Mathematical Journal of Okayama

University

Volume 27, Issue 1 1985 Article 5
JANUARY 1985

Lie ideals and semi-derivations of prime rings

Motoshi Hongan*

^{*}Tsuyama College of Technology

Math. J. Okayama Univ. 27 (1985), 13-17

LIE IDEALS AND SEMI-DERIVATIONS OF PRIME RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

Мотояні HONGAN

Throughout, R will represent a prime ring of characteristic not 2 with center C. Let $d: r \mapsto r'$ be a non-zero semi-derivation of R associated with a surjective function $\sigma: R \to R$, namely d be a non-zero additive endomorphism of R such that $d\sigma = \sigma d$ and $(xy)' = x'\sigma(y) + xy' = x'y + \sigma(x)y$ for all $x, y \in R$. Then, as was shown in [3, Theorem 1], σ becomes a ring homomorphism. Let U be a Lie ideal of R, and put W = [U, U] and S = [W, W]. Obviously, $\sigma(U)$ and both W and S are Lie ideals of R. We consider the following conditions:

- (1-U) $U \subseteq C$.
- (2-U) $U' \subseteq C$.
- (3-U) $U'' \subseteq C$.
- $(4-U) \quad [U',U'] \subseteq C.$
- (5-U) There exists some $a \in R \setminus C$ such that $[a, U'] \subseteq C$.
- (6-U) There exists a non-zero $a \in R$ such that $aU \subseteq C$.
- $(7-U) \quad [u,u'] \in C \text{ for all } u \in U.$
- (8-U) There exists a non-zero semi-derivation $\delta: r \mapsto r^*$ of R associated with a bijective function $\tau: R \to R$ such that $\delta \sigma = \sigma \delta$ and $(U')^* \subseteq C$.

All the results in [1] and [5] proved for Lie ideals of prime rings of characteristic not 2 with derivations have been summarized in Theorem A of [4]. The objective of this paper is to prove the following theorem, which will lead us to a generalization of [4, Theorem A] (Corollary 1).

Theorem 1. (1-U), (1-W), (1-S) and (2-U) are equivalent. and each of (3-U)-(8-U) implies $(1-\sigma(U))$.

In preparation for proving our theorem, we state several preliminary lemmas.

Lemma 1. (1) $W' \subseteq [U, U'] + [\sigma(U), U'] \subseteq U + \sigma(U)$; in particular, if $U' \subseteq C$ then W' = 0.

14 M. HONGAN

- (2) If U' = 0 then $U \subseteq C$.
- (3) $\sigma(a) = a$ for every $a \in R$ with a' = 0.

Proof. (1) This is clear by the equality $[u,v]' = [u',v] + [\sigma(u),v']$ $(u,v \in U)$.

- (2) Since $[U,R'] \subseteq [U,R]' + [U',\sigma(R)] = 0$, [3, Theorem 4] gives $U \subseteq C$.
- (3) Let r be an arbitrary element of r. Then $\sigma(a)r' = (ar)' = ar'$, and so $(a \sigma(a))R' = 0$. Hence $a \sigma(a) = 0$ by [3, Lemma 1].

Lemma 2. (1-U), (1-W), (1-S) and (2-U) are equivalent.

Proof. By [2, Lemma 3], (1-U), (1-W) and (1-S) are equivalent. It is easy to see that (1-U) implies (2-U). If (2-U) is satisfied then W'=0 by Lemma 1 (1). Hence, by Lemma 1 (2), we have (1-W).

Lemma 3. If there exists a non-zero $a \in R$ such that aU' = 0 (or U'a = 0) then $U \subseteq C$.

Proof. Suppose, to the contrary, that $U \subseteq C$. Let $u, v \in U$, and $r \in R$. Then $0 = a[u, v'ru]' = a([u, v'r]u)' = a[u, v'r]'\sigma(u) + a[u, v'r]u' = auv'ru'$, i.e., auU'Ru' = 0. Since $U' \neq 0$ (Lemma 1 (2)), by making use of Brauer's trick, we can easily see that aUU' = 0. But this is impossible by [2, Lemma 4].

Lemma 4. If U'' = 0 then $U \subseteq C$.

