Mathematical Journal of Okayama University

Volume 49, Issue 1

Some Results on (σ, τ)-Lie Ideals

Evrim Güven* ${ }^{*}$ Kazim Kaya ${ }^{\dagger}$
Muharrem Soytürk ${ }^{\ddagger}$

*Kocaeli University
${ }^{\dagger}$ Çanakkale Onsekiz Mart University
${ }^{\ddagger}$ Kocaeli University

Copyright © 2007 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Some Results on (σ, τ)-Lie Ideals

Evrim Güven, Kazim Kaya, and Muharrem Soytürk

Abstract

In this note we give some basic results on one $\operatorname{sided}(\sigma, \tau)$-Lie ideals of prime rings with characteristic not 2 .

KEYWORDS: Prime ring, (sigma, tau)-LIe ideal, (sigma, tau)-derivation

Math. J. Okayama Univ. 49 (2007), 59-64

SOME RESULTS ON (σ, τ)-LIE IDEALS

Evrim GÜVEN, Kazim KAYA and Muharrem SOYTÜrk

Abstract. In this note we give some basic results on one sided (σ, τ)-Lie
ideals of prime rings with characteristic not 2 .

1. Introduction

Let R be a ring and σ, τ be two mappings from R into itself. We write $[x, y]=x y-y x$, and $[x, y]_{\sigma, \tau}=x \sigma(y)-\tau(y) x$ for $x, y \in R$. For subsets $A, B \subset R$, let $[A, B]$ be the additive subgroup generated by all $[a, b]$, and $[A, B]_{\sigma, \tau}$ be the additive subgroup generated by all $[a, b]_{\sigma, \tau}$ for $a \in A$ and $b \in B$. We recall that a Lie ideal L is an additive subgroup of R such that $[R, L] \subset L$. We first introduce the generalized Lie ideal in [3] as follows. Let U be an additive subgroup of R. (i) U is called a $(\sigma, \tau)-$ right Lie ideal of R if $[U, R]_{\sigma, \tau} \subset U$, (ii) U is called a (σ, τ)-left Lie ideal if $[R, U]_{\sigma, \tau} \subset U$. (iii) U is called a (σ, τ)-Lie ideal if U is both a $(\sigma, \tau)-$ right and a $(\sigma, \tau)-$ left Lie ideal. An additive mapping $d: R \longrightarrow R$ is called a $(\sigma, \tau)-$ derivation if $d(x y)=d(x) \sigma(y)+\tau(x) d(y)$ for all $x, y \in R$. We write $C_{\sigma, \tau}=\{c \in R \mid$ $c \sigma(r)=\tau(r) c$ for $r \in R\}$, and will make extensive use of the following basic commutator identities:

$$
\begin{aligned}
& {[x y, z]_{\sigma, \tau}=x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=x[y, \sigma(z)]+[x, z]_{\sigma, \tau} y} \\
& {[x, y z]_{\sigma, \tau}=\tau(y)[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)}
\end{aligned}
$$

Throughout the present paper, R will represent a prime ring (of $\operatorname{char} R \neq$ 2, exclude Lemmas 1 and 2) and $\sigma, \tau, \alpha, \beta, \lambda$ and μ will be automorphisms of R. In this note, we give the following proporties on prime rings and some results on one sided (σ, τ)-Lie ideals. Let I be a nonzero ideal of R. (1) If $\left[[I, a]_{\sigma, \tau}, b\right]_{\alpha, \beta}=0$ for $a, b \in R$, then $[\tau(a), \beta(b)]=0$. (2) If $\left[[a, I]_{\sigma, \tau}, b\right]_{\alpha, \beta}=0$ for $a, b \in R$, then $b \in Z$ or $\left[a, \tau^{-1} \beta(b)\right]_{\sigma, \tau}=0$. (3) If $\left[b,[a, R]_{\sigma, \tau}\right]_{\alpha, \beta}=0$ for $a, b \in R$, then $b \in C_{\alpha, \beta}, a \in C_{\sigma, \tau}$ or $a+\tau \sigma^{-1}(a) \in C_{\sigma, \tau}$. On the other hand, in [4] Park and Jung proved that if $d: R \longrightarrow R$ is a nonzero (σ, τ)-derivation and $a \in R$ such that $d[R, a]_{\sigma, \tau}=0$, then $\sigma(a)+\tau(a) \in Z$. We prove that if $d: R \longrightarrow R$ is a nonzero (σ, τ)-derivation and $a \in R$ such that $d[a, R]_{\alpha, \beta}=0$, then $a \in C_{\alpha, \beta}$ or $a+\beta \alpha^{-1}(a) \in C_{\alpha, \beta}$.

