Mathematical Journal of Okayama University

Volume 46, Issue 1

2004 January 2004

Article 34

Results on prime near-ring with (α , γ) -derivation

Oznur Golbasi*

Neset Aydin[†]

*Cumhuriyet University [†]Canakkale 18 Mart University

Copyright ©2004 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Results on prime near-ring with (α , γ) -derivation

Oznur Golbasi and Neset Aydin

Abstract

Let N be a prime left near-ring with multiplicative centerZ; and D be a (α, γ) derivation such that $\delta D = D\delta$ and $\Gamma D = D\Gamma(i)$ If $D(N) \subset Z$; or [D(N);D(N)] = 0 or $[D(N);D(N)]\sigma$, $\gamma = 0$; then (N; +) is abelian. (ii) If N is 2-torsion free, d1 is a (α, γ) -derivation and d2 is a derivation on N such that d1d2(N) = 0, then d1 = 0 or d2 = 0.

KEYWORDS: Prime Near-Ring, Derivation, (?, ?) -Derivation.

Math. J. Okayama Univ. 46 (2004), 1-7

RESULTS ON PRIME NEAR-RING WITH (σ, τ) -DERIVATION

ÖZNUR GÖLBAŞI AND NEŞET AYDIN

ABSTRACT. Let N be a prime left near-ring with multiplicative center Z, and D be a (σ, τ) -derivation such that $\sigma D = D\sigma$ and $\tau D = D\tau$. (i) If $D(N) \subset Z$, or [D(N), D(N)] = 0 or $[D(N), D(N)]_{\sigma,\tau} = 0$, then (N, +) is abelian. (ii) If N is 2-torsion free, d_1 is a (σ, τ) -derivation and d_2 is a derivation on N such that $d_1d_2(N) = 0$, then $d_1 = 0$ or $d_2 = 0$.

1. INTRODUCTION

Recently, some results concerning commutativity in prime near-rings with derivation have been generalized in several ways. The primary purpose of this paper is to generalize some results obtained by H. E. Bell and G. Mason [1], and A. A. M. Kamal[2].

Throughout this paper, N will denote a zero-symetric left near-ring with multiplicative center Z. N is called a prime near-ring if $aNb = \{0\}$ implies that a = 0 or b = 0. Let σ and τ be two near-ring automorphisms of N. An additive mapping $D : N \to N$ is called a (σ, τ) -derivation if $D(xy) = \tau(x)D(y) + D(x)\sigma(y)$ holds for all $x, y \in N$. For $x, y \in N$, the symbol [x, y] will denote xy - yx, while the symbol (x, y) will denote the additive-group commutator x+y-x-y. Given $x, y \in N$, we write $[x, y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$; in particular $[x, y]_{1,1} = [x, y]$, in the usual sense. As for terminologies used here without mention, we refer to G. Pilz [3].

2. Results

We begin with two quite general and useful lemmas.

Lemma 1. Let D be a (σ, τ) -derivation of near ring N. Then $D(xy) = D(x)\sigma(y) + \tau(x)D(y)$ for all $x, y \in N$.

Proof. Note that

$$D(x(y+y)) = \tau(x)D(y+y) + D(x)\sigma(y+y)$$

= $\tau(x)D(y) + \tau(x)D(y) + D(x)\sigma(y) + D(x)\sigma(y)$

and

$$D(xy + xy) = \tau(x)D(y) + D(x)\sigma(y) + \tau(x)D(y) + D(x)\sigma(y).$$

Mathematics Subject Classification. 16Y30, 16N60, 16W25.

Key words and phrases. Prime Near-Ring, Derivation, (σ, τ) -Derivation.

 $\mathbf{2}$

Ö. GÖLBAŞI AND N. AYDIN

Comparing these two expressions, one can obtain

$$\tau(x)D(y) + D(x)\sigma(y) = D(x)\sigma(y) + \tau(x)D(y)$$

and so,

$$D(xy) = D(x)\sigma(y) + \tau(x)D(y)$$
, for all $x, y \in N$.

Lemma 2. Let D be a (σ, τ) -derivation on a near-ring N and $a \in N$. Then for all $x, y \in N$,

$$(\tau(x)D(y) + D(x)\sigma(y))\sigma(a) = \tau(x)D(y)\sigma(a) + D(x)\sigma(y)\sigma(a).$$

Proof. For all $x, y \in N$, we get

$$D((xy)a) = \tau(xy)D(a) + D(xy)\sigma(a)$$

= $\tau(x)\tau(y)D(a) + (\tau(x)D(y) + D(x)\sigma(y))\sigma(a).$

On the other hand,

$$D(x(ya)) = \tau(x)D(ya) + D(x)\sigma(ya)$$

= $\tau(x)\tau(y)D(a) + \tau(x)D(y)\sigma(a) + D(x)\sigma(y)\sigma(a).$

For these two expressions of D(xya), we obtain that, for all $x, y \in N$,

$$(\tau(x)D(y) + D(x)\sigma(y))\sigma(a) = \tau(x)D(y)\sigma(a) + D(x)\sigma(y)\sigma(a).$$

Lemma 3. Let N be a prime near-ring, D a nonzero (σ, τ) -derivation of N and $a \in N$.

i) If D(N)σ(a) = 0 then a = 0.
ii) If aD(N) = 0 then a = 0.

