Mathematical Journal of Okayama University

Results on prime near-ring with (α, γ) -derivation

Oznur Golbasi* ${ }^{*}$ Neset Aydin ${ }^{\dagger}$

[^0]Copyright © 2004 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Results on prime near-ring with (α, γ) -derivation

Oznur Golbasi and Neset Aydin

Abstract

Let N be a prime left near-ring with multiplicative centerZ; and D be a (α, γ) derivation such that $\delta \mathrm{D}=\mathrm{D} \delta$ and $\Gamma \mathrm{D}=\mathrm{D} \Gamma(\mathrm{i}) \mathrm{If} \mathrm{D}(\mathrm{N}) \subset \mathrm{Z}$; or $[\mathrm{D}(\mathrm{N}) ; \mathrm{D}(\mathrm{N})]=0$ or $[\mathrm{D}(\mathrm{N}) ; \mathrm{D}(\mathrm{N})] \sigma, \gamma=0$; then $(\mathrm{N}$; +)is abelian. (ii) If N is 2-torsion free, d 1 is a (α, γ)-derivation and d 2 is a derivation on N such that $\mathrm{d} 1 \mathrm{~d} 2(\mathrm{~N})=0$, then $\mathrm{d} 1=0$ or $\mathrm{d} 2=0$.

KEYWORDS: Prime Near-Ring, Derivation, (?, ?) -Derivation.

Math. J. Okayama Univ. 46 (2004), 1-7

RESULTS ON PRIME NEAR-RING WITH (σ, τ)-DERIVATION

Öznur GÖLBAŞI and Nȩ̧et AYDIN

Abstract

Let N be a prime left near-ring with multiplicative center Z, and D be a (σ, τ)-derivation such that $\sigma D=D \sigma$ and $\tau D=D \tau$. (i) If $D(N) \subset Z$, or $[D(N), D(N)]=0$ or $[D(N), D(N)]_{\sigma, \tau}=0$, then $(N,+)$ is abelian. (ii) If N is 2 -torsion free, d_{1} is a (σ, τ)-derivation and d_{2} is a derivation on N such that $d_{1} d_{2}(N)=0$, then $d_{1}=0$ or $d_{2}=0$.

1. Introduction

Recently, some results concerning commutativity in prime near-rings with derivation have been generalized in several ways. The primary purpose of this paper is to generalize some results obtained by H. E. Bell and G. Mason [1], and A. A. M. Kamal[2].

Throughout this paper, N will denote a zero-symetric left near-ring with multiplicative center $Z . N$ is called a prime near-ring if $a N b=\{0\}$ implies that $a=0$ or $b=0$. Let σ and τ be two near-ring automorphisms of N. An additive mapping $D: N \rightarrow N$ is called a (σ, τ)-derivation if $D(x y)=$ $\tau(x) D(y)+D(x) \sigma(y)$ holds for all $x, y \in N$. For $x, y \in N$, the symbol $[x, y]$ will denote $x y-y x$, while the symbol (x, y) will denote the additive-group commutator $x+y-x-y$. Given $x, y \in N$, we write $[x, y]_{\sigma, \tau}=x \sigma(y)-\tau(y) x$; in particular $[x, y]_{1,1}=[x, y]$, in the usual sense. As for terminologies used here without mention, we refer to G. Pilz [3].

2. Results

We begin with two quite general and useful lemmas.
Lemma 1. Let D be a (σ, τ)-derivation of near ring N. Then $D(x y)=$ $D(x) \sigma(y)+\tau(x) D(y)$ for all $x, y \in N$.

Proof. Note that

$$
\begin{aligned}
D(x(y+y)) & =\tau(x) D(y+y)+D(x) \sigma(y+y) \\
& =\tau(x) D(y)+\tau(x) D(y)+D(x) \sigma(y)+D(x) \sigma(y)
\end{aligned}
$$

and

$$
D(x y+x y)=\tau(x) D(y)+D(x) \sigma(y)+\tau(x) D(y)+D(x) \sigma(y)
$$

Mathematics Subject Classification. 16Y30, 16N60,16W25.
Key words and phrases. Prime Near-Ring, Derivation, (σ, τ)-Derivation.