2. Results

The following Lemmas 1 and 2 are generalizations of [1, Lemma 1.5].
Mathematics Subject Classification. 16N10, 16W25, 16 U 80.
Key words and phrases. Prime ring, (σ, τ)-Lie ideal, (σ, τ)-derivation.

Lemma 1. Let I be a nonzero ideal of R and $a, b \in R$. If $\left[[I, a]_{\sigma, \tau}, b\right]_{\alpha, \beta}=0$, then $[\tau(a), \beta(b)]=0$.
Proof. Let $\left[[I, a]_{\sigma, \tau}, b\right]_{\alpha, \beta}=0$. Then we have , $0=\left[[\tau(a) y, a]_{\sigma, \tau}, b\right]_{\alpha, \beta}=$ $\left[\tau(a)[y, a]_{\sigma, \tau}+[\tau(a), \tau(a)] y, b\right]_{\alpha, \beta}=\tau(a)\left[[y, a]_{\sigma, \tau}, b\right]_{\alpha, \beta}+[\tau(a), \beta(b)][y, a]_{\sigma, \tau}$ for all $y \in I$.This gives that

$$
\begin{equation*}
[\tau(a), \beta(b)][y, a]_{\sigma, \tau}=0 \text { for all } y \in I \tag{2.1}
\end{equation*}
$$

Replacing $y r, r \in R$ by y in (2.1), we get $0=[\tau(a), \beta(b)] y[r, \sigma(a)]+$ $[\tau(a), \beta(b)][y, a]_{\sigma, \tau} r$ and so

$$
\begin{equation*}
[\tau(a), \beta(b)] y[r, \sigma(a)]=0 \text { for all } y \in I, r \in R . \tag{2.2}
\end{equation*}
$$

Since R is prime, we get

$$
\begin{equation*}
[\tau(a), \beta(b)]=0 \text { or } a \in Z \tag{2.3}
\end{equation*}
$$

Thus, $[\tau(a), \beta(b)]=0$ is obtained for two cases in (2.3)
Corollary 1. (1) If I is a nonzero ideal of R and $a \in R$ such that $[I, a]_{\alpha, \beta} \subset$ $C_{\lambda, \mu}$, then $a \in Z$.
(2) Let U be a nonzero (σ, τ)-right(left) Lie ideal of R and I a nonzero ideal of R. If $\left[[I, I]_{\sigma, \tau}, U\right]_{\alpha, \beta}=0$ then $U \subset Z$.
(3) If $a \in R$ such that $\left[[I, I]_{\sigma, \tau}, a\right]_{\alpha, \beta}=0$ then $a \in Z$.

Proof. (1) $[I, a]_{\alpha, \beta} \subset C_{\lambda, \mu}$ implies that $\left[[I, a]_{\alpha, \beta}, R\right]_{\lambda, \mu}=0$. By Lemma 1 we obtain that $[\beta(a), \mu(R)]=0$. Since μ is onto, we have $\beta(a) \in Z$ and so $a \in Z$.
(2) By Lemma 1 we have $[\tau(I), \beta(U)]=0$ and so $U \subset Z$.
(3) $\left[[I, I]_{\sigma, \tau}, a\right]_{\alpha, \beta}=0$ implies that $[\tau(I), \beta(a)]=0$ by Lemma 1 and so $a \in Z$.

