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ON PRIMITIVE ELEMENTS OF
GALOIS EXTENSIONS OF
FINITE COMMUTATIVE ALGEBRAS

Dedicated to Professor Manabu Harada on his 60th birthday

[sao KIKUMASA and Takast NAGAHARA

Throughout this note, all rings will be assumed to be commutative and
to have identities, and a subring of a ring will mean one containing the same
identity. Moreover, all Galois extensions will mean those in the sense of
[1]. A ring extension R/K is called simple if R is K-algebra isomorphic
to a factor ring K[X]/(g) for some polynomial g in K[X]. that is, R/K
has a primitive element (cf. [3], [4] and etc.). A Galois extension R/K
will be called trivial if R is K-algebra isomorphic to the direct sum of
copies of K. Unless otherwise provided, K will mean a finite field GF(q)
consisting ¢ elements where ¢ is an s-th power p° of a prime p. Given a K-
algebra R, [R: K] will denote the dimension of K-module R, and 2(R) the
length of composition series of R-module R, Further. by N, we shall denote
the set of positive integers.

In this note we first treat a Galois extension R/K whose rank is
a power r” of a prime r, and we shall prove that a non-trivial Galois exten-
sion R/K is simple if and only if 4{R) has some bound which depends to p,
s. r and n. Next we show a necessary and sufficient condition for a Galois
extension R/K of rank p" to be simple. which is useful and needs not to
distinguish trivial Galois extensions from non-trivial ones. Later we con-
sider the relation between primitive elements of a Galois extension R/K of
rank p" and intermediate fields of R/K, and we shall characterize the sim-
plicity of a Galois extension R of K by maximal subfields of R containing
K (§ 1). As an application, we shall present an elementary proof for
a counter example of Dedekind which concerns with algebraic number fields

(§ 2).
1. On primitive elements of Galois extensions over K. Now, let r
be a prime and n € N. The following results is contained in [6. Theorem

1.6]. However. this will here be stated for the subsequent uses and con-
siderations.

13
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Lemma 0. Let R/K be a Galois extension of rank u, and set v =
u/9(R). Then, R/K is simple if and only if 2(R) < No(v):=(1/v)-
Dapu(d)q”, where u(d) is the Moebius function on the set of natural
numbers., In case u = r" and v = r, R/K is simple if and only if 2(R) <
(1/0)(¢*—q"").

We begin our study with the following proposition.

Proposition 1. Let R/K be a Galois extension and [R: K] = r™
Then
(1) Incase that R/K is trivial, R/K is simple if and only if 2(R)< q.
(2) Let R/K be non-trivial. Then, the following conditions are equiv-
alent.
(i) R/K is simple.
(ii) 2(R) < sr™/(nlog,7+log,(1+x,{r™)/7"))

where x,(7") is a unique solution of an equation

(*) X —X—r"=0(X>0).

Proof. If R/K is a trivial Galois extension then the equivalence con-
dition (1) has been known (cf. Lemma 0). Hence it suffices to show the
case (2). Let f(X) = X"—X. Then, as is easily seen, f(x) > 0 if x>
1, f(1) =0 and f(x) < 0 if 0 < x < 1. Moreover, f(X) is strictly in-
creasing on the interval [1, o). Hence the equation (*) has a unique
solution x, = x,(7") with o > 1. Put r! = [R: K]/2(R). Then, the con-
dition (ii) is equivalent to that log,(r®+x,) < sr’, and so. to that x, <
q""". Since f(X) is strictly increasing on [1, o). this inequality holds if
and only if r* = f(x,) < f(g™"") = ¢"'—¢q”"". Hence we obtain our asser-
tion (2) by Lemma 0, completing the proof.

Let f(X) and x, be as in the above. Then
S~ flm) = PrT—2) 2 0,

Hence 7" = x, and so 0 < x,/r" < 1. Combining this with Proposition 1,
we have the following corollary.

Corollary 2. Let R/K be a Galois extension of rank r". Then
(1) If R/K is simple and non-trivial then
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2(R) < sr™/(nlog,T).
(2) If 8(R) < sr™/(nlog,r+log,2) then R/K is simple.

The equation { * ) is easily solved by radicals in case r = 2 and r = 3.
Hence we have the following

Corollary 3. Let R/K be a non-trivial Galois extension of rank r™.
(1) In case r = 2. R/K is simple if and only if

O(R) < 2™s/log,(2"+(1+(1+27%)'2)/2).
(2) Ifr =3 then. R/K is simple if and only if
2(R) < 3"s/log,(3"+x0)
where

x, = (3%/24+(9"/4—1/27)"")F +(3"/2—(9"/4 —1/27)'*)'".

