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Abstract

In this paper, we shall consider Privalov space Np 0 (D) (p > 1) which consists of holomorphic
functions f on the upper half plane D := {z € C|Imz > 0} such that (log+ |f(z)|)p has a harmonic
majorant on D. We shall give some properties of Np 0 (D).
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PRIVALOV SPACE ON THE UPPER HALF PLANE

Yasuvuo IIDA

ABSTRACT. In this paper, we shall consider Privalov space N} (D) (p >
1) which consists of holomorphic functions f on the upper half plane
D := {z € C|Imz > 0} such that (log™ | f(2)|)? has a harmonic majorant
on D. We shall give some properties of N§'(D).

1. INTRODUCTION

Let U and T denote the unit disk and the unit circle in C, respectively.
For p > 1, Privalov space NP(U) is the class of all holomorphic functions f
on U such that (log™ |f(2)|)P has a harmonic majorant on U. Letting p = 1,
we have the Nevanlinna class N (U).

As in [7], for each strongly convex function ¢ on (—oo, co) we define the
Hardy-Orlicz class H,(U) as the space of all holomorphic functions f on
U such that ¢(log™ |f(z)|) has a harmonic majorant on U. Recall that a
convex function ¢ is strongly convex if ¢ is non-negative, non-decreasing
and @(t)/t — oo as t — oo. We define N,(U) = U{Hw(U)]go : strongly
convex }, which is called the Smirnov class.

For 0 < ¢ < 00, the space H,(U) with ¢(t) = e? coincides with the usual
Hardy space H?(U). For each p > 1, if we define ¢,(t) on (—oo, co) by
op(t) =tP for t =2 0, and ¢, (t) = 0 for t < 0, we obtain N?(U) as a subspace
of N.(U).

It is well-known that H2(U) C NP(U) C N,(U) € N(U) (0 < ¢ <
oo, p > 1). These including relations are proper. NP(U) was treated by
several authors ([2], [5], [7] and [8]). The spaces N(U), N.(U), NP(U) and
HY(U) are called Nevanlinna-type spaces.

Let D := {z € C|Imz > 0}. We let the Nevanlinna class No(D), as
Krylov [4] introduced, consist of all holomorphic functions f on D such that
log™ | f(2)| has a harmonic majorant on D.

Rosenblum and Rovnyak [6] introduced the Hardy-Orlicz and Smirnov
classes on D: for each strongly convex function ¢ on (—oo, 00), Hy(D) is
the set of all holomorphic functions f on D such that ¢(log™ |f(z)|) has

a harmonic majorant on D. We define Nj(D) = U{H¢(D) | ¢ @ strongly

convex }.
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In this paper, we shall define a new class NJ (D), analogous to N?(U);
i.e., we denote by NJ(D) (p > 1) the set of all holomorphic functions f on
D such that (log™ |f(2)])? has a harmonic majorant on D. First we obtain
a factorization theorem for the space Ng (D). Moreover, some properties of
N§(D) are also given.

2. PRELIMINARIES

Let v be a real measure on T and ¥(z) = (z —i)/(z +4) (2 € D). Then
there corresponds a finite real measure p on R such that

/ h(t) du(t) = / (ho U YY) dv(n) (he CuR)).
. *

where 7% = T\ {1}. Let H(w,n) = (n+w)/(n —w) ((w,n) € U xT).
There holds

(1) [t = [ ) mavi)

:/TH(\IJ(Z),n)dV(n)—z'ozz (z € D),

where a = —v({1}). We write the Poisson integrals of measures ;1 on R and
v on T as follows:

PUE) =+ | o dut) (= o +iye D)

1— |w?

