Mathematical Journal of Okayama University

BELYI FUNCTION ON X_{0} (49) OF DEGREE

7

Kenji Hoshino*

Hiroaki Nakamura ${ }^{\dagger}$

[^0]Copyright © 2010 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 52 (2010), 61-63

BELYI FUNCTION ON $X_{0}(49)$ OF DEGREE 7

Appendix to: "The Belyi functions and dessin d'enfants corresponding to the non-normal inclusions of triangle groups" by K.Hoshino

Kenji HOSHINO and Hiroaki NAKAMURA

In $[\mathrm{H}] \S 4$, we identified two types of the non-normal inclusions of triangle groups (type A and type C from Singerman's list $[\mathrm{S}]$) as those corresponding to subcovers of the Klein quartic. N. D. Elkies [E] closely studied those subcovers in view of modular curves, i.e., as subcovers under the elliptic modular curve $X_{7}=X(7)$ identified with the Klein quartic defined by $X^{3} Y+$ $Y^{3} Z+Z^{3} Y=0$. Let $\mathbb{C}\left(X_{7}\right)$ be the function field of X_{7} generated by $y:=Y / X$ and $z:=Z / X$ with a relation $y+y^{3} z+z^{3}=0$, and consider two automorphisms of $\mathbb{C}\left(X_{7}\right)$ defined by

$$
\sigma:\left\{\begin{array}{l}
y \mapsto \zeta^{3} y, \tag{A1}\\
z \mapsto \zeta z,
\end{array} \quad \tau:\left\{\begin{array}{l}
y \mapsto 1 / z \\
z \mapsto y / z
\end{array}\right.\right.
$$

where $\zeta:=e^{2 \pi i / 7}$. Then, σ and τ are automorphisms respectively of order 7 and 3 , and they form an automorphism group H of $\mathbb{C}\left(X_{7}\right)$ of order 21, a subgroup of the full automorphism group G of order 168 of the Klein quartic. In this respect, the genus zero covers of type A and type C of $[\mathrm{S}]$ are respectively $X_{1}(7) \rightarrow X(1)$ and $X_{0}(7) \rightarrow X(1)$ arising from the inclusion relations of $\langle\sigma\rangle \subset H \subset G$. Remarkably, Elkies [E] studied deep arithmetic properties of a genus one subcover E fixed by $\langle\tau\rangle$ with showing that E is \mathbb{Q}-isomorphic to $X_{0}(49)$. Especially, he explicitly presented its function field $\mathbb{C}(E)$ as $\mathbb{C}(E)=\mathbb{C}(u, v)$ with $v^{2}=4 u^{3}+21 u^{2}+28 u$, where

$$
\begin{equation*}
u=-\frac{(y+z+y z)^{2}}{(1+y+z) y z}, \quad v=-\frac{\left(2-y-z+2 y^{2}-y z+2 z^{2}\right)(y+z+y z)}{y z(1+y+z)} \tag{A2}
\end{equation*}
$$

Recalling also from $[\mathrm{E}]$ that standard coordinates of $X_{1}(7) \cong \mathbf{P}_{t}^{1}$ and $X_{0}(7) \cong$ \mathbf{P}_{s}^{1} may be given as

$$
t:=-y^{2} z, \quad s:=t+\frac{1}{1-t}+\frac{t-1}{t}
$$

we would like to interpret the degree 7 cover $E \rightarrow X_{0}(7)$ arising from $\langle\tau\rangle \subset$ H by expressing s by u, v explicitly. In this note, we show

Proposition A. Notations being as above, the covering of \mathbf{P}_{s}^{1} by the elliptic curve $E: v^{2}=4 u^{3}+21 u^{2}+28 u$ is ramified only above $s=3 \rho, 3 \rho^{-1}, \infty$ (where $\left.\rho=e^{2 \pi i / 6}\right)$, and the equation is given by

$$
s=\frac{1}{2}\left\{\left(u^{2}+7 u+7\right) v+\left(7 u^{3}+35 u^{2}+49 u+16\right)\right\} .
$$

Thus $\beta=\frac{s-3 \rho}{3 \rho^{-1}-3 \rho}$ gives a Belyi function (i.e., unramified outside $\beta=$ $0,1, \infty)$ of degree 7 on E with valency list $[331,331,7]$.