Proof. i) For all $x, y \in N$, we get

$$0 = D(xy)\sigma(a) = \tau(x)D(y)\sigma(a) + D(x)\sigma(y)\sigma(a).$$

Using hypothesis and σ is an automorphism of N, we have

$$D(x)N\sigma(a) = 0.$$

Since N is prime near-ring and D is a nonzero (σ, τ) -derivation of N, we obtain a = 0.

ii) A similar argument works if aD(N) = 0.

Lemma 4. Let D be a (σ, τ) -derivation which commute σ and τ . If N is a 2-torsion free near-ring and $D^2 = 0$ then D = 0.

RESULTS ON PRIME NEAR-RINGS

Proof. For arbitrary $x, y \in N$, we have

$$\begin{aligned} 0 &= D^2(xy) = D(D(xy)) = D(\tau(x)D(y) + D(x)\sigma(y)) \\ &= \tau^2(x)D^2(y) + D(\tau(x))\sigma(D(y)) + \tau(D(x))D(\sigma(y)) + D^2(x)\sigma^2(y) \end{aligned}$$

By hypothesis,

$$2D(\tau(x))D(\sigma(y)) = 0$$
 for all $x, y \in N$.

Since N is 2-torsion free near-ring and σ is an automorphism on N, we get

$$D(\tau(x))D(N) = 0.$$

It gives D = 0 by Lemma 3 (*ii*).

Theorem 1. Let N be a near-ring and D a nonzero (σ, τ) -derivation of N. If $u \in N$ is not a left zero divisor and $[D(u), u]_{\sigma,\tau} = 0$ then (x, u) is constant (that is, D(x, u) = 0) for every $x \in N$.

Proof. Since $u(u + x) = u^2 + ux$, we have $D(u(u + x)) = D(u^2 + ux)$. Expanding this equation, we have

$$\tau(u)D(u+x) + D(u)\sigma(u+x) = D(u^2) + D(ux)$$

and so

$$\begin{aligned} \tau(u)D(u) + \tau(u)D(x) + D(u)\sigma(u) + D(u)\sigma(x) \\ &= \tau(u)D(u) + D(u)\sigma(u) + \tau(u)D(x) + D(u)\sigma(x) \end{aligned}$$

which reduces to

$$\tau(u)D(x) + D(u)\sigma(u) - \tau(u)D(x) - D(u)\sigma(u) = 0.$$

Therefore

 $\tau(u)D(x,u) = 0$

by using the assumption $[D(u), u]_{\sigma,\tau} = 0$. Since u is not a left zero divisor, we get D(x, u) = 0. Thus (x, u) is a constant for every $x \in N$.

Theorem 2. Let N be a prime near-ring with a nonzero (σ, τ) -derivation D such that $\sigma D = D\sigma$ and $\tau D = D\tau$. If $D(N) \subset Z$ then (N, +) is abelian. Moreover, if N is 2-torsion free, then N is a commutative ring.

Proof. Suppose that $a \in N$ such that $D(a) \neq 0$. So, $D(a) \in Z \setminus \{0\}$ and $D(a) + D(a) \in Z \setminus \{0\}$. For all $x, y \in N$, we have

$$(x+y)(D(a) + D(a)) = (D(a) + D(a))(x+y)$$

that is,

$$xD(a) + xD(a) + yD(a) + yD(a) = D(a)x + D(a)y + D(a)x + D(a)y.$$

Ö. GÖLBAŞI AND N. AYDIN

Since $D(a) \in Z$, we get

$$D(a)x + D(a)y = D(a)y + D(a)x,$$

and so,

4

$$D(a)(x,y) = 0$$
 for all $x, y \in N$.

Since $D(a) \in Z \setminus \{0\}$ and N is a prime near-ring, it follows that (x, y) = 0, for all $x, y \in N$. Thus (N, +) is abelian.

Using hypothesis, for any $b, c \in N$,

$$\sigma(c)D(ab) = D(ab)\sigma(c).$$

By Lemma 2, we have

$$\sigma(c)\tau(a)D(b) + \sigma(c)D(a)\sigma(b) = \tau(a)D(b)\sigma(c) + D(a)\sigma(b)\sigma(c).$$

Comparing these two expressions, using $D(N) \subset Z$ and (N, +) is abelian, we obtain that

$$\sigma(c)\tau(a)D(b) + D(a)\sigma(c)\sigma(b) = \tau(a)D(b)\sigma(c) + D(a)\sigma(b)\sigma(c)$$

so we have

$$D(b)[\tau(a), \sigma(c)] = D(a)\sigma([c, b])$$
 for all $b, c \in N$.