Proof. The positive roots of the equations
X*—x—2"=0and X'—x—3"= 0

are (14+(142"%)"*)/2 and the x, in the statement (2) of the theorem,
respectively. Hence we have (1) and (2) according to Proposition 1.

Now we give a lemma to prove the following proposition.

Lemma 4. Letme N. Ifx=>m’+1 and k = 2 (k € N) then k* =
x"+ k.

Proof. We first examine a special case £ = 2. Set ¢(X) = 2*—X"
—2. The problem then becomes to show that ¢(x) = 0 if x = m*+1. Our
assertion is easily checked in each case m = 1. 2, 3 and 4. Hence we may
assume that m = 5. Then, note that 2™ > m® and 2™ log2 > m where log
= log. is natural logarithm. Now, it suffices to show that ¢"(x) (= ¢'(x))
> 0 if x > m®. For, this implies that (X ) is strictly monotone increasing
on x > m?, and so we have ¢(x) > 0 for x > m® because ¢(m*) = (2™)"—
(m*)"—2 = 0 (m = 5). Since it is obvious that

g" "(x) = 2%(log2)"*' > 0 for x > m’,

we assume that 1 < i < m and ¢ "(x) > 0 for x > m’. Then
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#“(x) = 2*(log2)'—m(m—1)---(m—i+1)x™"*
is strictly monotone increasing on x > m’. Furthermore we have
¢-:t)(m2) > 2m2.(10g2)i_mi(m2)m—i
— (2m)m—l(2m_]ng)i_(mZ)m—imi > 0.

It follows therefore that ¢'“(x) > 0 for x > m®’. Hence, by an induction
method, we obtain that ¢(x) > 0 if x > m®and 1 < i < m+1. Next, let
k>3 and set c = k—2. Then

kE* = (24¢)* = 2%4c* = x"+2+c* (by the above case)
> x"424¢c = x"+k.

This completes the proof.

Using the lemma we have the following proposition, which does not be
set with the condition about 2(R), p and s.

Proposition 5. Let R/K be a non-trivial Galois extension with [R : K]
=" Ifr > n* then R/K is simple.

Proof. Let x, (= x,(r™)) and f(X) be as in Proposition 1 and its
proof. Assume that r = n*+1. Then, by Lemma 4,

fla)—f(x) = ¢"—q—7" 2 0.

Since f(X) is strictly increasing on x = 1, this implies that ¢ = x,. Hence
r"+x, = x§ < q" = p°". Therefore we obtain

sr® sr®

sT log, (7" +x0)
= sr*/(nlog,r+log,(1+x,/7")).

oR) < ™' =

It follows from Proposition 1 that R/K is simple.

Now we consider the case r = p that is [R: K] = p"(n € N).

Lemma 6. Let R/K be a non-trivial Galois extension and [R: K] =
p". Then the following conditions are equivalent,

(i) R/K is simple.

(ii) 2(R) < sp™/n.

(iii) 2(R) < sp™/(n+1).
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Proof. (ii) = (iii): &(R) < sp"/n=> p"/L(R) > n/s => (p"/UR))s =
n+1 = 2(R) < sp™/(n+1). The implications (iii) = (i) = (ii) follow
immediately from the result of Corollary 2.

Corollary 7. Let R/K be a Galois extension of rank p". Assume that
p, s and n satisfy one of the following conditions :

(a) s is not a divisor of n.

(b) s is a divisor of n and, n/s and p are relatively prime.

(e) n and p are relatively prime.
Then, the following conditions are equivalent.

(i) R/K is simple.

(ii) &R) < sp™/a.

Proof. (ii)=>(i): If n<s then R/K is simple by [13, Le théoréme
de l'élément primitif]. Let n > s. Then, the inequality (ii) implies that
2(R) = p™ for some integer m with 0 < m < n—1. Then nl(R) # sp”
since, otherwise, n = sp* for some k£ € N, and this contradicts to our
assumptions. Hence £(R) < sp™/n. Since 2(R) =+ p™, it follows that R/K
is simple by Lemma 6 (ii = i). The (i) = (ii) is easily seen from Prop-
osition 1(1) and Lemma 6.