Comparing these two expressions, one can obtain

$$
\tau(x) D(y)+D(x) \sigma(y)=D(x) \sigma(y)+\tau(x) D(y)
$$

and so,

$$
D(x y)=D(x) \sigma(y)+\tau(x) D(y), \text { for all } x, y \in N
$$

Lemma 2. Let D be $a(\sigma, \tau)$-derivation on a near-ring N and $a \in N$. Then for all $x, y \in N$,

$$
(\tau(x) D(y)+D(x) \sigma(y)) \sigma(a)=\tau(x) D(y) \sigma(a)+D(x) \sigma(y) \sigma(a)
$$

Proof. For all $x, y \in N$, we get

$$
\begin{aligned}
D((x y) a) & =\tau(x y) D(a)+D(x y) \sigma(a) \\
& =\tau(x) \tau(y) D(a)+(\tau(x) D(y)+D(x) \sigma(y)) \sigma(a)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
D(x(y a)) & =\tau(x) D(y a)+D(x) \sigma(y a) \\
& =\tau(x) \tau(y) D(a)+\tau(x) D(y) \sigma(a)+D(x) \sigma(y) \sigma(a)
\end{aligned}
$$

For these two expressions of $D(x y a)$, we obtain that, for all $x, y \in N$,

$$
(\tau(x) D(y)+D(x) \sigma(y)) \sigma(a)=\tau(x) D(y) \sigma(a)+D(x) \sigma(y) \sigma(a)
$$

Lemma 3. Let N be a prime near-ring, D a nonzero (σ, τ)-derivation of N and $a \in N$.
i) If $D(N) \sigma(a)=0$ then $a=0$.
ii) If $a D(N)=0$ then $a=0$.

Proof. i) For all $x, y \in N$, we get

$$
0=D(x y) \sigma(a)=\tau(x) D(y) \sigma(a)+D(x) \sigma(y) \sigma(a)
$$

Using hypothesis and σ is an automorphism of N, we have

$$
D(x) N \sigma(a)=0
$$

Since N is prime near-ring and D is a nonzero (σ, τ)-derivation of N, we obtain $a=0$.
ii) A similar argument works if $a D(N)=0$.

Lemma 4. Let D be a (σ, τ)-derivation which commute σ and τ. If N is a 2 -torsion free near-ring and $D^{2}=0$ then $D=0$.

Proof. For arbitrary $x, y \in N$, we have

$$
\begin{aligned}
0 & =D^{2}(x y)=D(D(x y))=D(\tau(x) D(y)+D(x) \sigma(y)) \\
& =\tau^{2}(x) D^{2}(y)+D(\tau(x)) \sigma(D(y))+\tau(D(x)) D(\sigma(y))+D^{2}(x) \sigma^{2}(y)
\end{aligned}
$$

By hypothesis,

$$
2 D(\tau(x)) D(\sigma(y))=0 \text { for all } x, y \in N
$$

Since N is 2-torsion free near-ring and σ is an automorphism on N, we get

$$
D(\tau(x)) D(N)=0
$$

It gives $D=0$ by Lemma 3 (ii).
Theorem 1. Let N be a near-ring and D a nonzero (σ, τ)-derivation of N. If $u \in N$ is not a left zero divisor and $[D(u), u]_{\sigma, \tau}=0$ then (x, u) is constant (that is, $D(x, u)=0)$ for every $x \in N$.
Proof. Since $u(u+x)=u^{2}+u x$, we have $D(u(u+x))=D\left(u^{2}+u x\right)$. Expanding this equation, we have

$$
\tau(u) D(u+x)+D(u) \sigma(u+x)=D\left(u^{2}\right)+D(u x)
$$

and so

$$
\begin{aligned}
\tau(u) D(u)+\tau(u) D(x) & +D(u) \sigma(u)+D(u) \sigma(x) \\
& =\tau(u) D(u)+D(u) \sigma(u)+\tau(u) D(x)+D(u) \sigma(x)
\end{aligned}
$$

which reduces to

$$
\tau(u) D(x)+D(u) \sigma(u)-\tau(u) D(x)-D(u) \sigma(u)=0
$$

Therefore

$$
\tau(u) D(x, u)=0
$$

by using the assumption $[D(u), u]_{\sigma, \tau}=0$. Since u is not a left zero divisor, we get $D(x, u)=0$. Thus (x, u) is a constant for every $x \in N$.