Suppose now that N is not commutative. Choosing $b, c \in N$ such that $[b, c] \neq 0$ and $a = D(x) \in Z$, we get

$$D^2(x)\sigma([c,b]) = 0$$
 for all $x \in N$.

Since the central element $D^2(x)$ can not be a nonzero divisor of zero, we conclude $D^2(x) = 0$ for all $x \in N$. By Lemma 4, this cannot happen for nontrivial D.

Theorem 3. Let N be a prime near-ring admitting a nonzero (σ, τ) -derivation D such that $\sigma D = D\sigma$ and $\tau D = D\tau$. If [D(N), D(N)] = 0, then (N, +)is abelian. Moreover, if N is 2-torsion free, then N is a commutative ring.

Proof. The argument used in the proof of Theorem 2 shows that if both z and z + z commute elementwise with D(N), then we have

(2.1)
$$zD(x,y) = 0 \text{ for all } x, y \in N.$$

Substituting $D(t), t \in N$ for z in (2.1), we get D(t)D(x, y) = 0. Since σ is an automorphism of N, we have $\sigma(D(t))\sigma(D(x, y)) = 0$. Using $\sigma D = D\sigma$, we get

$$D(\sigma(t))\sigma(D(x,y)) = 0$$
 for all $x, y, t \in N$.

By Lemma 3 (i), we obtain that D(x, y) = 0 for all $x, y \in N$. For $w \in N$, we have 0 = D(wx, wy) = D(w(x, y)) and so we obtain

$$D(w)\sigma((x,y)) = 0.$$

RESULTS ON PRIME NEAR-RINGS

Again, applying Lemma 3 (i), we get (x, y) = 0 for all $x, y \in N$.

Now, assume that N is 2-torsion free. By the assumption [D(N), D(N)] = 0,

$$D(\sigma(z))D(D(x)y) = D(D(x)y)D(\sigma(z))$$
 for all $x, y, z \in N$

Hence, we get

$$D(\sigma(z))\tau(D(x))D(y) + D(\sigma(z))D^{2}(x)\sigma(y)$$

= $\tau(D(x))D(y)D(\sigma(z)) + D^{2}(x)\sigma(y)D(\sigma(z))$

by Lemma 2. Using $D(\tau(x))D(\sigma(z)) = D(\sigma(z)) D(\tau(x))$, $\sigma D = D\sigma$ and $\tau D = D\tau$, we have

$$D(\tau(x))D(\sigma(z))D(y) + D(\sigma(z))D^{2}(x)\sigma(y)$$

= $D(\tau(x))D(y)D(\sigma(z)) + D^{2}(x)\sigma(y)D(\sigma(z))$

Since (N, +) is abelian, we conclude that

$$D(\tau(x))[D(\sigma(z)), D(y)] = D^2(x)\sigma([D(z), y]) \text{ for all } x, y, z \in N.$$

The left term of this equation is zero by the hypothesis, so we get

(2.2) $D^2(x)\sigma(D(z))\sigma(y) = D^2(x)\sigma(y)\sigma(D(z))$ for all $x, y, z \in N$. Replacing y by $yt, (t \in N)$ in (2.2) and using (2.2), we have

$$\begin{split} D^2(x)\sigma(y)\sigma(t)\sigma(D(z)) &= D^2(x)\sigma(D(z))\sigma(y)\sigma(t) \\ &= D^2(x)\sigma(y)\sigma(D(z))\sigma(t) \end{split}$$

and so,

(2.3)
$$D^2(x)N\sigma([t, D(z)]) = 0 \text{ for all } x, t, z \in N.$$

Since N is a prime near-ring, we have

$$D^2(N) = 0$$
 or $D(N) \subset Z$

by Brauers's Trick. If $D^2(N) = 0$, then it contradicts that D is a nonzero (σ, τ) -derivation of N by Lemma 4. So, $D(N) \subset Z$. Thus, N is a commutative ring by Theorem 2.

Theorem 4. Let N be a 2-torsion free prime near-ring, $d_1 a (\sigma, \tau)$ -derivation of N and d_2 a derivation of N. If $d_1d_2(N) = 0$, then $d_1 = 0$ or $d_2 = 0$.

