only if sp is isometric.

To prove these results we put
3
T(sB)° = Z At 4+ 0(th), c=q+1,..,n,
k=0
. 3 .
r(sg) = Y AtF+o0(th),  i=1,..q

k=0

From (9) and (10) we then get the following necessary conditions for sp
to be a harmonic rotation :

AS=0, AL=0

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/17
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fork=0,1,2,3;¢c=q+1,..,nand i = 1,...,q. To compute A§ and A} we
use (9), (10), (11), the expressions for gag,g? obtained in Section 2 and
(12). We delete the lengthy but straightforward computations.

Proof of Theorem 5.1. First, from Af =0,c=¢+ 1,...,n we get

q g
SY TgE:i =) TgE
=1 i=1

which is equivalent with SH = H where H is the mean curvature vector.
So, if sg is a free rotation, we get H = 0 and hence, B is a minimal
submanifold.

Next, suppose that B is totally geodesic and that V< is flat. Then
the frame field {Eg41,..., En} can be taken parallel with respect to the
normal connection in a neighborhood of m € B. Under these hypotheses,
the conditions A = 0 yield

q q
(13) S 9(VE g S)u, SEe) = S (Ruici — Rsuisei)
=1 =1

2 n
_§ Z (Rcauu - RScSaSuSa) =0
a=g+1

where Rapcp = RE EgEcEp,A.B,C,D = 1,...,n. Now, for a normal
unit vector field u we have g((Vﬁ,S)u, Su) = 0 and then, differentiating
again and using !SS5 = I, we get

9(VE g, S)u, Su) = —g((VE,S)u, (VE,S)u).

Next, we substitute this in (13), replace u by E; and sum with respect to
¢c=q+1,...,n. This gives

9 n q n
Z Z g((VﬁviS)Ec, (V'L,-S)Ec) + 2 E (Rcici - RSciSci)
i=lc

=g+1 it=1c=qg+1
9 n
+§ Z (Rcaca - RScSaScSa) =0,
a,c=g+1

and this yields

n

g((vé,s)EC‘ (VE,S)EC) =0.
+1

»
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Since V1§ : X(B) x X*(B) — x1(B) is F(B)-linear, we obtain V1§ = 0
along B. So, since B is totally geodesic, V.S = 0 along B.

Proof of Theorem 5.2. Since each isometry is harmonic we have only
to prove the converse. So, let sg be a harmonic rotation around B. Ac-
cording to Proposition 3.1 and Theorem 5.1 we have to prove that

Riuju = RiSujSua Rivou = RiSuSaSue Rouby = RsaSushsu

for:,7=1,..,qand a,b=q+1,...,7n.
First, since VS = 0 and since the Ricci tensor is S-invariant, (13)
yields, by taking E. = u,

q
(14) Y (Ruivi — Rsuisui) = 0

=1

for all u € TL B.
Next, we consider the conditions A§ = 0,¢ = ¢ + 1,...,n. Then, after
a lengthy computation, we obtain

q q
(15) 30> (RZ,; — R¥uisu;) —45 Y Ruinj(Ruivj — Rsuisu;)

1,7=1 3,5=1
q n
-—GOZ Z Ruiua(Ruiua _RSuiSuSa)
i=1a=¢+1
q n
+3GZ Z (Rz?uau - R?SuSaSu)
t=1 a=q+1
n
+6 Z (RZaub - RguaSub)
a,b=1

n
=10 Z Ruaub(Ruaub - RSuSaSqu) =0.
a,b=g+1

The left hand side number of (15) may be considered as a function on the
unit sphere $"7971(1) in 7, B. We shall integrate this function over this
sphere. Therefore we use the next lemma (see, for example, 5], [11], [12]).
We have

Lemma 5.4. Let v = ) ;_,41%FE. be an orthonormal decompo-
sition of the unit vector u € T B with respect to an orthonormal basis

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/17
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{Eq+1s--, En} of Tt B. Then we have

/ uedp = 0, / UgUptUdy = 0,
sr—a-1(1) §n-e=i(1)

1
L"—q—l(l) 'uaubdlj' = Cn—g-1 n—_qéaby

1 1
2,2 4

usupdp = - Updp = Cr—q— , a#b
./sn—q—l(l) ath@H =3 §n—q—1(1) a e l(n_ g)(n—q+2) 7
f ugupucugdy = 0 whenever at least three indices are different,
sn-a-1(1)

ugubd,u =0, a#bd,
Sn=a-1(1)

where a,b,c,d = g+ 1,...,n; du denotes the volume element of S*~9171(1)
and o
(n—gr’z

(=9

Cn—q—-1 =

is the volume of a unit sphere in the Fuclidean space E"™9.

