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JonaTHAN S. GOLAN

Throughout the following R will denote an associative ring with identity
element 1 and R-mod will denote the category of unitary left R-modules.
The frame of all (hereditary) torsion theories on R-mod will be denoted by
R-tors. Notation and terminology concerning R-tors will follow [2]. In
particular. if M is a left R-module then E(M) will denote the injective hull
of M. §(M) will denote the smallest torsion theory on R-mod relative to
which M is torsion and X(M ) will denote the largest torsion theory on R-mod
relative to which M is torsionfree. If r € R-tors then a nonzero left R-
module N is 7-cocritical if N is r-torsionfree but every proper homomorphic
image of N is z-torsion. A t-cocritical left R-module N is uniform and
has the property, which we will use repeatedly, that X(N') = X(N) for
every nonzero submodule N' of N. If ¢ £ 7 in R-tors we say that 7 is a
generalization of o. The generalization is proper if ¢ < 7.

The notion of a separated set of torsion theories on R-mod was consid-
ered briefly in Chapter 29 of [2]. We expand the definition given there as
follows : if o is a torsion theory on R-mod then a set U of generalizations
of o in R-tors is o- separated if and only if ¢ A [V(U\| })] = o for each
7 in U. The empty set is trivially o-separated for every torsion theory o.
This relation was studied in the context of modular lattices (under the name
of “independence”) in [3] and [4]. It is straightforward to show that the
following result is true:

1. Proposition. If ¢ € R-tors then the following conditions on a non-
empty set U of generalizations of o are equivalent :

(1) U is o-separated ;

(2) For any partition U=U U U of U, o =(VU) A(VU):

(3) Every nonempty subset of U is o-separated ;

(4) Every finite nonempty subset of U is o-separated.

The torsion theory ¢ has finite dimension if and only if every o-sepa-
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rated set of generalizations of ¢ is finite.

2. Proposition. If ¢ € R-tors and if |U,|i € Q} is a chain of o
separated sets of generalizations of o then U= U|U,|i € Q| is o-separated.

Proof. If Y is a finite subset of U then there exists some h € £ such
that Y C U, and so Y is o-separated. Hence, by Proposition 1, U is o-
separated. O

By Zorn’s Lemma, we see that if 0 € R-tors then any o-separated set
of generalizations of ¢ is contained in a maximal o-separated set.

For the purposes of this note we will say that a torsion theory o on R-
mod is good if and only if for each torsion theory 7 on R-mod satisfying
o < 7 there exists a o-cocritical z-torsion left R-module. By Proposition
2.10 of [2] we know that & the unique minimal element of R-tors, is always
good.

Recall that if ¢ € R-tors then the ring R is o-noetherian if and only if
the set of all o-pure left ideals of R satisfies the ascending chain condition.
If o is a torsion theory on R-mod such that R is o-noetherian then we claim
that o is good. Indeed, assume that ¢ < 7 in R-tors and let N be a nonzero
z-torsion o-torsionfree left R-module. If 0 # x € N then the set of all o
pure left ideals of R containing (0 : x) is nonempty and so has a maximal
element H. Then R/H is z-torsion and o-cocritical, proving that ¢ is good.

Thus we see, in particular, that if the ring R is left noetherian then
every torsion theory on R-mod is good.

If 6 < 7 in R-tors then we say that the torsion theory 7 is o-uniform if
and only if the set of torsion theories 7' satisfying ¢ < 7' = 7 is closed
under taking finite meets., We will denote the set of all o-uniform torsion
theories on R-mod by o-unif.

3. Proposition. Let ¢ be a good torsion theory on R-mod and let t be
a proper generalization of o in R-tors. Then the following conditions are
equivalent :

(1) 7 is c-uniform;

(2) X(M) = X(M") for all r-torsion o-cocritical left R-modules M and M'.

Proof. (1) = (2) : If M and M' are z-torsion o-cocritical left R-
modules we set p = oV §(M) and p' = oV §(M). Then 0 #p, p' < ¢
and so, by (1), oF pAp =0V [§(M) A E(M)]. Since o is good,
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there exists a o-cocritical left R-module N which is (p A p')-torsion, and
so 0V §(N) £ p A p'. In particular, N is not [§(M) A §(M’)]-torsion-
free and so, by restriction if necessary. we can assume that it is [§(M)A
§(M"]-torsion. This means that there exist nonzero R-homomorphisms
from M to E(N) and from M’ to E(N) which must indeed be monic since
N is o-torsionfree and M, M’ are o-cocritical. Since N is cocritical and
hence uniform as well. this implies that X(M) = X(M’).