Proof. If not, there exists an ideal M of R such that $[M,R] \subseteq U$ but $[M,R] \nsubseteq C$, by [2, Lemma 1]. Let $m \in [M,R]$, $w \in W$ and $r \in R$. Note that m, $[m,r] \in U$, $\sigma(m') = m'$ (Lemma 1 (3)), $w' \in U'$ and $[w',r] \in U+ \sigma(U)$ (Lemma 1 (1)). Then $0 = [mw',r]'' = (m[w',r] + [m,r]w')'' = m''[w',r] + 2\sigma(m')[w',r]' + \sigma^2(m)[w',r]'' + 2\sigma([m,r]')w'' + \sigma^2([m,r])w''' = 2m'[w',r]'$, i.e., 0 = [M,R]'[W',R]' = [M,R]'[W',R']. Since $[M,R] \nsubseteq C$, Lemma 3 gives [W',R'] = 0, and so $W' \subseteq C$ by [3, Theorem 4]. But this contradicts Lemma 2.

Lemma 5. (1) If $C' \neq 0$ and $[a, U'] \subseteq C$ for some $a \in R \setminus C$, then $U \subseteq C$.

(2) If [a, U'] = 0 for some $a \in R \setminus C$, then $\sigma(U) \subseteq C$.

Proof. (1) There exists a $c \in C$ such that $c' \neq 0$. Then, for any

15

 $u \in U$ and $r \in R$, $c'[a,[u,r]] = [a,[u,cr]'] - \sigma(c)[a,[u,r]'] \in C$. Hence [a,[a,[U,R]] = 0, and so [5, Theorem 4] gives $[U,R] \subseteq C$; in particular, [a,[a,U]] = 0. Again by [5, Theorem 4], we get $U \subseteq C$.

(2) In view of (1), we may assume that C'=0. Suppose, to the contrary, that $\sigma(U) \nsubseteq C$. Since $0=[a,[a,u]']=[a,[a',\sigma(u)]]$ for any $u\in U$, we have $[a,[a',\sigma(U)]]=0$, and so [5], Theorem 4] proves that $a'\in C$ and $\sigma(a')=a'$ (Lemma 1 (3)). Then, for any $u\in U$, $0=[a,[a^2,u]']=[a,[a'\sigma(a)+aa',\sigma(u)]]=a'[a,[a+\sigma(a),\sigma(u)]]$, i.e., $a'[a,[a+\sigma(a),\sigma(U)]]=0$. Hence either a'=0 or $[a,[a+\sigma(a),\sigma(U)]]=0$. In the latter case, we have $a+\sigma(a)\in C$ by [5], Theorem 4], and $0=(a+\sigma(a))'=2a'$. We have thus seen that a'=0, in either case. Now, by [2], Lemma 1], there exists an ideal M of R such that $[M,R]\subseteq U$ but $[M,R]\nsubseteq C$. Let $m\in [M,R]$ ($\subseteq M\cap U$), and $u\in U$. Then $m'[a,[a,u]]=[a,m'[a,u]]=[a,m'[a,u]+\sigma(m)([a,u']+[a',\sigma(u)])]=[a,m'[a,u]+\sigma(m)[a,u]']=[a,(m[a,u])']=[a,[ma,u]']-[a,([m,u]a)']=-[a,[m,u]']a=0$, i.e., [M,R]'[a,[a,U]]=0. Hence, Lemma 3 shows that [a,[a,U]]=0, and therefore $U\subseteq C$ by [5], Theorem 4]. But this is a contradiction.

Lemma 6. If $\sigma(U) \subseteq C$ and U''' = 0 then R''' = 0.

Proof. First, we claim that $R'''\subseteq C$. It is easy to see that $S'\subseteq V+\sigma(V)$ and $S''\subseteq U+\sigma(U)+\sigma^2(U)$ (see Lemma 1 (1)). Then, for any $s\in S$ and $r\in R$, $[s'',r''']=[s',r]'''\in [U,r]'''+[\sigma(U),r]'''+[\sigma^2(U),r]'''=0$ and $[s',r^{(4)}]=3\sigma([s'',r''])+[s',r^{(4)}]=3[s'',\sigma(r''')]+[s',r^{(4)}]=[s',r']'''\in [V,r]'''+[\sigma(V),r]'''=0$ (see Lemma 1 (3)). Hence $[S',R^{(4)}]=0$. Since $\sigma(S)\nsubseteq C$ (Lemma 2), Lemma 5 (2) gives $R^{(4)}\subseteq C$. Now, let $u\in U$ and $r\in R$. Then $0=[u,r]^{(4)}=6[u'',\sigma^2(r'')]+4[u',\sigma(r''')]$ and $0=[u,r']'''=3[u'',\sigma^2(r'')]+3[u',\sigma(r''')]$, so that $0=2[u,r']'''-[u,r]^{(4)}=2[u',\sigma(r''')]$, i.e., [U',R''']=0. Thus $R'''\subseteq C$ by Lemma 5 (2). In particular, $R'''U''=(RU'')'''\subseteq C$, and so either R'''=0 or $U''\subseteq C$. If $U''\subseteq C$ then $r^{(4)}u'=(ru')^{(4)}-4\sigma(r''')u''\in C$, i.e., $R^{(4)}U'\subseteq C$. Since $U'\nsubseteq C$ (Lemma 2), we get $R^{(4)}=0$. Hence $4\sigma(r''')u''=(ru')^{(4)}-r^{(4)}u'=0$, i.e., R'''U''=0. Combining this with $U''\neq 0$ (Lemma 4), we get R'''=0. This completes the proof.