The following theorem is one of our main results, which does not be
set with the additional conditions (a)-(c) in Corollary 7 or “non-trivial”,

Theorem 8. Let R/K be a Galois extension with [R: K] = p™. The
the following conditions are equivalent.

(i) R/K is simple.

(ii) 2(R) < p"(sp"~1)/(np"—1).

Proof. (i)=>(ii): If 2(R) = p” then n < s by Proposition 1(1) and
so, np"—1 < sp"—1. Hence we obtain (ii). Assume that 2(R) + p™
Then, by Lemma 6 (i = iii)., we have

AR) < sp™(n+1) < p™(sp"—1)/(np"—1).

(ii)= (i): If s/n =1 then R/K is simple by [6, Corollary 2.2] (or
[13, Le théoréme de 1'élément primitif]). If s/n < 1 then

2(R) < p™(sp"—1)/(np"—1) < sp™/n
and so, 4(R) + p". Hence we get (i) from Lemma 6.
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We here consider the relation between intermediate fields of R/K and
primitive elements of R/K.

Theorem 9. Let R/K be a Galois extension with [R: K] = p". More-
over, let L be a maximal subfield of R containing K. Then the following
conditions are equivalent.

(i) R/K is simple.

(ii) [L: K] = (np"—1)/(sp"—1).

Proof. By [6, Lemma 1.2], we have [L: K] = p"/8(R). Hence it

follows from Theorem 8 that

(i)<=> &R) < p"(sp"—1)/(np"—1)
<> p"/2(R) = (np"—1)/(sp"—1)
> [L: K] = (ap"—1)/(sp"—1).

Corollary 10. Let R/K be a Galois extension with [R: K] = p™.

Moreover, let t be an integer such that
ptt < (np"—1)/(sp"—1) < p'.

Then the following condiiions are equivalent.
(i) R/K is simple.
(ii) R/K contains an intermediate field GF(p*').

Proof. (ii) = (i): Clearly, there is a maximal subfield L’ in R con-
taining GF(p**') (D GF(p®) = K). Then, by [6, Lemma 1.2] we have

[L’: K] = p"/2(R) = p' = (np"—1)/(sp"—1).

Hence our assertion follows from Theorem 9 (ii = i). The assertion (i)
= (ii) is a direct consequence of Theorem 9 (i = ii).

Corollary 11. Let R/K be a Galois extension of rank p™. Then
(1) Ifn< s then R/K is simple.
(2) Assume that n > s.
(a) If p> n/s then, R/K is simple if and only if R/K contains
an intermediate field GF(p®®).
(b) In case p = n/s, R/K is simple if and only if R/K contains
an intermediate field GF(ps*").
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Proof. Put d(p, s.n) = (np"—1)/(sp"—1). Then,

dp,s,n)<1lifn<s;
1<dp,s,n)<pifn>sand p=n/s:
p<dp, s,n)<p’if n> s and p = n/s.

Therefore we have (1) and (2) by Corollary 10.

Example 1. (1) Letg=19, [R: K] = 3% and 4(R) = 37 (note that
there exists such a Galois extension surely). Then, in (2) of Corollary 3,
the right-hand side is 2197.3'-*. Hence by the corollary we see that R/K
is simple in this case because Z(R) = 2187. However we cannot find that
the inequality of Corollary 2(2). Indeed,

sr™/(nlog,r+log,2) = 6561 /log,,13122
= 2037.3--- < 2187 = AR).

(2) Letq=3% [R:K]=23%and 4(R) = 3% In this case, the right-
hand side in (ii) of Theorem 8 is less than 2(R). In truth,

p"(sp"—1)/(np"—1) = 6560.9--- < 6561 = 2(R).

This implies that R/K is not simple because of the theorem.

2. On an example of Dedekind. Let B be a commutative ring with
an identity 1, and A a subring of B containing 1 such that B is a finite free
A-module with basis {d,, ..., d,}. Let z; be the A-projection of B onto the
coefficients of d;, and set ‘

Hz) = i{m(zdi) for all z € B.

An easy computation shows that the map # is independent of the choice of
a free basis |d,, ..., d,} for 4B. This will be called the trace map of B/A.
Moreover, we set

o(dy, ..., dn) = det[#(d.d;)]

where [#(d.d,)] is the nXn matrix whose (i, j)-entry is #d;d;) (1 < i,
j < n). This determinant will be called the discriminant of B/A with re-
spect to {d,, ..., dnl.