Proof. For $x, y \in N$, we have

$$0 = d_1 d_2(xy) = d_1(x d_2(y) + d_2(x)y)$$

= $\tau(x) d_1 d_2(y) + d_1(x) \sigma(d_2(y)) + \tau(d_2(x)) d_1(y) + d_1 d_2(x) \sigma(y).$

Ö. GÖLBAŞI AND N. AYDIN

That is,

6

(2.4) $d_1(x)\sigma(d_2(y)) + \tau(d_2(x))d_1(y) = 0$ for all $x, y \in N$.

If we take $d_2(x)$ instead of x in (2.4), then

 $\tau(d_2^2(x))d_1(y) = 0$ for all $x, y \in N$.

Using Lemma 3 (*ii*) one can obtain $d_1 = 0$ or $d_2^2 = 0$. If $d_2^2 = 0$, we have $d_2 = 0$ by Lemma 4. This completes the proof of theorem.

Theorem 5. Let N be a 2-torsion free prime near-ring, d_1 a derivation and d_2 be a (σ, τ) -derivation of N such that $\tau d_2 = d_2 \tau$ and $\tau d_1 = d_1 \tau$. If $d_1 d_2(N) = 0$, then $d_1 = 0$ or $d_2 = 0$.

Proof. The same argument in the proof of Theorem 4, we can write

(2.5)
$$d_1(\tau(x))d_2(y) + d_2(x)d_1(\sigma(y)) = 0 \text{ for all } x, y \in N.$$

Replacing x by $d_2(x)$ in (2.5) and using $\tau d_2 = d_2 \tau$ and $\tau d_1 = d_1 \tau$, we have

 $d_2^2(x)d_1(\sigma(y) = 0 \text{ for all } x, y \in N.$

Applying [1, Lemma 3 (ii)], we obtain $d_1 = 0$ or $d_2^2 = 0$. If $d_2^2 = 0$, then $d_2 = 0$ by Lemma 4.

Theorem 6. Let D be a nonzero (σ, τ) -derivation of a prime near-ring N and $a \in N$. If $[D(N), a]_{\sigma,\tau} = 0$ then D(a) = 0 or $a \in Z$.

Proof. By hypothesis,

$$D(ax)\sigma(a) = \tau(a)D(ax)$$
 for all $x \in N$

and so,

$$(\tau(a)D(x) + D(a)\sigma(x))\sigma(a) = \tau(a)(\tau(a)D(x) + D(a)\sigma(x)).$$

Since N satisfies the partial distributive law by Lemma 2, we get

$$\tau(a)D(x)\sigma(a) + D(a)\sigma(x)\sigma(a) = \tau(a)\tau(a)D(x) + \tau(a)D(a)\sigma(x).$$

Using the hypothesis, we have

$$\tau(a)\tau(a)D(x) + D(a)\sigma(x)\sigma(a) = \tau(a)\tau(a)D(x) + D(a)\sigma(a)\sigma(x),$$

that is,

(2.6)
$$D(a)\sigma([x,a]) = 0 \text{ for all } x \in N$$

Substituting $xy, (y \in N)$ for x and using (2.6), we have

$$D(a)\sigma(x)\sigma([y,a]) = 0$$
 for all $x, y \in N$.

Since σ is automorphism of prime near-ring of N, we get D(a) = 0 or $a \in Z$. This completes the proof.

RESULTS ON PRIME NEAR-RINGS

Theorem 7. Let D be a nonzero (σ, τ) -derivation of a prime near-ring N such that $\sigma D = D\sigma$ and $\tau D = D\tau$. If $[D(N), D(N)]_{\sigma,\tau} = 0$, then (N, +) is abelian. Moreover, if N is 2-torsion free then N is a commutative ring.

Proof. By Theorem 6, we have

$$N = \{x \in N \mid D^2(x) = 0\} \cup \{x \in N \mid D(x) \in Z\}.$$

By Brauer's Trick, we get $D^2(N) = 0$ or $D(N) \subset Z$. Since D is a nonzero (σ, τ) -derivation of N, we get $D(N) \subset Z$. By Theorem 2, we prove the theorem.

References

- BELL, H: E. AND MASON G., On Derivations in near-rings, Near-rings and Near-fields, North-Holland Mathematical Studies 137, (1987).
- [2] KAMAL, AHMED A. M., σ-derivations on prime near-rings, Tamkang J. Math. 32(2001), no.2, 89–93.
- [3] PILZ, G., Near-rings 2nd Ed., North Holland, Amsterdam, (1983).

Öznur Gölbaşı Cumhuriyet University Faculty of Arts and Science Department of Mathematics Sivas - TURKEY

e-mail address: ogolbasi@cumhuriyet.edu.tr URL: http://www.cumhuriyet.edu.tr

Neşet Aydın Çanakkale 18 Mart University Faculty of Arts and Science Department of Mathematics Çanakkale - TURKEY

e-mail address: neseta@comu.edu.tr URL: http://www.comu.edu.tr

(Received June 4, 2003)

7