T !n—w|2

Qv](w) =

dv(n) (weU).
Taking the real parts in (1), we have
Plr(1 + t2)dp(®))(2) = Qv](¥(2)) + o - Imz (2 € D).
When f € LY(R, (1 + t2)~1dt) and g € LY(T), we write P[f] and Q[g]

L
instead of P[f(t)dt] and Q[go], respectively. If g € LY(T), then we have
goV e LY(R, (1 +t?)~tdt) and

(2) Plgo¥](z) = Q[g](¥(2)).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 49/iss1/10
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3. SOME PROPERTIES OF Ny(D), Nj(D) AND NP(U)

In this section, we shall summarize some properties of No(D), Nj(D) and
NP(U) (p > 1). For the following results, the reader refers to [2], [3] and
6].

Recall that an outer function on D is of the form

d(z)—exp(1/1+tz ! logh()dt),

t—z 142

where h(t) 20, logh € L' (R, 1jlr—tt2)

Proposition 3.1. Let f € No(D), f # 0. Then f*(x) = lim f(z) exists

nontangentially a.e. for x € R.

Proposition 3.2. Let H>(D) be the class of all bounded holomorphic func-
tions on D.
g

(i) No(D) = {E . g,h € HO(D), h # o}.

(ii) NS(D):{% :g,h € H*®(D), his outer}.
Proposition 3.3. Let f be holomorphic on D.
(i) f € No(D) if and only if

/log+|f(x+iy)l
rR 22+ (y+1)°

(ii) If ¢ is a strongly convex function, then f € Ni(D) if and only if
¢ 10g+ [f(z +1iy)])
sup
y>0 z? + (y + 1)

Proposition 3.4. Letp > 1 and f be holomorphic on U. Then the following
are equivalent:

(i) feNPU).

(ii)  sup /27T (log’L |f(rei9)|>pd9 < 0.
0

0<r<1

sup dr < oo.

y>0

dr < 0.

(iii) f € N(U) and the condition

27
/ (logJr \f*(ew)])de < 00
0
holds, where f*(e 19) = lim f(re ) (a.e. e? ¢ T).

r—1-
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Proposition 3.5. Let f € NP(U) (p>1), f #0. Then, log|f*| € LY(T)
and log(1 + |f*|) € LP(T). Furthermore, f can be uniquely factored as
follows,

(3) f(z) = aB(2)F(2)5(z) (2 €U),
where the factors above have the following properties.

(i) a €T is a constant.

(ii) B(z) —zmH \an\

(z € U) is a Blaschke product with respect

1 — anz
to the zeros off
(iii) F(z) =exp (/ (O] do(¢ )>, where o denotes normalized
Lebesgue measure on T

C+z

(iv) S(z) =exp (—
onT.
If f is expressed in the form (3), then f € NP(U).

Proposition 3.6. Let f € NP(U), p > 1. Then (log™ |f|)P has the least
harmonic majorant Q[(log™ | £*|)P].

c dv(() ) , where v 1s a positive singular measure
T —z

4. A FACTORIZATION THEOREM FOR THE SPACE N§(D)
Theorem 4.1. Letp > 1. f € NJ(D), f #0, is factorized in the form
(4) £(2) = ae®*b(2)d(2)g(2) (= € D),
with the following properties.

i) aeT,a=0.
(ii) b(z) is the Blaschke product with respect to the zeros of f.

—z 1+4+¢2
LY(R, (1 +t?)7tdt) and log™ h € LP(R,, (1 +t2)~1dt).

1 1 1
(iii) d(z) =exp (— / iz log h(t) dt), where h(t) =20, logh €
i

1 1+1
(iv) g(z) =exp (——,/ t+ © du(t)), where p is a finite real measure
Tt Jp U —%

on R, singular with respect to Lebesgue measure.

If f is expressed in the form (4), then f € N{(D).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 49/iss1/10
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Proof. Suppose f € NJ(D), f # 0. Then fo¥~! € NP(U), and Proposition
3.5 implies (f o U1 (w) = aB(w)F(w)S(w) (w € U). In the factorization
f(z) =aB(V(2))F(V(2)S(¥(z)) (z€ D),b(z):= B(¥(z)) is the Blaschke
product formed from the zeros of f, and the change of the variables n =
U(t) (t € R) shows that

ite) = P = exp (& [ g () ar).