Lemma 2. Let I be a nonzero ideal of R. If $a, b \in R$ and $\left[[a, I]_{\sigma, \tau}, b\right]_{\alpha, \beta}=0$, then $b \in Z$ or $\left[a, \tau^{-1} \beta(b)\right]_{\sigma, \tau}=0$.
Proof. For any $x, y \in I$ we have

$$
\begin{aligned}
0 & =\left[[a, x y]_{\sigma, \tau}, b\right]_{\alpha, \beta} \\
& =\left[\tau(x)[a, y]_{\sigma, \tau}+[a, x]_{\sigma, \tau} \sigma(y), b\right]_{\alpha, \beta} \\
& =\tau(x)\left[[a, y]_{\sigma, \tau}, b\right]_{\alpha, \beta}+[\tau(x), \beta(b)][a, y]_{\sigma, \tau}+[a, x]_{\sigma, \tau}[\sigma(y), \alpha(b)] \\
& +\left[[a, x]_{\sigma, \tau}, b\right]_{\alpha, \beta} \sigma(y)
\end{aligned}
$$

and so

$$
\begin{equation*}
[\tau(x), \beta(b)][a, y]_{\sigma, \tau}+[a, x]_{\sigma, \tau}[\sigma(y), \alpha(b)]=0 \text { for all } x, y \in I \tag{2.4}
\end{equation*}
$$

Replacing x by $r x, r \in R$ in (2.4) we get

$$
\begin{aligned}
0 & =[\tau(r x), \beta(b)][a, y]_{\sigma, \tau}+[a, r x]_{\sigma, \tau}[\sigma(y), \alpha(b)] \\
& =\tau(r)[\tau(x), \beta(b)][a, y]_{\sigma, \tau}+[\tau(r), \beta(b)] \tau(x)[a, y]_{\sigma, \tau}+\tau(r)[a, x]_{\sigma, \tau}[\sigma(y), \alpha(b)] \\
& +[a, r]_{\sigma, \tau} \sigma(x)[\sigma(y), \alpha(b)] .
\end{aligned}
$$

That is

$$
\begin{equation*}
[\tau(r), \beta(b)] \tau(x)[a, y]_{\sigma, \tau}+[a, r]_{\sigma, \tau} \sigma(x)[\sigma(y), \alpha(b)]=0 \text { for all } x, y \in I, r \in R \tag{2.5}
\end{equation*}
$$

If we take $\tau^{-1} \beta(b)$ instead of r in (2.5) then we have

$$
\begin{equation*}
\left[a, \tau^{-1} \beta(b)\right]_{\sigma, \tau} \sigma(I)[\sigma(I), \alpha(b)]=0 \tag{2.6}
\end{equation*}
$$

Since $\sigma(I) \neq 0$ an ideal of R and R is prime we get

$$
\begin{equation*}
\left[a, \tau^{-1} \beta(b)\right]_{\sigma, \tau}=0 \text { or }[\sigma(I), \alpha(b)]=0 \tag{2.7}
\end{equation*}
$$

Since R is prime, $[\sigma(I), \alpha(b)]=0$ implies that $b \in Z$. Thus $\left[a, \tau^{-1} \beta(b)\right]_{\sigma, \tau}=$ 0 or $b \in Z$ is obtained.

Lemma 3. Let U be a nonzero (σ, τ)-right Lie ideal of R and $a \in R$. If $[U, a]_{\alpha, \beta}=0$, then $a \in Z$ or $U \subset C_{\sigma, \tau}$.

Proof. Since $\left[[U, R]_{\sigma, \tau}, a\right]_{\alpha, \beta} \subset[U, a]_{\alpha, \beta}=0$ then we have

$$
a \in Z \text { or }\left[U, \tau^{-1} \beta(a)\right]_{\sigma, \tau}=0
$$

by Lemma 2. If $\left[U, \tau^{-1} \beta(a)\right]_{\sigma, \tau}=0$ then $a \in Z$ or $U \subset C_{\sigma, \tau}$ by [6, Lemma 2].

Theorem 1. Let U be a nonzero (σ, τ)-right Lie ideal of R and $I \neq 0$ an ideal of R.
(1) If $a \in R$ and $\left[[U, I]_{\alpha, \beta}, a\right]_{\lambda, \mu}=0$, then $a \in Z$ or $U \subset C_{\sigma, \tau}$.
(2) If $[U, I]_{\alpha, \beta} \subset C_{\lambda, \mu}$, then $U \subset C_{\sigma, \tau}$ or R is commutative.