Theorem 2. Let N be a prime near-ring with a nonzero (σ, τ)-derivation D such that $\sigma D=D \sigma$ and $\tau D=D \tau$. If $D(N) \subset Z$ then $(N,+)$ is abelian. Moreover, if N is 2 -torsion free, then N is a commutative ring.

Proof. Suppose that $a \in N$ such that $D(a) \neq 0$. So, $D(a) \in Z \backslash\{0\}$ and $D(a)+D(a) \in Z \backslash\{0\}$. For all $x, y \in N$, we have

$$
(x+y)(D(a)+D(a))=(D(a)+D(a))(x+y)
$$

that is,

$$
x D(a)+x D(a)+y D(a)+y D(a)=D(a) x+D(a) y+D(a) x+D(a) y
$$

Since $D(a) \in Z$, we get

$$
D(a) x+D(a) y=D(a) y+D(a) x
$$

and so,

$$
D(a)(x, y)=0 \text { for all } x, y \in N .
$$

Since $D(a) \in Z \backslash\{0\}$ and N is a prime near-ring, it follows that $(x, y)=0$, for all $x, y \in N$. Thus $(N,+)$ is abelian.

Using hypothesis, for any $b, c \in N$,

$$
\sigma(c) D(a b)=D(a b) \sigma(c)
$$

By Lemma 2, we have

$$
\sigma(c) \tau(a) D(b)+\sigma(c) D(a) \sigma(b)=\tau(a) D(b) \sigma(c)+D(a) \sigma(b) \sigma(c)
$$

Comparing these two expressions, using $D(N) \subset Z$ and $(N,+)$ is abelian, we obtain that

$$
\sigma(c) \tau(a) D(b)+D(a) \sigma(c) \sigma(b)=\tau(a) D(b) \sigma(c)+D(a) \sigma(b) \sigma(c)
$$

so we have

$$
D(b)[\tau(a), \sigma(c)]=D(a) \sigma([c, b]) \text { for all } b, c \in N .
$$

Suppose now that N is not commutative. Choosing $b, c \in N$ such that $[b, c] \neq 0$ and $a=D(x) \in Z$, we get

$$
D^{2}(x) \sigma([c, b])=0 \quad \text { for all } x \in N
$$

Since the central element $D^{2}(x)$ can not be a nonzero divisor of zero, we conclude $D^{2}(x)=0$ for all $x \in N$. By Lemma 4, this cannot happen for nontrivial D.

Theorem 3. Let N be a prime near-ring admitting a nonzero (σ, τ)-derivation D such that $\sigma D=D \sigma$ and $\tau D=D \tau$. If $[D(N), D(N)]=0$, then $(N,+)$ is abelian. Moreover, if N is 2-torsion free, then N is a commutative ring.

Proof. The argument used in the proof of Theorem 2 shows that if both z and $z+z$ commute elementwise with $D(N)$, then we have

$$
\begin{equation*}
z D(x, y)=0 \text { for all } x, y \in N \tag{2.1}
\end{equation*}
$$

Substituting $D(t), t \in N$ for z in (2.1), we get $D(t) D(x, y)=0$. Since σ is an automorphism of N, we have $\sigma(D(t)) \sigma(D(x, y))=0$. Using $\sigma D=D \sigma$, we get

$$
D(\sigma(t)) \sigma(D(x, y))=0 \text { for all } x, y, t \in N
$$

By Lemma $3(i)$, we obtain that $D(x, y)=0$ for all $x, y \in N$. For $w \in N$, we have $0=D(w x, w y)=D(w(x, y))$ and so we obtain

$$
D(w) \sigma((x, y))=0
$$

Again, applying Lemma $3(i)$, we get $(x, y)=0$ for all $x, y \in N$.
Now, assume that N is 2-torsion free. By the assumption $[D(N), D(N)]$ $=0$,

$$
D(\sigma(z)) D(D(x) y)=D(D(x) y) D(\sigma(z)) \text { for all } x, y, z \in N
$$