(2) = (1) : Assume that 6 < 7', 7" = . Since ¢ is good we know
that there exist o-cocritical left R-modules M' and M" satisfying §(M’) <
' and §(M") £ . By (2). this means that X(M') = X(M") and so we can
assume that E(M') = E(M"). If N= M'(\ M" then N is o-cocritical and
c# oV &N) < v A z" proving(1l). O

If 0 € R-tors, let us denote by M(o) the set of all prime torsion
theories of R-mod of the form X(M), where M is a o-cocritical left R-
module. By Proposition 33.21 of [2] we see that M(¢) is contained in the
set P,( o) of all minimal prime generalizations of 6. However, we need not
have equality in general. If ¢ < 7 in R-tors, let M( o, 7) be the set of all
elements of M( o) of the form X(M), where M is both o¢-cocritical and z-
torsion. The cardinality of M( 0. 7) will be called the o-rank of . Clearly
M(o, 6) = ¢ and, by definition, we see that the set M( o, 7) is nonempty
(and hence the o-rank of 7 is nonzero) if ¢ < 7 and ¢ is good. We also note
that if ¢ < ' < t then M(g. v') C M(0, 7). By Proposition 3, we see
that if ¢ < 7 and o is good then 7 is o-uniform if and only if it has o-rank
equal to 1, i.e. if and only if M( o, 7) is a singleton | 7}. In this case, we
will say that the o-uniform torsion theory 7 is of type =.

4. Proposition. Let o be a good torsion theory on R-mod. A set U of
o-uniform torsion theories is o-separated if and only if no two elements of
U are of the same type.

Proof. Assume that no two elements of U are of the same type. By
Proposition 1 it suffices to assume that the set U is nonempty and finite.
Let U=1{1, -, 7,] be a set of &uniform torsion theories and let M( 0, 7;)
={m| for each 1 < i = n. For each such i, let M, be a r;-torsion o-
cocritical left R-module satisfying X(M,;) = m,. If there exists an index h
such that 7, A [Vun7] ¥ o then there exists a o-cocritical left R-module
N which is 7, A [Vizn7]-torsion. In particular, N is z,-torsion and so
XN) € M(o, ) = m}. Hence, without loss of generality, we can as-
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sume that N = M,. Since M, is [\V;+»7]-torsion, there exists an index
k # h such that M, is not 7,-torsionfree. Replacing M, by its z,-torsion
submodule, we can assume that it is zx-torsion and so m, = X(M,) €
M(o, 7) = | m|. contradicting the assumption that 7, and 7, are not of the
same type.

Now, conversely, assume that U is o-separated. If there are two
distinct elements v and 7' of U of the same type X(M), then §(M) =
r ALV(U\ 71)]. contradicting o-separation. Therefore no two elements of
U are of the same type. 0O

5. Corollary. If o is a good torsion theory on R-mod then any two
maximal o-separated sets of c-uniform lorsion theories have the same car-
dinality

Proof. The cardinality of a maximal o-separated set of o-uniform tor-
sion theories is clearly equal to the cardinality of M(o). O

Recall that an independence siruciure & on a nonempty set A consists
of a family of subsets of A satisfyving the following conditions :

(1) g€ &

(2) A C A" € &then A’ € &

(3) If A’ and A" are finite sets in & satisfying |A’| < |A"| then
there is a set B in & satisfying A'C BC A’U A" and | Bl = |A"] ;

(4) 1If every finite subset A’ of a set A belongs to & then A € &
For more information on such structures, refer to [1] or [5].

6. Proposition. If o is a good torsion theory on R-mod then the family
of all o-separated sets of c-uniform torsion theories is an independence
structure on o-unif.

Proof. Condition (1) is true by definition and conditions (2) and (4)
follow from Proposition 1. We are therefore left to prove condition (3).
Let U and U" be finite o-separated sets of o-uniform torsion theories on
R-mod with |U'| < |U"|. Say U’ = |1. -, 7x]. where each 7; is of type
n;, and let U" = | a,,'**, o,!. where each o, is of type n,. By renumbering
if necessary, we can assume that there exists an integer 1 = t = k+1 such
that 7, and 7', are equal for all i < t and are not equal for all i = ¢ Then
Y= 1|z, . Tk, Ors1. ***, Onl is a set of o-uniform torsion theories no two
of which are of the same type and so the set is o-separated. Moreover,

UCcycuvuUadl|YH =|U". O
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If 6 < o' = v in R-tors then 7 is o-essential over &' if and only if
c# o N o" for all o< ¢" = 7. Thus, trivially, if ¢ < rthen 7 is o-
essential over itself. Moreover, a torsion theory r > ¢ is o-uniform if and
only if it is o-essential over every torsion theory ¢’ satisfying 6 < ¢’ £ ©

7. Propoesition. If 0 < o' < r are iorsion theories on R-mod with o
good then t is o-essential over o' if and only if M(¢o. ) = M(0, o).