Proof. (1) $\left[[U, I]_{\alpha, \beta}, a\right]_{\lambda, \mu}=0$ implies that $a \in Z$ or $\left[U, \beta^{-1} \mu(a)\right]_{\alpha, \beta}=0$, by Lemma 2. If $\left[U, \beta^{-1} \mu(a)\right]_{\alpha, \beta}=0$ then $a \in Z$ or $U \subset C_{\sigma, \tau}$ by Lemma 3.
(2) Let $[U, I]_{\alpha, \beta} \subset C_{\lambda, \mu}$ then we have $\left[[U, I]_{\alpha, \beta}, R\right]_{\lambda, \mu}=0$. If we use (1) we get $R \subset Z$ or $U \subset C_{\sigma, \tau}$ and so $U \subset C_{\sigma, \tau}$ or R is commutative.

Theorem 2. Let d be a nonzero (σ, τ)-derivation on R and $a \in R$. If $d[a, R]_{\alpha, \beta}=0$, then $a \in C_{\alpha, \beta}$ or $a+\beta \alpha^{-1}(a) \in C_{\alpha, \beta}$.
Proof. For any $x, y \in R$ we have

$$
\begin{aligned}
0 & =d[a, x y]_{\alpha, \beta}=d\left(\beta(x)[a, y]_{\alpha, \beta}+[a, x]_{\alpha, \beta} \alpha(y)\right) \\
& =d \beta(x) \sigma[a, y]_{\alpha, \beta}+\tau[a, x]_{\alpha, \beta} d \alpha(y)
\end{aligned}
$$

Replacing x by $\beta^{-1}[a, z]_{\alpha, \beta}$ in the last relation we get

$$
\left[a, \beta^{-1}[a, z]_{\alpha, \beta}\right]_{\alpha, \beta} d \alpha(y)=0 \text { for all } y, z \in R
$$

and so

$$
\begin{equation*}
\left[a, \beta^{-1}[a, z]_{\alpha, \beta}\right]_{\alpha, \beta}=0 \text { for all } z \in R \tag{2.8}
\end{equation*}
$$

by [5,Lemma 3]. Taking $z y$ for z in (2.8) we get

$$
\begin{aligned}
0 & =\left[a, \beta^{-1}[a, z y]_{\alpha, \beta}\right]_{\alpha, \beta}=\left[a, \beta^{-1}\left(\beta(z)[a, y]_{\alpha, \beta}+[a, z]_{\alpha, \beta} \alpha(y)\right)\right]_{\alpha, \beta} \\
& =\left[a, z \beta^{-1}[a, y]_{\alpha, \beta}+\beta^{-1}[a, z]_{\alpha, \beta} \beta^{-1} \alpha(y)\right]_{\alpha, \beta} \\
& =[a, z]_{\alpha, \beta} \alpha \beta^{-1}[a, y]_{\alpha, \beta}+[a, z]_{\alpha, \beta}\left[a, \beta^{-1} \alpha(y)\right]_{\alpha, \beta}
\end{aligned}
$$

which leads to

$$
\begin{equation*}
[a, z]_{\alpha, \beta}\left(\alpha \beta^{-1}[a, y]_{\alpha, \beta}+\left[a, \beta^{-1} \alpha(y)\right]_{\alpha, \beta}\right)=0 \text { for all } z, y \in R . \tag{2.9}
\end{equation*}
$$

Replacing z by $z t$ in (2.9), we get

$$
\begin{equation*}
[a, z]_{\alpha, \beta}=0, \forall z \in R \text { or } \alpha \beta^{-1}[a, y]_{\alpha, \beta}+\left[a, \beta^{-1} \alpha(y)\right]_{\alpha, \beta}=0 \text { for all } y \in R \tag{2.10}
\end{equation*}
$$

Hence $a \in C_{\alpha, \beta}$ or $0=\alpha \beta^{-1}[a, y]_{\alpha, \beta}+a \alpha \beta^{-1} \alpha(y)-\alpha(y) a$ for all $y \in$ R. If we apply α^{-1} and β to the last relation we have $a \alpha(y)-\beta(y) a+$ $\beta \alpha^{-1}(a) \alpha(y)-\beta(y) \beta \alpha^{-1}(a)=0$ for all $y \in R$. This implies that $(a+$ $\left.\beta \alpha^{-1}(a)\right) \alpha(y)-\beta(y)\left(a+\beta \alpha^{-1}(a)\right)=0$ and so $a+\beta \alpha^{-1}(a) \in C_{\alpha, \beta}$ for all $y \in R$. Thus we obtain $a \in C_{\alpha, \beta}$ or $a+\beta \alpha^{-1}(a) \in C_{\alpha, \beta}$ by (2.10).
Corollary 2. If $\left[b,[a, R]_{\sigma, \tau}\right]_{\alpha, \beta}=0$, then $a \in C_{\sigma, \tau}$ or $b \in C_{\alpha, \beta}$ or $a+$ $\tau \sigma^{-1}(a) \in C_{\sigma, \tau}$.