We are now ready to complete the proof of our theorem.

Proof of Theorem 1. By Lemma 2, it remains to prove that each of (3-U)-(8-U) implies $(1-\sigma(U))$.

 $(7-U) \Rightarrow (1-\sigma(U))$. Linearizing the relations $[u,u'] \in C$ and

16 M. HONGAN

 $\begin{aligned} &[u',\sigma(u)]=[u,u]'-[u,u']\in C, \text{ we get } [u,v']-[u',v]\in C \text{ and } [u',\sigma(v)]-\\ &[\sigma(u),v']\in C(u,v\in U). \text{ Then, by making use of Jacobi identity, we see} \\ &\text{that } [u,[u',\sigma(v)]]=[u,[\sigma(u),v']]=[u,[u,v]']-[u,[u',v]]=[u,[u,v]']\\ &-[u',[u,v]]\in C, \text{ i.e., } [u,[u',\sigma(U)]]\subseteq C. \text{ If } \sigma(U)\nsubseteq C \text{ then } u'\in C \text{ by}\\ &[5,\text{ Theorem 4}];\ U'\subseteq C. \text{ But this contradicts Lemma 2.} \end{aligned}$

 $(3-U) \Rightarrow (1-\sigma(U))$. Let $u, v \in U$. Then $2[\sigma(u'), v'] = [u, v]'' \in C$, i.e., $[\sigma(U'), U'] \subseteq C$. In case $C' \neq 0$, Lemma 5 (1) proves that R satisfies $(1-\sigma(U))$. Thus, we assume henceforth that C' = 0. Suppose, to the contrary, that $\sigma(U) \nsubseteq C$. Since $U''' \subseteq C' = 0$, Lemma 6 proves that R''' = 0. Now, let u be an arbitrary element of U with u'' = 0. Then, for any $v \in U$, $[u,v']' = [u',v'] = [\sigma(u'),v'] \in C$ and $2u'[u',v'] = 2u'[u,v']' = 2u'\sigma([u,v']') = (u[u,v'])'' = [u,uv']' \in C$ (Lemma 1 (3)). Hence [u',U'] = 0, and $u' \in C$ (Lemma 5 (2)). In what follows, let u be an arbitrary element of U with $u'' \neq 0$. Since [u,R'']'' = 0, by what we have just shown above we see that $[u',R''] = [u,R'']' \subseteq C$; in particular, [u',[u',R'']] = 0. Thus $u''[u',[u',R'']] = [u',[u',u''\sigma^2(R')]] \subseteq [u',[u',(uR')''] + u'[u',[u',\sigma(R'')]] = 0$, whence [u',[u',R']] = 0 follows, and therefore $u''[u',[u',R]] = [u',[u',u''R]] \subseteq [u',[u',(u''R)']] + u'[u',[u',\sigma(R')]] = 0$. Hence [u',[u',R]] = 0, and so $u' \in C$ by [5, Theorem 4]. We have thus seen that $U' \subseteq C$, which contradicts Lemma 2.

 $(5-U) \Rightarrow (1-\sigma(U))$. Suppose, to the contrary, that $\sigma(U) \nsubseteq C$. Let u, v be arbitrary elements of U. Then $[a,[u'',\sigma(v)]] = [a,[u,v]'] - [a,[u',v']] = [a,[u',v]'] + [u',[v',a]] + [v',[a,u']] \in C$, i.e., $[a,[u'',\sigma(U)]] \subseteq C$. Hence $u'' \in C$ by [5, Theorem 4]; R satisfies (3-U). This is a contradiction.

 $(4-U) \Rightarrow (1-\sigma(U))$. (4-U) implies either (2-U) or (5-U), and hence $(1-\sigma(U))$.