In effect, one can induce an isomorphism of covers

from the conjugacy by the 'Fricke involution' $\pm \frac{1}{\sqrt{7}}\left(\begin{array}{cc}0-1 \\ 7 & 0\end{array}\right)$ between the modular group $\Gamma_{0}(49)$ and $\left.\left\{ \pm \begin{array}{c}a b \\ c d\end{array}\right) \in \mathrm{PSL}_{2}(\mathbb{Z}): b \equiv c \equiv 0 \bmod 7\right\}$ in $\mathrm{PSL}_{2}(\mathbb{R})$ (cf. [E] p.90). Therefore, the computation of $E \rightarrow X_{0}(7)$ may be reduced to combining classically well known equations that relate $X_{0}(7), X_{0}(49)$ with the J-line $X(1)$ found in, e.g., $[\mathrm{F}] \mathrm{pp} .395-403$. Here, however, we shall employ an alternative enjoyable discussion following the Elkies scheme:

First of all, since $\frac{d s}{d t}=\frac{\left(t^{2}-t+1\right)^{2}}{(t-1)^{2} t^{2}}$, the 3 -cyclic cover g is ramified only over $s=3 \rho, 3 \rho^{-1}$ at $t=\rho, \rho^{-1}$, and the fiber over $s=\infty$ is formed by the three points $t=0,1, \infty$. We next chase the fibers of f over these points and their images in E by q. Noticing that $\mathbb{C}\left(X_{7}\right)=\mathbb{C}(y, z)=\mathbb{C}(y, t)$ with $y^{7}=\frac{t^{3}}{1-t}$, we see that f is totally ramified over $t=0,1, \infty$, and their images by q coincide at the infinity point on $E: v^{2}=4 u^{3}+21 u^{2}+28 u$. From this follows that $p: E \rightarrow \mathbf{P}_{s}^{1}$ is totally ramified at the infinity point of E over $s=\infty$, hence s is of the form $s=F(u)+G(u) v$ with $F, G \in \mathbb{C}[u]$, $\operatorname{deg}(F)=3, \operatorname{deg}(G)=2$.

The fiber of f over $t=\rho$ forms one orbit under the action of $\sigma(y \mapsto$ $\zeta y)$ whose points are represented by the set of their y-coordinates $S_{\rho}:=$ $\left\{\xi^{2}, \xi^{5}, \xi^{8}, \xi^{11}, \xi^{14}, \xi^{17}, \xi^{20}\right\}$, where $\xi:=e^{2 \pi i / 21}$. The action of τ preserves $t=\rho$ and transforms those y-coordinates (over $t=\rho$) as $y \mapsto y^{2} \xi^{-14}$, hence decomposes S_{ρ} into the three τ-orbits $S_{\rho}^{1}:=\left\{\xi^{2}, \xi^{11}, \xi^{8}\right\}, S_{\rho}^{2}:=\left\{\xi^{5}, \xi^{17}, \xi^{20}\right\}$, and $S_{\rho}^{3}:=\left\{\xi^{14}=\rho^{4}\right\}$ (This also explains the branch type of p over $s=3 \rho$ is ' 331 '). Then we compute the u-coordinates u_{1}, u_{2}, u_{3} of the images of these orbits by q after the formula (A2); it turns out that $u_{1}=-\xi^{2}-\xi^{11}-\xi^{8}-1$, $u_{2}=-\xi^{7}+\xi^{2}+\xi^{11}+\xi^{8}-2$ and $u_{3}=3 \rho-1$. Eliminating v from $F(u)+$
$G(u) v=3 \rho$, we should then have an equation of the form

$$
\left(4 u^{3}+21 u^{2}+28 u\right) G(u)^{2}-(F(u)-3 \rho)^{2}=\left(u-u_{1}\right)^{3}\left(u-u_{2}\right)^{3}\left(u-u_{3}\right) .
$$

Using a symbolic computation software such as MAPLE to compare the coefficients of the both sides above (plus a slight more consideration of signs), we conclude $F(u)=\frac{1}{2}\left(7 u^{3}+35 u^{2}+49 u+16\right), G(u)=\frac{1}{2}\left(u^{2}+7 u+7\right)$ as stated in Proposition A.

Remark. The monodromy representation associated with the above Belyi function β is given by $x=(142)(356)(7), y=(175)(346)(2), z=$ (1234567). The following picture illustrates the uniformization of this Grothendieck dessin.

References
[E] N. D. Elkies, The Klein Quartic in Number Theory, in "The Eightfold Way", MSRI Publ. 35 (1998), 51-101.
[F] R. Fricke, Die Elliptischen Funktionen und Ihre Anwendungen, Zweiter Teil, Teubner 1922.
[H] K. Hoshino, The Belyi functions and dessin d'enfants corresponding to the nonnormal inclusions of triangle groups, Preprint 2008.
[S] D. Singerman, Finitely maximal Fuchsian group, J. London Math. Soc. (2) 6 (1972), 29-38.

Department of Mathematics, Faculty of Science, Okayama University, Okayama 700-8530, Japan
e-mail address: khoshino@math.okayama-u.ac.jp, h-naka@math.okayama-u.ac.jp
(Received May 12, 2008)

[^0]: *Department of Mathematics, Faculty of Science, Okayama University, khoshino@math.okayama-u.ac.jp
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Okayama University, h-naka@math.okayama-u.ac.jp