Proof. $d(x)=[b, x]_{\alpha, \beta}$ is a (α, β)-derivation on R. Furthermore $d[a, R]_{\sigma, \tau}=$ 0. This implies that $a \in C_{\sigma, \tau}, b \in C_{\alpha, \beta}$ or $a+\tau \sigma^{-1}(a) \in C_{\sigma, \tau}$ by Theorem 2.

Theorem 3. Let U be a nonzero (σ, τ)-right Lie ideal of R and $d: R \longrightarrow R$ a nonzero (λ, μ)-derivation.
(1) If $d(U)=0$, then $v+\tau \sigma^{-1}(v) \in C_{\sigma, \tau}$ for all $v \in U$.
(2) If $d[U, R]=0$, then $U \subset Z$.

Proof. (1) Suppose that $d(U)=0$. Then $d[U, R]_{\sigma, \tau}=0$. This implies that $U \subset C_{\sigma, \tau}$ or $v+\tau \sigma^{-1}(v) \in C_{\sigma, \tau}$ for all $v \in U$ by Theorem 2 .
(2) Taking $\alpha=\beta=1$ in Theorem 2, we have $U \subset Z$.

Theorem 4. Let U be a nonzero (σ, τ)-left Lie ideal of R and $d: R \longrightarrow R$ a nonzero (α, β)-derivation.
(1) If $d(U)=0$, then $\sigma(v)+\tau(v) \in Z$ for all $v \in U$.
(2) If $a \in R$ and $[U, a]=0$, then $a \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in U$.
(3) If $a \in R$ and $[U, a]_{\alpha, \beta}=0$, then $a \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in U$.
(4) If $\left[[R, U]_{\alpha, \beta}, a\right]_{\lambda, \mu}=0$ then $a \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in U$.

Proof. (1) Suppose that $d(U)=0$. Then $d[R, v]_{\sigma, \tau}=0$ for all $v \in U$. This implies that $\sigma(v)+\tau(v) \in Z$ for all $v \in U$ by [4, Corollary 5] for all $v \in U$.
(2) Let $d(x)=[x, a]$ for all $x \in R$. Then d is a derivation and furthermore $d(U)=0$. Thus we have $a \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in U$ by (1).
(3) Since $\left[[R, U]_{\sigma, \tau}, a\right]_{\alpha, \beta} \subset[U, a]_{\alpha, \beta}=0$ we have $[\tau(U), \beta(a)]=0$ by Lemma 1. That is $\left[U, \tau^{-1} \beta(a)\right]=0$. This implies that $a \in Z$ or $\sigma(v)+\tau(v) \in$ Z for all $v \in U$ by (2).
(4) By Lemma 1 and hypothesis, we have $[\beta(U), \mu(a)]=0$. That is $\left[U, \beta^{-1} \mu(a)\right]=0$. This implies that $a \in Z$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in U$ by (2).

Remark 1. Let U be a nonzero (σ, τ)-left Lie ideal of R such that $[U, U]_{\alpha, \beta}=$ 0 . Then we have $\sigma(v)+\tau(v) \in Z$ for all $v \in U$.

Proof. By Theorem 4(3) we have $\sigma(v)+\tau(v) \in Z$ for all $v \in U$.
Theorem 5. Let U be a nonzero (σ, τ)-left Lie ideal of R and $a \in R$.
(1) If $[a, U]_{\alpha, \beta}=0$, then $a \in C_{\alpha, \beta}$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in U$.
(2) If $\left[a,[R, U]_{\alpha, \beta}\right]_{\lambda, \mu}=0$, then $a \in C_{\lambda, \mu}$ or $\alpha(v)+\beta(v) \in Z$ for all $v \in U$.
(3) If $[R, U]_{\alpha, \beta} \subset C_{\lambda, \mu}$, then R is commutative or $\sigma(v)=\tau(v)$ for all $v \in U$.
(4) If $U \subset C_{\lambda, \mu}$, then $\sigma(v)=\tau(v)$ for all $v \in U$ or R is commutative.