 $(6-U) \Rightarrow (1-\sigma(U))$. If $a \in C$ then $U \subseteq C$ (Lemma 2). We assume henceforth that $a \notin C$. If there exists a $c \in C$ such that $c' \neq 0$, then $c'a[u,r] = a[u,cr]' - \sigma(c)a[u,r]' \in C$ ($u \in U$, $r \in R$), and so a[a,[U,R]] = [a,a[U,R]] = 0. This implies $[U,R] \subseteq C$ by [2, Lemma 7], and hence $U \subseteq C$ by [2, Lemma 6]. Thus, in what follows, we assume that C' = 0. Suppose, to the contrary, that $\sigma(U) \nsubseteq C$. Since a[a,U'] = [a,aU'] = 0 and $a[a',\sigma(U)] = a[a,U]' \subseteq C$, we get $a' \in C$ by [5, Theorem 6]. Now, let M = RWR. Then $[M,R] \subseteq U$ (see the proof of [2, Lemma 1]). Since $\sigma(W) \nsubseteq C$ (Lemma 2), $\sigma(M) = R\sigma(W)R \neq 0$, and therefore, as is well known, $\sigma(M)$ is not commutative. Furthermore, in view of [2, Lemma 6], we see that $[\sigma(M),R] \nsubseteq C$. Let $m \in [M,R] \subseteq M \cap U$. Then a[a,m]

= 0 and $a[a,m]a' = a[a,m]'\sigma(a) + a[a,m]a' = a([a,m]a)' = a[a,ma]' \in C$. Hence $(a')^2[a,\sigma(m)] = a'[a,(am)'] = (a'[a,am])' = (a[a,m]a')' = 0$; $(a')^2[a,[\sigma(M),R]] = 0$. Since $[a,[\sigma(M),R]] \nsubseteq C$ by [2, Lemma 6], we get a' = 0. Thus aU'' = (aU')' = 0 and aU''' = 0. Since $\sigma(a) = a$ (Lemma 1 (3)), it is easy to see that $a\sigma(U'') = 0$, $a[U',\sigma(U)]' \subseteq C$ and $a[U',\sigma^2(U)]' \subseteq C$. Noting here that $S'' \subseteq U + \sigma(U) + \sigma^2(U)$ (see Lemma 1 (1)), we can easily see that $aU'S''' = a[U',S''']' \subseteq C$. Since $aU' \neq 0$ (Lemma 3), we get $S''' \subseteq C$, and so $aU'S''' = a[U,S''']' \subseteq C$. Hence R satisfies (3-S). This is impossible by Lemma 2.

 $(8-U) \Rightarrow (1-\sigma(U))$. Noting that $W' \subseteq U + \sigma(U)$, we can easily see that $[(\sigma(U))^*, W''] = ([U, W']')^* \subseteq C$. If $W'' \subseteq C$ then R satisfies $(5-\sigma(U))$ with respect to δ , and therefore $\tau\sigma(U) \subseteq C$. Hence $\sigma(U) \subseteq C$. On the other hand, if $W'' \subseteq C$ then $\sigma(W) \subseteq C$ by the above, and $\sigma(U) \subseteq C$ (Lemma 2).

Corollary 1. If R is not commutative and σ is bijective, then each of (2-S)-(8-S) is equivalent to (1-U).

Remark 1. Obviously, Theorem 1 gives generalizations of Theorems 3-7 and 9 in [3], as well. Furthermore, it is easy to see that if U is either d-stable or σ -stable and there exists a non-zero semi-derivation δ : $r \mapsto r^*$ of R associated with a surjective function $\tau: R \to R$ such that $(U')^* \subseteq C$ then $\tau\sigma(U) \subseteq C$. This is a generalization of Theorem 8 in [3].

REFERENCES

- R. AWTAR: Lie structure in prime rings with derivations, Publ. Math. Debrecen 31 (1984), 209-215.
- [2] J. BERGEN, I. N. HERSTEIN and J. W. KERR: Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
- [3] J. C. CHANG: On semi-derivations of prime rings, Chinese J. Math. 12 (1984), 255-262.
- [4] Y. HIRANO, H. TOMINAGA and A. TRZEPIZUR: On a theorem of Posner, Math. J. Okayama Univ. 27 (1985), 25-32.
- [5] P. H. LEE and T. K. LEE: Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983), 75-80.

TSUYAMA COLLEGE OF TECHNOLOGY

(Received July 1, 1985)