Now, if B* is an A-subalgebra of B with a free basis |d¥, ..., d¥} for
JB*andd¥ =271 ad; (a;; € A, j=1....,n) then

Produced by The Berkeley Electronic Press, 1990
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o(d¥, ..., d¥) = (det[a;;])?6(d:. ..., d,)

where [a;] is the nXn matrix whose (i, j)-entry is a; (1 < i, j < n).
When §(d,, ..., ds) is not a zero divisor of A, B* = B if and only if

&(d¥, ..., d¥) = a*6(d,. .... d,) for some unit a in A.

Hence, in case that A is the ring of rational integers, &(d,, ..., d,) is inde-
pendent of the choice of a free basis {d,. ..., d,| for 4B, and whence this
will be denoted by &(B), which will be called the discriminant of B.

Now, by making use of the same methods as in the proof of [2, Theorem
4.4 in Chapter III], we can prove the following

Lemma 12. Let B be a commutative ring with an identity 1 and A
a subring of B containing 1 such that B is a finite free A-module with basis
{d,. ....dn|. Then B is separable over A in the sense of [2] if and only if
8(d,, ..., d;) is a unit in A,

Let Z be the ring of rational integers, and @& the field of rational
numbers. Then, we obtain the following

Corollary 13. Let E be an algebraic number field and B ithe ring of
algebraic integers in E. Let p be a rational prime integer (€ Z) which is
not a divisor of 5(B). Then the localization B,, = Z, @, Bof Bai (p) =
pZ is a separable algebra over Z,. Moreover, B, /pB,(= B /(pZyBy:))
= B/pB which is a separable algebra over Z, /pZ, = Z/pZ = GF(p). In
particular, if E is Galois over Q then B/pB is Galois over GF(p). Further,
for any rational prime integer v. B /Z, is simple if and only if (B/rB)/
GF(r) is simple.

Proof. Since 7Z;, is the unique maximal ideal (i.e. the radical) of
Z., it follows from Nakayama's Lemma that B, is simple over Z,, if and
only if Bn/rZ By (= B, /rB;) is simple over Z,/rZ,. Moreover, since
rZ is a maximal ideal of Z, we see that Z,/rZy = Z/rZ = GF(r) and so
B.,,/rB, = B/rB. Hence, the extension B,/Z, is simple if and only if so
is (B/rB)/GF(r). The other assertions follow immediately from L.emma 12.

Corollary 14. Let E = Q(a) be an algebraic number field and B the

ring of algebraic integers of E. Let f(X) be the minimal polynomial of a over
Q with f(a) = 0. and F the splitting field of f(X) over Q in the field of

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/iss1/3
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complex numbers. Let G be the Galois group of F/Q, C the ring of algebraic
integers of F, and D the composite ring of |o(B): o € G|. Let p be any
rational prime integer which is not a divisor of §(B). Then C, = D, which
is a Galois extension of Z, with Galois group G|C, = G, and p is not
a divisor of 6(C).

Proof. It is obvious that ¢(C) = C for all ¢ € G. Hence F D C D
DD BD Z, and the fixring of G in C is Z. Moreover, C, D D, D B,
D Zyp. 0(Cyp) = Cyp.. o(D,) = Dy, for all ¢ € G, and the fixring of G in
C.p coincides with Z,.. As is well-known, QB = E and F is the composite
ring of }o(E): 6 € G|. Therefore G|D = G = G|C, and so. G| D, =
G = G|C,. Now, one will easily see that D,, is the composite ring of
lo(Bp): ¢ € G|. Since B,/Z, is separable (Corollary 13), it follows
that D, is separable over Z,. and so. D, /Z, is a (G| D,)-Galois exten-
sion by [1, Theorem 1.3]. Hence there exists a Galois coordinate system
{4y, voes ts. M. ... ve} in Dy such that 25 u,0(v) = 810 for all ¢ € G
where &, is the Kronecker's delta. Then, for each ¢ in C,. we see that
¢ = 2 iuiti(cv,) € Dy, where t;(c) = Xsec(c). This implies that D, =
Cp. Since Cy/Z, is separable, §(Cy) is a unit of Z,. Hence p is not
a divisor of §{C), completing the proof.