Hence, we get

$$
\begin{aligned}
D(\sigma(z)) \tau(D(x)) D(y)+D & (\sigma(z)) D^{2}(x) \sigma(y) \\
& =\tau(D(x)) D(y) D(\sigma(z))+D^{2}(x) \sigma(y) D(\sigma(z))
\end{aligned}
$$

by Lemma 2. Using $D(\tau(x)) D(\sigma(z))=D(\sigma(z)) D(\tau(x)), \quad \sigma D=D \sigma$ and $\tau D=D \tau$, we have

$$
\begin{aligned}
D(\tau(x)) D(\sigma(z)) D(y)+D & (\sigma(z)) D^{2}(x) \sigma(y) \\
& =D(\tau(x)) D(y) D(\sigma(z))+D^{2}(x) \sigma(y) D(\sigma(z))
\end{aligned}
$$

Since $(N,+)$ is abelian, we conclude that

$$
D(\tau(x))[D(\sigma(z)), D(y)]=D^{2}(x) \sigma([D(z), y]) \text { for all } x, y, z \in N
$$

The left term of this equation is zero by the hypothesis, so we get

$$
\begin{equation*}
D^{2}(x) \sigma(D(z)) \sigma(y)=D^{2}(x) \sigma(y) \sigma(D(z)) \text { for all } x, y, z \in N \tag{2.2}
\end{equation*}
$$

Replacing y by $y t,(t \in N)$ in (2.2) and using (2.2), we have

$$
\begin{aligned}
D^{2}(x) \sigma(y) \sigma(t) \sigma(D(z)) & =D^{2}(x) \sigma(D(z)) \sigma(y) \sigma(t) \\
& =D^{2}(x) \sigma(y) \sigma(D(z)) \sigma(t)
\end{aligned}
$$

and so,

$$
\begin{equation*}
D^{2}(x) N \sigma([t, D(z)])=0 \text { for all } x, t, z \in N \tag{2.3}
\end{equation*}
$$

Since N is a prime near-ring, we have

$$
D^{2}(N)=0 \text { or } D(N) \subset Z
$$

by Brauers's Trick. If $D^{2}(N)=0$, then it contradicts that D is a nonzero (σ, τ)-derivation of N by Lemma 4 . So, $D(N) \subset Z$. Thus, N is a commutative ring by Theorem 2 .

Theorem 4. Let N be a 2-torsion free prime near-ring, d_{1} a (σ, τ)-derivation of N and d_{2} a derivation of N. If $d_{1} d_{2}(N)=0$, then $d_{1}=0$ or $d_{2}=0$.

Proof. For $x, y \in N$, we have

$$
\begin{aligned}
0 & =d_{1} d_{2}(x y)=d_{1}\left(x d_{2}(y)+d_{2}(x) y\right) \\
& =\tau(x) d_{1} d_{2}(y)+d_{1}(x) \sigma\left(d_{2}(y)\right)+\tau\left(d_{2}(x)\right) d_{1}(y)+d_{1} d_{2}(x) \sigma(y)
\end{aligned}
$$

That is,

$$
\begin{equation*}
d_{1}(x) \sigma\left(d_{2}(y)\right)+\tau\left(d_{2}(x)\right) d_{1}(y)=0 \text { for all } x, y \in N \tag{2.4}
\end{equation*}
$$

If we take $d_{2}(x)$ instead of x in (2.4), then

$$
\tau\left(d_{2}^{2}(x)\right) d_{1}(y)=0 \text { for all } x, y \in N
$$

Using Lemma 3 (ii) one can obtain $d_{1}=0$ or $d_{2}^{2}=0$. If $d_{2}^{2}=0$, we have $d_{2}=0$ by Lemma 4. This completes the proof of theorem.

Theorem 5. Let N be a 2-torsion free prime near-ring, d_{1} a derivation and d_{2} be a (σ, τ)-derivation of N such that $\tau d_{2}=d_{2} \tau$ and $\tau d_{1}=d_{1} \tau$. If $d_{1} d_{2}(N)=0$, then $d_{1}=0$ or $d_{2}=0$.