This is of the form (iii). Since log|(f o ¥=1)*| € LY(T), we have log|f*| €
LY R, (1+t?)~1dt) by (2). Nextlog™ |f(¥~1(n))| € LP(T) implies log™ | f*| €
LP(R, (14 t?)~tdt). Setting a = v{1}, we have S(¥(2)) = g(z)e'**, where
g is of the form (iv).

Suppose, conversely, that f is of the form (4). Then

|f(2)] = [€"%[|b(2)] exp(P[log h — m(1 +*)dpu(t))(2)) = exp(P[log h](2)).
Since log*|(f o U (w)| < Qllog* |(h o T~1)J(w), we have fo U1 e
NP(U). Letting y — 07 in |f(x + iy)|, we have |f*(z)] = h(z) a.e. for
r € R. Furthermore, (log™ |f o ¥~1|)P has the least harmonic majorant
v' = Q[(log™ |(f o U~1)*|)?] by Proposition 3.6, hence v := v’ o ¥ is the least
harmonic majorant of (log™ |f])?; i.e., (log™ |f(2)])? < P[(log™ |f*|)?](2).
Integrating the both sides, we have f € N{ (D). O

5. SOME THEOREMS FOR THE SPACE N{/(D)
In this section, we prove some theorems for the space N} (D).

Theorem 5.1. Let f be holomorphic on D. Then, for p > 1,
k1
ko

Proof. Let f € NJ(D). Then f(z) = ae'®*b(2)d(z)g(z) (z € D) by Theorem
4.1. Now d takes the form

ie) = oo (= [ B g rfar) = 1

Ny (D) = { k1, ke € H®(D), ke is invertible in N§ (D) }

i z 1+t2
where
1 +tz
d - ()] dt
(&= (4 [ Lo o))
and
1 +tz
d — T dt ) .
o) =oxp (o [ TEE ot (0] at)
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We note that d; and dy both belong to H>°(D) and are outer functions on
D. Moreover, we find dy , 1/dy € N (D). Therefore we have f = ae'**bdg =
ae'®?bdyg/dy, where ki := ae’®?bd;g and ky := dy are both in H*(D) and

ko is invertible in N{'(D).
On the other hand, let f = ki/ko, where ki, ks € H®(D) and ks is
invertible in NJ' (D). Since NJ(D) is an algebra, it follows that f € NJ(D).
U

Theorem 5.2. Let f be holomorphic on D. Then, forp > 1, f € NI (D) if
and only if

dr < 0.

(log™ | f(z + iy)|)?
o

Proof. (log™ | f(x+iy)|)? is non-negative and subharmonic on D. Therefore

we prove the result by the theorem of Flett and Kuran [6, p.89]. O
Theorem 5.3. Let f(z) € No(D) and p > 1. Then f belongs to N}(D) if
and only if

1 log™t | £* D
(5) _/ (log™ | f (;)D dr < oo,

T Jr 1+

Proof. The function f(2) is in NJ(D) if and only if F(z) = f(¥71(2)) is in
NP(U). By Proposition 3.4, this is the case if and only if

27
| o 17y dt < .
0
This is the same as condition (5). O

Theorem 5.4. Let p > 1. If f € NJ(D), then
lim / log™ | f(z + iy)| —log™ | f*(z)||” dz = 0.
y—0t JR
Proof. Let f € NF(D). Then F(z) = 1(2)) belongs to NP(U). By [7,

fo-
Proposition 4.1], we have (log™ | f(2)|)? = P[(log™ | f*|)?](2). Integrating the
both sides, it follows that

[ (o 17+ i) doz [ (log* |7 (@)" do
R R

Using Fatou’s lemma, we obtain

lim [ (log" |f(x + iy)))" do = / (log* |1*()))" da.

y—0t JR R

Applying [1, Lemma 1, p.21], we have the desired result. O
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