Example 2. Let Q be the field of rational numbers, and Q(a) an alge-
braic number field where a is a root of the irreducible polynomial f(X) =
X°+X?*—2X+8. Let B be the ring of algebraic integers of Q(a). Then,
as is well-known, B = Zw, & Zw, @ Zw; for some w;s in B where Z is
the ring of rational integers. Let B, = Z1+ Za+ Zb for b = (a+a®)/2
and B, = Z1 ® Za & Zda®. Then. noting b*—2b6°+3b—10 = 0. we have
b€ Band B, & B, C B. A direct computation shows that the discriminant
0(B,) of B, is 27-(—503). Hence, by our remark in the first part of this
section we see that §(B,) = —503, §(B,) = §(B) and

B=B =2Z1® Za® Zb

(cf. [14, 4-8-20]). However, in [14, 4-9-4, Example (Dedekind)]. it has
been proved that

Q(a) does not have an integral basis of form {1, t, t*}.

For this result, we shall present an alternative proof in which one of our
results applies.
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By B, we denote the factor ring B/2B of B modulo 2B, and for any
¢ € B, we denote ¢c+2B(€ B) by ¢. Clearly B contains the factor ring
Z/27 = GF(2) and

B = GF(2)1 ® GF(2)a ® GF(2).
Now, noting b = (a+a®)/2 and a*+a® = 2a—8, we see

a* = a{(mod2B),
0 =b—-2(14a) =b (mod2B) and
ab=0a—4 = a(mod2B).

Hence we see that elements e, :=1—4. e; := @, and e; := b—a are non-
zero idempotents which are orthogonal to each other. It follows therefore
that

B = GF(2)e, ® GF(2)e, ® GF(2)e,

which is a trivial Galois extension of GF(2) (cf. [6, Remark 1.1]). Hence,
we see that the extension B/GF(2) is not simple from Proposition 1.
Therefore, the extension B/Z is not simple. Thus, Q(a) does not have
an integral basis of form |1, &, #*].

Next, we consider the localization Z,. of Z at the prime ideal (2) =
2Z. Noting that the discriminant of B is —503 and —503 & 2B, we see
that B, = Z, @; B is a separable Z,-algebra. Moreover, the GF(2)-
algebra B, /2B, is algebra isomorphic to B = B/2B. Since the extension
B/GF(2) is not simple, it follows that B,,/Z, is not simple. However, for
any positive prime p € Z with p #+ 2, 503, B, is a separable Z,-algebra
which has a primitive element a (= a/1) over Z,. Moreover, Bys, is not
separable over Zsgs). but this has a primitive element a over Zsgs. Further,
we have

B, /3Bs, = GF(3%) and B;./7B, = GF(7°)
Bs,/5Bs, = GF(5)[X]/(X+1) & GF(5)[X]/(X*—2)
= GF(5)e, ® GF(5%)e,, and
Bis03,/503 Bsos, = GF(503)[X]/(X—204) & GF(503)[X]/((X—149)%)
= GF(503)e, ® (GF(503) & GF(503)x)e,

where e,, e, are orthogonal idempotents and x* = 0, because f(X) = X®
+X*—2X+8 is irreducible (mod3) and (mod7), respectively, f(X) =
(X4+1XX*—2) (mod5) and f(X) = (X—204)(X—149)* (mod503). These
enable us to see that Bs,/5Bs. is separable but is not Galois by [6, Lemma

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/iss1/3
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1.2]. Hence, Q(a)/Q is also not Galois by Corollary 13 (cf. [2, p. 113]
and [3, p.471]).

Lastly, we consider the splitting field F of f(X) = X°+X*—2X+8
in the field of complex numbers. As is easily seen. F/Q is a Galois exten-
sion of rank 6. We shall now prove that

F does not have an integral basis of form {1, &, ..., t*}.

Let C be the ring of algebraic integers in F, and G the Galois group
of F/Q. Then C, is a Galois extension of Z,, with Galois group G| C, =
G by Corollary 14. Since B,, is separable over Z,., B,, is a direct sum-
mand of B, -module C.,. that is, Co. = B, ® M for some B,-submodule M
of C, (cf. [1. Lemma 6]). Then, one will easily see that C,/2C, D
(Bay+2C,)/2Cs = B, /2B, and this contains non-zero idempotents e,, e,
and e; which are orthogonal to each other by the preceding discussion.

Hence 2(C,./2C.)) = 3. Since C,/2C,, is a Galois extension of Z,,/2Z,,
= GF(2) of rank 6, it follows from Lemma O that C./2C,, is not simple

over Zy/2Z, and so the extension C/Z is not simple. Thus, F does not

have an integral basis of form {1. ¢, ..., *|. This completes the proof.
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