Proof. (1) Let $d(x)=[a, x]_{\alpha, \beta}$ for all $x \in R$. Then d is $(\alpha, \beta)-$ derivation of R. Since $\left[a,[R, U]_{\sigma, \tau}\right]_{\alpha, \beta} \subset[a, U]_{\alpha, \beta}=0$ then we have $d[R, U]_{\sigma, \tau}=0$. This implies that $a \in C_{\alpha, \beta}$ or $\sigma(v)+\tau(v) \in Z$ for all $v \in U$ by [4,Corollary 5].
(2) Considering as in the proof (1) we obtain the result.
(3) Suppose that $[R, U]_{\alpha, \beta} \subset C_{\lambda, \mu}$. Then we have $\left[[R, U]_{\alpha, \beta}, R\right]_{\lambda, \mu}=0$. This gives $[\beta(U), \mu(R)]=0$ by Lemma 1 and so $U \subset Z$. Thus $[R, U]_{\sigma, \tau} \subset$ $U \subset Z$ is obtained. For any $r, s \in R, v \in U$ we have $0=\left[[r, v]_{\sigma, \tau}, s\right]=$ $[r \sigma(v)-\tau(v) r, s]=[r(\sigma(v)-\tau(v)), s]=r[\sigma(v)-\tau(v), s]+[r, s](\sigma(v)-\tau(v))$ which leads to

$$
\begin{equation*}
[r, s](\sigma(v)-\tau(v))=0 \text { for all } r, s \in R, v \in U \tag{2.11}
\end{equation*}
$$

Since R is prime and $\sigma(v)-\tau(v) \in Z$ we get

$$
\begin{equation*}
[r, s]=0 \text { for all } r, s \in R \text { or } \sigma(v)=\tau(v) \text { for all } v \in U \tag{2.12}
\end{equation*}
$$

and so R is commutative or $\sigma(v)=\tau(v)$ for all $v \in U$.
(4) If $U \subset C_{\lambda, \mu}$, then $[R, U]_{\sigma, \tau} \subset C_{\lambda, \mu}$. This implies that R is commutative or $\sigma(v)=\tau(v)$ for all $v \in U$ by (3).

Acknowledgement

The authors wish to thank the referee for valuable suggestions.

References

[1] I.N.Herstein, Topics in Ring Theory, The University of Chicago Press,(1969).
[2] J.C.Chang, On Fixed Power Central (α, β)-derivations, Bull.of Inst.Math.Acad.Scica.Vol.15, No.2,(1975),163-178.
[3] K.Kaya, (σ, τ)-Lie ideals in Prime Rings,An.Univ.Timisoara,Stiinte Mat.30,No.2-3,251-255(1992).
[4] Kyoo-Hong Park and Yong-Soo Jung, Some Results Concerning (θ, φ)-Derivations on Prime Rings, J.Korea Soc.Math.Educ.Ser B, Pure Appl.Math.10(2003), no.4, 207-215.
[5] N.Aydın and K.Kaya, Doğa-Tr.J.of Mathematics 16 (1992), 169-176.
[6] N.Aydın and H.Kandamar, (σ, τ)-Lie Ideals in Prime Rings, Tr.J.Math. 18 (1994), 143-148.

Kocaeli University
Fakulty of Art and Sciences
Department of Mathematics
Kocaeli - TURKEY
e-mail address: evrim@kou.edu.tr
$U R L$: www.kou.edu.tr
Çanakkale Onsekiz Mart University
Fakulty of Art and Sciences
Department of Mathematics
Canakkale - TURKEY
e-mail address: kkaya@comu.edu.tr
$U R L$: www. comu.edu.tr
Kocaeli University
Fakulty of Art and Sciences
Department of Mathematics
Kocaeli - TURKEY
e-mail address: msoyturk@kou.edu.tr
URL: www.kou.edu.tr
(Received November 28, 2005)
(Revised September 1, 2006)