Proof. Assume that r is o-essential over ¢'. Since ¢' < 7 we have
M(o, ¢') ©€ M(o, 7). On the other hand, assume that 7 € M( g, 7) and let
N be a o-cocritical 7-torsion left R-module satisfying #= X(N). Then
o< oV E&N)=E1rsoa# o A(oV §N)). Since ¢ is good, there ex-
ists a o-cocritical left R-module N' which is [0’ A (o §(N))]-torsion.
In particular, there exists a nonzero R-homomorphism from N to E(N),
which must be monic since N and N’ are o-cocritical. Then the uniformness
of N' implies that 7= X(N) = X(N') € M(o, 6'), proving that M{ o, 7)
= M(o, o).

Conversely, assume that M(o, 7) = M(o, ¢') and let 6 < 0" < 7. [f
N is a o-cocritical o¢'-torsion left R-module then X(N) € M(o, ) =
M(o, ¢') and so N is o'-torsion as well. Thus e < oV §(N) < ¢ A o,
proving that 7 is o-essential over ¢'. [

8. Corollary. If o € R-tors is good then a c-essential generalization
of a o-uniform torsion theory is c-uniform.
Proof. This is a direct consequence of Proposition 3 and Proposition

7. O

9. Corollary. If o € R-tors is good and if v > o in R-tors then
there exists a o-separated set U of o-uniform torsion theories on R-mod
such that t is a c-essential extension of \/ U.

Proof. Take U= |0V §M)|M a o-cocritical z-torsion left R-mod-

ule}. This set is o-separated by Proposition 4. O

10. Proposition. If o is a good torsion theory on R-mod then any
proper generalization of ¢ has a unique maximal o-essential generalization.

Proof. let o < v in R-tors and let ' = Vo' > o¢|M(o 1) =
M(o, 0)l. Clearly ' = 7 and so M(o, r) C M(o, 7). Conversely, if
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n€ M(g, 7') and if M is a o-cocritical 7' -torsion left R-module satisfying
n= X(M) then there exists a torsion theory ¢’ > ¢ satisfying M(g, 7) =
M(o, ¢') and having the property that M is not o'-torsionfree. Therefore
= X(M'), where M’ is the o'-torsion submodule of M. This implies that
7€ M(o, 0°)= Mo, 7), proving that M( o, ') and M( 0, 7) are equal. By
Proposition 7, this means that 7’ is a o-essential generalization of 7 which,
by construction, is clearly maximal. 0O

If ¢ = 7 in R-tors we will denote the o-rank of z by r,{ 7). The tor-
sion theory r is o flat if and only if ro{(z) > r4{z) for all z'> 7 in R-
tors. In other words, 7 is o-flat if and only if for each ' > 7 there exists
a t'-torsion o-cocritical left R-module which is z-torsionfree. (Note that
the term “flat” is used here in its combinatoric, rather than algebraic,
sense ; see [1] or [5].)

11. Proposition. If ¢ < 7 in R-iors then the family of all o-flat gen-
eralizations t is closed under taking arbitrary meets.

Proof. Let U be a nonempty set of o-flat generalizations of 7 and as-
sume that v > AU in R-tors. Then there exists an element p of U such
that ' £ p and so ' V p > p. Thus there exists a p-torsionfree o-
cocritical left R-module M which is (¢’ \V p)-torsion and hence not z'-tor-
sionfree. Replacing M.by its z'-torsion submodule, we can assume that it
is r'-torsion. On the other hand, M is ( AU)-torsionfree since it is p-tor-
sionfree. Therefore 7,{ ") > ro(AU). O

12. Proposition. Let o be a good torsion theory on R-mod and let
o< 1. If M(o, v) is finite then the maximal g-essential generalization of

7 is the meet of all o-flat generalizations of t.

Proof. Let 7' be the maximal o-essential generalizationof z. If 7" >
7’ then 7" is not o-essential over 7 and so, by Proposition 7, M(¢, ") D
M(o, ) = M(0, 7'). Therefore r,{t") > 7,{1’), proving that 7' is o-flat
over 7. Now assume that p is o-flat over t and satisfies p < z'. Then
ro{ ') > ro(p) and so M(o, 7) = M(0. ') D M(0, p) 2M(0g, 7), which
is a contradiction. Thus, by Proposition 11, ¢’ is the meet of all o-flat

generalizations of 7. O
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