As a consequence of this lemma one gets at once that the integrals of

g q n
> (REi; — Riuisui)s SN (Rua — Rbuisusa)

7,j=1 i=1a=g+1
and
n
2 2
Z (R'uaub - RSuaSub)
a,b=q+1
vanish. Next, put

g

A=Y Ruiuj(Ruinj — Rsuisuj),

1,7=1
q n
B = Z Z Ruiua(Rui-ua - RSuiSuSa),
i=1a=q+1
n
C = Z Ruaub(Ruaub - RSuSaSqu)-
a,b=g+1

Then, by integration, we get first

q n
Cn—g—1
Ady = - Rai 'Ra'i ] Rai iR tay
_/Sn—q—l(l) L (n —_ q)(n —q + 2) Z Z { bj bj + by fthiaj

i,7=1a,b=g+1
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~Roip; Rsaist; — Raivj Rsbisa;}-

Now, we use the first Bianchi identity and the Ricci equation for B given
by (see [4])

9(BxyU,V) = g(RxyU,V) + g(T(U)X,T(V)Y) - o(T(V)X,T(U)Y)

for tangent vectors X,Y of B and normal vectors U,V of B. Then we get

C —
Adp = _— Ruiv; — Rsais;)?-
/S"-q-l(l) (n-g)(n—-g+2) ”21 . ,,ZQH( ’ )

Next, we have

q n
Cn—g-1
Bdu = : Riipa Reica + Rpica Rbica
/Sn—q—l(l) H (n—q)(n—q+2)z Z { biba fleica + Lip b

=1 a,b,c=q+1
+Rpica Reiba — RiibaRsciscsa — RiicaRspiscSa — RbicaRScishsal-

We observe that

n q

Z (RbibaRcica — RyibaRSciScsa) = Rbiba(pia — z Rjija
c=g+1 Jj=1
q q
—pisa + Y Rjijsa) = Y Ruiva(Rjijsa — Rjija)
7=1 1=1

since p is S-invariant. This last expression vanishes since Rg, g, E; is tan-
gent to B because the submanifold is totally geodesic. Furthermore, be-
cause of the curvature identities

Z RibcuRicba = 5 Z szcaszcay

a.b,c a.be
Z RibcaRiSchSa =3 Z RtbcaRszScSa’
a,b.c a b,c

we finally obtain

3¢n_g-1 q n
Bd —= cha cha : SbScSaf -
/_;ﬂ—q—l(l) H= Z(n — q) n—q+ 2 Z z b { b Rispscs }

i=1a,b,c=q+1
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For the integral of C' we get

n

Cn—g—1
Cdu = g ReaotRaash
/Sn—q—l(l) a (n - q)(n —-q+2) a’b‘a.‘;:qﬂ{ aaabilBaf

+ Roapb Raopp + Raaps Racd — RoaaabRsasaspst

—RuappRsasespss — Raapp RSpSasash}-

Proceeding in the same way as for B, we obtain

n

Cn—g—-1
Cdu = n—gq {RaaabR b —
~[Sn—q—l[1) # (n' - 1)(n -q+ 2) a,b,a§=q+l "

3
RoaabRspsasasy + §chaﬁb(Raaﬁb — Rsasaspss)}-

Now, the S-invariance of p yields

n 9 n
Y Rocat(Rpaps—Rspsassss) = =D D, Roaab(Riaiv—Risaiss)
ab,ax.8=q+1 i=1a,b,a=gq+1

and this vanishes because of (14). So, we get

3en—g-1 N
Cd#: g Reoess(Raass — Rsasesssh
[5"“’"(1) 2(n - q)(n—q+2) a'b,a%::qﬂ aagb( Roap Bsb)
n

3¢n_g-1 2
= - Roopy — Rsasaspss)”-
4(n — q)(n__ g+ 2) a'b'a‘zﬁz__q,‘n( caf aSaSp3 )

From all these computations we see that the integration of (15) over
5§7=9-1(1) yields

9 n q n
6 5. Y (Raitj — Rsaise;)’ + 6> > (Riabe — Risaspsc)”
i,j=1a,b=g+1 i=1a,b,c=g+1
n

+ Z (Roaps — Rsasaspss)’ = 0,
ab,a,B=q+1

and this is equivalent to
Raiv; = Rsaishjs  Riobe = Risasbses  Raagb = RsaSasass

for 7,7 = 1,...,q and a,b,c = ¢+ 1,...,n, from which the required result
follows
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