Proof. The same argument in the proof of Theorem 4, we can write

$$
\begin{equation*}
d_{1}(\tau(x)) d_{2}(y)+d_{2}(x) d_{1}(\sigma(y)=0 \text { for all } x, y \in N . \tag{2.5}
\end{equation*}
$$

Replacing x by $d_{2}(x)$ in (2.5) and using $\tau d_{2}=d_{2} \tau$ and $\tau d_{1}=d_{1} \tau$, we have

$$
d_{2}^{2}(x) d_{1}(\sigma(y)=0 \text { for all } x, y \in N .
$$

Applying [1, Lemma 3 (ii)], we obtain $d_{1}=0$ or $d_{2}^{2}=0$. If $d_{2}^{2}=0$, then $d_{2}=0$ by Lemma 4.

Theorem 6. Let D be a nonzero (σ, τ)-derivation of a prime near-ring N and $a \in N$. If $[D(N), a]_{\sigma, \tau}=0$ then $D(a)=0$ or $a \in Z$.
Proof. By hypothesis,

$$
D(a x) \sigma(a)=\tau(a) D(a x) \text { for all } x \in N
$$

and so,

$$
(\tau(a) D(x)+D(a) \sigma(x)) \sigma(a)=\tau(a)(\tau(a) D(x)+D(a) \sigma(x)) .
$$

Since N satisfies the partial distributive law by Lemma 2, we get

$$
\tau(a) D(x) \sigma(a)+D(a) \sigma(x) \sigma(a)=\tau(a) \tau(a) D(x)+\tau(a) D(a) \sigma(x)
$$

Using the hypothesis, we have

$$
\tau(a) \tau(a) D(x)+D(a) \sigma(x) \sigma(a)=\tau(a) \tau(a) D(x)+D(a) \sigma(a) \sigma(x)
$$

that is,

$$
\begin{equation*}
D(a) \sigma([x, a])=0 \text { for all } x \in N . \tag{2.6}
\end{equation*}
$$

Substituting $x y,(y \in N)$ for x and using (2.6), we have

$$
D(a) \sigma(x) \sigma([y, a])=0 \text { for all } x, y \in N .
$$

Since σ is automorphism of prime near-ring of N, we get $D(a)=0$ or $a \in Z$. This completes the proof.

Golbasi and Aydin: Results on prime near-ring with (\&\#945;, \&\#947;) -derivation

Theorem 7. Let D be a nonzero (σ, τ)-derivation of a prime near-ring N such that $\sigma D=D \sigma$ and $\tau D=D \tau$. If $[D(N), D(N)]_{\sigma, \tau}=0$, then $(N,+)$ is abelian. Moreover, if N is 2-torsion free then N is a commutative ring.

Proof. By Theorem 6, we have

$$
N=\left\{x \in N \mid D^{2}(x)=0\right\} \cup\{x \in N \mid D(x) \in Z\}
$$

By Brauer's Trick, we get $D^{2}(N)=0$ or $D(N) \subset Z$. Since D is a nonzero (σ, τ)-derivation of N, we get $D(N) \subset Z$. By Theorem 2, we prove the theorem.

References

[1] Bell, H: E. and Mason G., On Derivations in near-rings, Near-rings and Near-fields, North-Holland Mathematical Studies 137, (1987).
[2] Kamal, Ahmed A. M., σ-derivations on prime near-rings, Tamkang J. Math. 32(2001), no.2, 89-93.
[3] Pilz, G., Near-rings 2nd Ed., North Holland, Amsterdam, (1983).

```
Öznur Gölbaşı Cumhuriyet University
Faculty of Arts and Science
Department of Mathematics
Sivas - TURKEY
e-mail address: ogolbasi@cumhuriyet.edu.tr
URL: http://www.cumhuriyet.edu.tr
Neşet Aydin
Çanakkale 18 Mart University
Faculty of Arts and Science Department of Mathematics Çanakkale - TURKEY
e-mail address: neseta@comu.edu.tr URL: http://www.comu.edu.tr
```

(Received June 4, 2003)

[^0]: *Cumhuriyet University
 ${ }^{\dagger}$ Canakkale 18 Mart University

